Limits of Local Algorithms in Random Graphs

Madhu Sudan MSR

Joint work with David Gamarnik (MIT)

10/07/2014

Local Algorithms on Random Graphs

1 of 22

Preliminaries

- Terminology:
 - Graph $G = (V, E); E \subseteq V \times V$ symmetric
 - *V*: Vertices; *E*: edges;
 - Independent Set : $I \subseteq V$ s.t. {u, v} ⊆ $I \Rightarrow (u, v) \notin E$.
- Algorithmic Challenge: Given *G*, find large independent set *I*.
- [Karp'72]: NP-complete in worst-case.

Random Graphs

- Popularized by Erdös-Renyi:
 - Basic Model: Every edge thrown in independently with probability p.
 - Regular Model: Pick G uniformly among all d-regular graphs:
 - *d*-regular: Every vertex in exactly *d* edges.
- Background: Almost surely, random *d*-regular graph on *n* vertices has independent set of size $(1 + o(1)) \cdot c_d \cdot n$ for $c_d = \frac{2}{d} \log d$.
- Question: Find such large independent sets?

Random Graphs & Complexity

- Worst-case complexity results no longer apply.
- Could hope: Some polynomial time algorithm finds ind. sets of size $(1 o(1)) \cdot c_d \cdot n$
- Greedy algorithm:
 - Order vertices arbitrarily.
 - Run through vertices in order, include v in I if this keeps I independent.
- Fact: Finds set of size $\approx c_d \cdot \frac{n}{2}$

Main Result

- Our Theorem: "Local algorithms" can not. In fact they fall short by a constant factor.
- Extensions/Subsequent results:
 - [Rahman-Virag]: Fall short by factor of $\frac{1}{2}$.
 - Locally-guided decimation algorithms (Belief Propagation, Survey Propagation) fail on some other CSPs.

Definition: Local Algorithms

- Informally: Local algorithms
 - Input = Communication network.
 - Wish to use local communication to compute some property of input.
 - In our case large independent set in graph.
 - Allowed to use randomness, generated locally.

Formally

- (Randomized) Decision Algorithm:
 - $-f(u, G, \vec{w}) \in \{0, 1\}$: Determines if $u \in I$.
 - \vec{w} is a weighting, say in [0,1], on vertices
- Correctness:

 $- \forall u, v, G, \vec{w} \text{ s.t. } u \leftrightarrow_G v,$ f(u, G, w) = 0 or f(v, G, w) = 0.

- Locality:
 - f is r-local if $f(u, G, \vec{w}) = f(v, H, \vec{x})$ whenever r-local weighted neighborhood around u in (G, \vec{w}) and v in (H, \vec{x}) are identical.

Locality \neq Locality

- Locality in distributed algorithms
 - Usually algorithms try to compute some function of input graph, on the graph itself.
 - Algorithm uses data available topologically locally.
 - Leads to our model
- Locality a la Codes/Property Testing
 - Locality simply refers to number of queries to input.
 - More general model.
 - We can't/don't deal with it.

Motivations for our work

- 1. Paucity of "complexity" results for random graphs. Major exceptions:
 - Rossman: AC⁰/Monotone complexity of planted clique.
 - Feige-Krauthgamer: LP relaxations.
- 2. Physicists explanation of complexity
 - Clustering/Shattering explain inability of algorithms.
- 3. Graph Limit theory
 - Local characteristics of (random) graphs predict global properties (nearly).

Motivations (contd.)

- Specific conjecture [Hatami-Lovasz-Szegedy]: As $r \to \infty$, r-local algorithms should find independent sets of cardinality $c_d(1 - o(1)) n$.
- Refuted by our theorem.

Proof

• Part I:

 A clustering phenomenon for independent sets in random graphs [Inspired by Coja-Oglan].

• Part II:

- Locality \Rightarrow Continuity $\Rightarrow \neg$ (Clustering).

Both parts simple.

Clustering Phenomena

- Generally:
 - When you look at "near-optimal" solutions, then they are very structured.
 - → topology of solutions highly disconnected (in Hamming space.
- In our context
 - Consider graph on independent sets (of size $\approx c_d n$) with $I \leftrightarrow J$ if $|I \Delta J| \leq \epsilon \cdot n$.
 - Highly disconnected?

Clustering Theorem

• Theorem: $\forall d, \exists 0 < \theta < \tau < c_d$ s.t.:

- Almost surely over G, $\forall I, J$ of size $\approx c_d n$, $\frac{|I \cap J|}{T} \notin (\theta, \tau)$

- Proof:
 - Compute expected number of independent sets with forbidden intersection and note it is $\ll 1$.
 - Second moment proves concentration.
- Implies Clustering.

Locality $\Rightarrow \neg$ (Clustering)

- Main Idea:
 - Fix *r*-local function *f*, that usually produces independent sets of size $\approx c_d \cdot n$
 - Sample weights twice: \vec{w} , and then \vec{x} ; p-correlatedly.
 - Let $I = f(G, \vec{w})$ and $J = f(G, \vec{x})$.
 - Prove:
 - whp, |I|, $|J| \approx c_d \cdot n$
 - whp, $|I \cap J| \approx \beta(p) \cdot n$
 - $\exists p \text{ s.t. } \beta(p) \in (\theta, \tau)$

Size of Ind. Set

- Claim: Size of independent set produced by local algorithms is concentrated.
 - $-\operatorname{Let} \alpha = \alpha(f) = \mathbb{E}_{\overrightarrow{w}}[f(\mathbf{u}, \mathbb{T}_d, \overrightarrow{w})]$

(where \mathbb{T}_d = infinite tree of degree d)

- W.p. 1-o(1), size of ind. set produced $\approx \alpha \cdot n$.
- Proof:
 - Most neighborhoods are trees \Rightarrow Expectation.
 - Most neighborhoods are disjoint \Rightarrow Chebychev.

p-correlated distributions

- Pick $\vec{w}, \vec{y} \in [0,1]^n$, independently.
- Let $\vec{x}_i = \vec{w}_i$ w.p. p and \vec{y}_i otherwise, independently for each i.
- Let $\beta(p) = \mathbb{E}_{\vec{w},\vec{x}}[f(u, \mathbb{T}_d, \vec{w}) \land f(u, \mathbb{T}_d, \vec{x})]$
- As in previous argument:
 - $-\operatorname{\mathbb{E}}[|I\cap J|]\approx\beta(p)\cdot n$
 - $-|I \cap J|$ concentrated around expectation.

Continuity of $\beta(p)$

- Fix \vec{w}, \vec{y} , and consider $\Pr[f(u, \mathbb{T}_d, \vec{w}) \land f(u, \mathbb{T}_d, \vec{x})]$
- Above expression is some polynomial in p, of degree at most d^r.
- In particular, it is continuous as function of *p*.
- $\Rightarrow \beta(p)$ =Expectation over \vec{w}, \vec{y} is also continuous.
- Suffices to show $[\beta(0), \beta(1)] \cap (\theta, \tau) \neq \emptyset$.

Continuity (contd.)

- $\beta(p) = \mathbb{E}_{\vec{w},\vec{x}}[f(u,\mathbb{T}_d,\vec{w}) \wedge f(u,\mathbb{T}_d,\vec{x})]$
- $\beta(1) = \alpha(f) \approx c_d$
- $\beta(0) = \alpha^2 \approx c_d^2$
- Follows from calculations (also naturally) that $-[\beta(0), \beta(1)] \cap (\theta, \tau) \neq \emptyset$
- Conclude:
 - whp, |I|, $|J| \approx c_d \cdot n$
 - whp, $|I \cap J| \approx \beta(p) \cdot n$
 - $-\exists p \text{ s.t. } \beta(p) \in (\theta, \tau)$

Extensions-1

- Our notion of clustering:
 - $\forall I, J \text{ independent: } |I|, |J| \approx \alpha c_d n, |I \cap J| \notin (\theta \cdot n, \tau \cdot n)$
 - To get $\theta < \tau$, need α close to 1.
- To improve [Ramzan-Virag] suggest:

 $- \forall I_1, I_2, \dots, I_m \text{ with } |I_j| \approx \alpha \ c_d \ n, \ \exists i, j \text{ s.t.}$ $|I_i \cap I_j| \notin (\theta \cdot n, \tau \cdot n)$ $- \text{Lets them get to } \alpha \rightarrow \frac{1}{2}$

Extensions-2

- Local algorithms: Makes all decisions locally, in one shot.
- Locally guided decimation algorithms:
 - Compute some local information.
 - Make one decision (e.g., $v \in I$?) and commit
 - Repeat.
- Recent work: Locally guided decimation algorithms also don't get close to optimum (on other random CSPs).

Conclusions

- "Clustering" is an obstacle?
- Answer:
 - At least to local algorithms.
 - Local algorithms behave continuously, forcing nonclustering of solutions.
- Open questions:
 - Barrier to local algorithms in general sense?
 - To other complexity classes?

Thank You