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Preliminaries
• Terminology: 

– Graph ; symmetric
– : Vertices; : edges;
– Independent Set : s.t.

• Algorithmic Challenge: Given , find large 
independent set .

• [Karp’72]: NP-complete in worst-case.
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Random Graphs
• Popularized by Erdös-Renyi:

– Basic Model: Every edge thrown in independently 
with probability 

– Regular Model: Pick uniformly among all -regular 
graphs:
• ݀-regular: Every vertex in exactly ݀ edges.

• Background: Almost surely, random -regular 
graph on vertices has independent set of size ௗ for ௗ ଶௗ . 

• Question: Find such large independent sets?
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Random Graphs & Complexity

• Worst-case complexity results no longer apply.
• Could hope: Some polynomial time algorithm 

finds ind. sets of size ௗ
• Greedy algorithm: 

– Order vertices arbitrarily. 
– Run through vertices in order, include in if this 

keeps independent.

• Fact: Finds set of size ௗ ௡ଶ
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Main Result

• Our Theorem: “Local algorithms” can not. In 
fact they fall short by a constant factor.

• Extensions/Subsequent results: 
– [Rahman-Virag]: Fall short by factor of ଵଶ.
– Locally-guided decimation algorithms (Belief 

Propagation, Survey Propagation) fail on some 
other CSPs.
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Definition: Local Algorithms

• Informally: Local algorithms
– Input = Communication network.
– Wish to use local communication to compute 

some property of input.
– In our case – large independent set in graph.
– Allowed to use randomness, generated locally.
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Formally
• (Randomized) Decision Algorithm: 

– : Determines if 
• is a weighting, say in 0,1 ݓ , on vertices

• Correctness: 
– s.t. ீ

or .
• Locality:

– is -local if whenever -local 
weighted neighborhood around in and in 

are identical. 
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Locality Locality

• Locality in distributed algorithms
– Usually algorithms try to compute some function of 

input graph, on the graph itself.
– Algorithm uses data available topologically locally.
– Leads to our model

• Locality a la Codes/Property Testing
– Locality simply refers to number of queries to input. 
– More general model. 
– We can’t/don’t deal with it.
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Motivations for our work

1. Paucity of “complexity” results for random 
graphs. Major exceptions:
• Rossman: ܥܣ଴/Monotone complexity of planted 

clique.
• Feige-Krauthgamer: LP relaxations.

2. Physicists explanation of complexity
• Clustering/Shattering explain inability of algorithms.

3. Graph Limit theory
• Local characteristics of (random) graphs predict global 

properties (nearly).
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Motivations (contd.)

• Specific conjecture [Hatami-Lovasz-Szegedy]: 
As -local algorithms should find 
independent sets of cardinality ௗ . 

• Refuted by our theorem.
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Proof

• Part I: 
– A clustering phenomenon for independent sets in 

random graphs [Inspired by Coja-Oglan].
• Part II: 

– Locality Continuity (Clustering).

Both parts simple.
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Clustering Phenomena

• Generally: 
– When you look at “near-optimal” solutions, then 

they are very structured.
– topology of solutions highly disconnected (in 

Hamming space.
• In our context

– Consider graph on independent sets (of size ௗ with if 
– Highly disconnected?
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Clustering Theorem

• Theorem: ௗ s.t.:
– Almost surely over , of size ௗ ,ூ∩௃௡

• Proof: 
– Compute expected number of independent sets 

with forbidden intersection and note it is 
– Second moment proves concentration.

• Implies Clustering.
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Locality (Clustering)

• Main Idea:
– Fix -local function , that usually produces 

independent sets of size ௗ
– Sample weights twice: , and then ; -

correlatedly.
– Let and .
– Prove:

• whp, ܫ , ܬ ≈ ܿௗ ⋅ ݊
• whp, ܫ ∩ ܬ ≈ ߚ ݌ ⋅ ݊
• ݌∃ s.t. ߚ ݌ ∈ ,ߠ) ߬)
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Size of Ind. Set

• Claim: Size of independent set produced by 
local algorithms is concentrated.
– Let ௪ ௗ

(where ௗ = infinite tree of degree )
– W.p. 1-o(1), size of ind. set produced 

• Proof:
– Most neighborhoods are trees Expectation.
– Most neighborhoods are disjoint Chebychev.
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-correlated distributions

• Pick , independently.
• Let ௜ ௜ w.p. and ௜ otherwise, 

independently for each .
• Let ௪,௫Ԧ ௗ ௗ ]
• As in previous argument:

–
– concentrated around expectation.
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Continuity of 

• Fix , and consider ௗ ௗ
• Above expression is some polynomial in , of 

degree at most ௥
• In particular, it is continuous as function of 
• =Expectation over is also 

continuous.
• Suffices to show 
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Continuity (contd.)

• ௪,௫Ԧ ௗ ௗ ]
• ௗ
• ଶ ௗଶ
• Follows from calculations (also naturally) that

–
• Conclude:

– whp, ௗ
– whp, 
– s.t.
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Extensions-1

• Our notion of clustering:
– independent: ௗ
– To get , need close to 1.

• To improve [Ramzan-Virag] suggest:
– ଵ ଶ ௠ with ௝ ௗ s.t.௜ ௝
– Lets them get to ଵଶ
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Extensions-2

• Local algorithms: Makes all decisions locally, in 
one shot.

• Locally guided decimation algorithms: 
– Compute some local information.
– Make one decision (e.g., ) and commit
– Repeat.

• Recent work: Locally guided decimation 
algorithms also don’t get close to optimum 
(on other random CSPs).
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Conclusions

• “Clustering” is an obstacle?
• Answer:

– At least to local algorithms.
– Local algorithms behave continuously, forcing non-

clustering of solutions.
• Open questions:

– Barrier to local algorithms in general sense?
– To other complexity classes?
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Thank You
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