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Preliminaries

* Terminology:
— Graph G = (V,E); E €V XV symmetric
— V': Vertices; E: edges;
— IndependentSet: ] € Vs.t. {u,v} €1 = (u,v) ¢ E.

e Algorithmic Challenge: Given G, find large
independent set .

e [Karp’72]: NP-complete in worst-case.
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Random Graphs

* Popularized by Erdods-Renyi:

— Basic Model: Every edge thrown in independently
with probability p.

— Regular Model: Pick G uniformly among all d-regular
graphs:

* d-regular: Every vertex in exactly d edges.

e Background: Almost surely, random d-regular
graph on n vertices has independent set of size

(1 + 0(1)) . cg - nforcy = 2 logd.

* Question: Find such large independent sets?
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Random Graphs & Complexity

* Worst-case complexity results no longer apply.

e Could hope: Some polynomial time algorithm
finds ind. sets of size (1 — 0(1)) Cq N
* Greedy algorithm:

— Order vertices arbitrarily.

— Run through vertices in order, include v in [ if this
keeps I independent.
* Fact: Finds set of size = ¢, - g
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Main Result

 Our Theorem: “Local algorithms” can not. In
fact they fall short by a constant factor.

» Extensions/Subsequent results:

— [Rahman-Virag]: Fall short by factor of %

— Locally-guided decimation algorithms (Belief
Propagation, Survey Propagation) fail on some
other CSPs.
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Definition: Local Algorithms

* Informally: Local algorithms
— Input = Communication network.

— Wish to use local communication to compute
some property of input.

— In our case — large independent set in graph.
— Allowed to use randomness, generated locally.
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Formally

* (Randomized) Decision Algorithm:
— f(u,G,w) € {0,1}: Determines ifu € I.
* W is a weighting, say in [0,1], on vertices
* Correctness:
—Vu,v,G,Ws.t.uog v,
f(u,G,w) = Oor f(v,G,w) = 0.
* Locality:

— fiisr-local if f(u, G,w) = f (v, H, X) whenever r-local
weighted neighborhood around u in (G, w) and v in
(H, x) are identical.
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Locality # Locality

* Locality in distributed algorithms

— Usually algorithms try to compute some function of
input graph, on the graph itself.

— Algorithm uses data available topologically locally.
— Leads to our model

* Locality a la Codes/Property Testing

— Locality simply refers to number of queries to input.

— More general model.
— We can’t/don’t deal with it.
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Motivations for our work

1. Paucity of “complexity” results for random
graphs. Major exceptions:

e  Rossman: AC°/Monotone complexity of planted
clique.
 Feige-Krauthgamer: LP relaxations.

2. Physicists explanation of complexity
e Clustering/Shattering explain inability of algorithms.

3. Graph Limit theory

 Local characteristics of (random) graphs predict global
properties (nearly).
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Motivations (contd.)

* Specific conjecture [Hatami-Lovasz-Szegedy]:
As r — oo, r-local algorithms should find
independent sets of cardinality c;(1 — 0(1)) n.

e Refuted by our theorem.
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Proof

e Partl:

— A clustering phenomenon for independent sets in
random graphs [Inspired by Coja-Oglan].

* Partll:
— Locality = Continuity = —(Clustering).

Both parts simple.
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Clustering Phenomena

* Generally:

I”

— When you look at “near-optimal” solutions, then

they are very structured.

— = topology of solutions highly disconnected (in
Hamming space.

* |n our context

— Consider graph on independent sets (of size =
can)withl & Jif[IA]]| <€ -n.

— Highly disconnected?
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Clustering Theorem

* Theorem:Vd,30 <0 <1< s.t.:
— Almost surely over G, VI, ] of size = c4n,

|INJ|
L (0,7)
 Proof:

— Compute expected number of independent sets
with forbidden intersection and note it is «< 1.

— Second moment proves concentration.

* Implies Clustering.
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Locality = —(Clustering)

e Main ldea:

— Fix r-local function f, that usually produces
independent sets of size = c; - n

— Sample weights twice: w, and then x ; p-
correlatedly.

—Let] = f(G,w) and ] = f(G, x).
— Prove:

* whp, |[I[,|J]| = ¢4 -1

* whp, [InJ| =~ B(p) -n

* Ap s.t. B(p) € (6,1)
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Size of Ind. Set

* Claim: Size of independent set produced by
local algorithms is concentrated.

— Lleta = a(f) = Ey[f(u, Ty, w)]
(where T4 = infinite tree of degree d)
— W.p. 1-0(1), size of ind. set produced = a - n.
* Proof:
— Most neighborhoods are trees = Expectation.

— Most neighborhoods are disjoint = Chebychev.
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p-correlated distributions

* Pickw,y € [0,1]"n, independently.

* Let X; = w; w.p. p and y; otherwise,
independently for each i.

° LEtIB(p) — Ew,f[f(u) Td} W) A f(u, lef)]
* As in previous argument:

—E[lInJll = B(p) -n

— |I N J| concentrated around expectation.
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Continuity of 5 (p)

* Fix W, y, and consider
Prif(u, Ty, w)A f(u, Ty x)]

* Above expression is some polynomial in p, of
degree at most d".

* In particular, it is continuous as function of p.

« = [(p)=Expectation over w, y is also
continuous.

» Suffices to show [£(0), (1) n (6,1) # ©.
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Continuity (contd.)

° :B(p) — IEW,f[f(uf Td,W) A f(u; Td'f)]

* (1) = a(f) = ¢4

» B(0) = a® = cj

* Follows from calculations (also naturally) that

— [8(0),B(D]N(6,7) # @

* Conclude:
—Whp, Ilil]l ~ Cq N
—whp, [IN]|~B(p) - n
—3dAp s.t. B(p) € (6,71)
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Extensions-1

* Our notion of clustering:
— VI, ] independent: |I|,|]| = acyn, |[IN]| & (O -
n,7-n)
— To get 6 < 7, need «a close to 1.
* To improve [Ramzan-Virag] suggest:
—VIy, Iy, o, Iy with || = @ cgn, 3i,j st
nL| ¢ (6 nt-n)

1
— Lets them getto a — E
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Extensions-2

* Local algorithms: Makes all decisions locally, in
one shot.
* Locally guided decimation algorithms:
— Compute some local information.
— Make one decision (e.g., v € I?) and commit
— Repeat.
* Recent work: Locally guided decimation

algorithms also don’t get close to optimum
(on other random CSPs).
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Conclusions

e “Clustering” is an obstacle?

* Answer:
— At least to local algorithmes.

— Local algorithms behave continuously, forcing non-
clustering of solutions.

* Open questions:
— Barrier to local algorithms in general sense?
— To other complexity classes?
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Thank You
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