Low-Degree Testing

Madhu Sudan MSR

Survey ... based on many works

CMSA: Low-degree Testing

Kepler's Problem

Tycho Brahe (~1550-1600):

- Wished to measure planetary motion accurately.
- To confirm sun revolved around earth ... (+ other planets around sun)
- Spent 10% of Danish GNP

- Believed Copernicus's picture: planets in circular orbits.
- Addendum: Ratio of orbits based on Löwner-John ratios of platonic solids.
- "Stole" Brahe's data (1601).

Source: Michael Fowler, "Galileo & Einstein", U. Virginia

- Worked on it for nine years.
- Disproved Addendum; Confirmed Copernicus (circle -> ellipse); discovered laws of planetary motion.
- Nine Years?
 - To check if data fits a low-degree polynomial?

Low-degree Testing

- Notation: \mathbb{F}_q = finite field of cardinality q
- Problem: Given $f : \mathbb{F}_q^n \to \mathbb{F}_q$ and $d \in \mathbb{N}$, is f"essentially" a deg. $\leq d$ (*n*-var.) polynomial?
 - With few queries for values of $f(\cdot)$
 - "essentially":
 - Must accept if $deg(5) \neq d$. max(deg(m))
 - Reject w.h.p. if $\delta(f,g) \ge .1$, $\forall g$ with $\deg(g) \le d$ $-\delta(f,g) \triangleq q^{-n} \cdot |\{x \mid f(x) \neq g(x)\}|$

 $\deg(x^2y^3) = 5$

Warning: Refinements and Variations later.

This talk

- Some motivations
- Some results
- Some proofs

Why Polynomials? Robustness!

- Polynomial Distance Lemma:
 - $-\operatorname{Let} f,g\colon \mathbb{F}_q^n \to \mathbb{F}_q, \, \text{w.} \, \deg(f), \deg(g) \leq d, f \neq g$
 - d < q: $\delta(f,g) \ge 1 \frac{d}{g}$
 - Generally: $\delta(f,g) \ge q^{-\binom{q}{d-1}}$ (w.l.o.g. $\deg_{\chi_i}(f) < q$) ! No dependence on n !
 - $\delta_{d,q} riangle$ Min. Dist. Between degree d polynomials over \mathbb{F}_q
- Used in Error-correcting Codes:
 - Information: Coefficients of polynomials
 - Encoding: Evaluations
 - Robust: Changing few values doesn't cause ambiguity.

Formal Definitions and Parameters

- (ℓ, ϵ) -local low-degree test:
 - Selects queries $Q = \{x_1, \dots, x_\ell\} \subseteq \mathbb{F}_q^n$ and set $S \subseteq \{h: Q \to \mathbb{F}\}$
 - Accept iff $f|_Q \in S$.
 - Guarantees:

What can be achieved? (d = 1)

- The functions: $\{c_0 + \sum_{i=1}^n c_i x_i | c_0 \dots c_n \in \mathbb{F}_q\}$ - (n+1)-dimensional vector space over \mathbb{F}_q
- Distance: $\delta_{d,q} = 1 \frac{1}{q}$
- $\ell, \epsilon, \alpha = ?$
- ℓ > 2;
- $\ell = 3$ achievable iff q > 2, with $\epsilon, \alpha > 0$
- $\ell = 4$: Test: $\alpha f(u) + \beta f(v) + \gamma f(v) = f(\alpha u + \beta v + \gamma w);$
 - "Linearity Testing" [BlumLubyRubinfeld] ...
 - Achieves $\epsilon = 1$! [BellareCoppersmithHåstadKiwiSudan]
 - Proof ingredient: Discrete Fourier Analysis.

Generalizing to higher d

- Optimal locality = ?
- Test = ?
- Best soundness $\epsilon = ?$
- Best robustness $\alpha = ?$

• How do the above depend on *n*, *q*, *d*?

Why Low-degree Testing?

- Polynomials: Makes data robust
- Low-degree Testing: Makes proofs robust
 - "Proof" = Data that makes "Theorem" obvious/verifiable
 [Gödel,Church,Turing,Cook,Levin]
 - "Robust Proof" = One that implies truth of theorem based on local tests (Holographic Proofs, Probabilistically Checkable Proofs)

[Arora, Babai, Feige, Fortnow, Goldwasser, Levin, Lovasz, Lund, Rompel, Safra, Sipser, Szegedy]

- (Mod Details):
 - To robustify Proof Π of Assertion T, encode Π using multivariate polynomial encoding;
 - Verify proof $\widehat{\Pi}$ by first a low-degree test; and then "more standard tests".

Why low-degree testing - II

- Codes are extremal combinatorial objects
 - Lead to many other extremal objects (expanders, extractors, pseudo-random generators, condensers ...)
 - Low-degree testing: further embellishes such connections.
 - E.g. [BGHMRS]:
 - $G_{n,d,q} = (V, E);$ $V = \{f: \mathbb{F}_q^n \to \mathbb{F}_q, \deg(f) \le d\};$ $(f,g) \in E \Leftrightarrow f - g \text{ (near)-maximally zero.}$ • LDT $\Rightarrow G_{n,d,q}$ is a small-set expander!

Formal Definitions and Parameters

- (ℓ, ϵ) -local low-degree test:
 - Selects queries $Q = \{x_1, \dots, x_\ell\} \subseteq \mathbb{F}_q^n$ and set $S \subseteq \{h: Q \to \mathbb{F}\}$
 - Accept iff $f|_Q \in S$.
 - Guarantees:
 - $\deg(f) \le d \Rightarrow \text{Accepts w.p. 1}$
 - $\forall f$, $\Pr[rejection] \ge \epsilon \cdot \delta_d(f)$
 - (ℓ, α) -<u>robust</u> if $\forall f, \mathbb{E}_{Q,S}[\delta(f|_Q, S)] \ge \alpha \cdot \delta_d(f)$
- General goal: Minimize ℓ , while maximizing ϵ , α

A natural test

- $f: \mathbb{F}_q^n \to \mathbb{F}_q$ with $\deg(f) \le d$ $\Rightarrow \forall$ affine subspaces $A \subseteq \mathbb{F}_q^n$ s.t. $\dim(A) = t, \deg(f|_A) \le d$
- Converse?
- Fact: $\forall q, d \exists t = t_{q,d}$ s.t. \forall affine A s.t. dim $(A) = t, \deg(f|_A) \le d$ $\Rightarrow \deg(f) \le d$
- Natural test:
- Pick random subspace A s.t. $dim(A) = \tilde{t} \ge t_{q,d}$; - Accept if $deg(f|_A) \le d$.

Locality of subspace tests

- $\frac{d+1}{q-1} \le t_{q,d} \le \frac{2(d+1)}{q-1}$. (Precisely $t_{q,d} = \left[\frac{d+1}{q-\frac{q}{p}}\right]$) \Rightarrow Locality of test $\le q^{\Theta\left(\frac{d}{q}\right)}$
- Codes + duality

 \Rightarrow Locality of any non-trivial constraint $\geq q^{\Omega\left(\frac{a}{q}\right)}$

• How good are the tests?

$$-\epsilon = ?; \alpha = ?$$

- Does using $\tilde{t} > t_{q,d}$ help?

Results

- (Disclaimer: Long history ... not elaborated below.)
- Fix q; $d \to \infty$; sound!

Theorem 1: [BKSSZ,HSS,HRS] $\forall q \exists \epsilon = \epsilon_q > 0$, s.t. $\forall d, n, f$ the $t_{q,d}$ -dimensional test rejects f w.p. $\geq \epsilon \cdot \delta_d(f)$

• Fix
$$\frac{d}{q} < 1$$
; $q \to \infty$; robust!

Theorem 2: [GH5] $\forall \delta > 0 \exists \alpha > 0$ s.t. $\forall q, d, n, f$ w. $d < (1 - \delta)q$, the 2-dim. test satisfies $\mathbb{E}_A[\delta_d(f|_A)] \ge \alpha \cdot \delta_d(f)$.

• $d/q \rightarrow 0$; Maximal robustness

Theorem 3: [RS] $\forall \alpha < 1, \exists \delta < 1 \text{ s.t. } \forall q, d, n, f \text{ w. } d < (1 - \delta)q$, the 2-dim. test satisfies $\mathbb{E}_A[\delta_d(f|_A)] \ge \alpha \cdot \delta_d(f)$.

Theorem 1: Context + Ideas

- Fix q = 2.
- Alternative view of test:
 - $f_a(x) \triangleq f(x+a) f(a)$ "discrete derivative"
 - $-\deg(f) \le d \Rightarrow \deg(f_a) \le d-1$
 - $\dots \Rightarrow \deg(f_{a1,\dots,a(d+1)}) < 0 \Rightarrow f_{a1,\dots,a(d+1)} = 0$
 - Rejection Prob. $\triangleq \rho(f) = \Pr_{a1\dots a(d+1)} [f_{a1\dots a(d+1)}] \neq 0$

- $(1 - 2\rho(f))^{\frac{1}{2d}}$ special case of "Gowers norm"

- Strong "Inverse Conjecture" $\Rightarrow \rho(f) \rightarrow \frac{1}{2}$ as $\delta_d(f) \rightarrow \frac{1}{2}$.
- Falsified by [LovettMeshulamSamorodnitsky],[GreenTao]:

•
$$f = Sym_{2^t}(x_1 \dots x_n); d = 2^t - 1;$$

•
$$\delta_d(f) = \frac{1}{2} - o_n(1); \rho(f) \le \frac{1}{2} - 2^{-7}$$

Theorem 1 (contd.)

- So $\rho(f) \Rightarrow \frac{1}{2} \text{ as } \delta(f) \Rightarrow \frac{1}{2}$; but is $\rho(f) > 0$?
- Prior to [BKSSZ]: $\rho(f) > 4^{-d}$
- [BKSSZ] Lemma: $\rho(f) \ge \min\{\epsilon_2, 2^d \cdot \delta(f)\}$
- Key ingredient in proof:

– Suppose $\delta_d(f) > 2^{-d}$

- On how many "hyperplanes" H can $\deg(f|_H) \leq d$?

Hyperplanes

 $\delta_d(f) > 2^{-d} \Rightarrow \#\{H \text{ s.t. } \deg(f|_H) \le d\} \le ?$

- 1. $\exists H \text{ s.t. } \deg(f|_H) > d$: defn of testing dimension.
- 2. $\Pr_{H}[\deg(f|_{H}) \le d] \ge \frac{1}{q} \quad \Leftarrow \deg_{x_{i}}(f) < q 1.$
- 3. ... What we needed: $\#\{H_{s.t.} \deg(f|_H) \le d\} \le O(2^d)$

General q

- Lemma: $\forall q \exists c \text{ s.t. if } \delta_d(f) \ge q^{-t_{q,d}}$ then #{ $H \text{ s.t. deg}(f|_H) \le d$ } $\le c \cdot q^{t_{q,d}}$
- Ingredients in proof:
 - -q = 2: Simple symmetry of subspaces, linear algebra.
 - -q = 3: Roth's theorem ...
 - General q: Density Hales-Jewett theorem

Theorem 2: Ideas

Theorem 2: [GH5] $\forall \delta > 0 \exists \alpha > 0$ s.t. $\forall q, d, n, f w. d < (1 - \delta)q$, the 2-dim. test satisfies $\mathbb{E}_A[\delta_d(f|_A)] \ge \alpha \cdot \delta_d(f)$.

- When d < q, polynomials are good codes!
- Is this sufficient for low-degree testing?
 - Investigated in computational complexity since 90s.
 - Linearity insufficient. [Folklore]
 - Local constraints insufficient. [BHR05]
 - Symmetry: Automorphisms of domain preserving space of functions?
 - Cyclicity: Insufficient [BSS]
 - Affine-invariance: Weakly sufficient [KS] ($\epsilon \ge \exp(-d)$)

Theorem 2 (contd.)

- "Lifted families" [GuoKoppartyS.14]
 - Fix $B \subseteq \{h: \mathbb{F}_q^t \to \mathbb{F}_q\}$ base family (affine-invariant)
 - Its *n*-dim lift is

 $B^{\uparrow n} \triangleq C = \left\{ f \colon \mathbb{F}_q^n \to \mathbb{F}_q \mid \forall \text{ affine } A, \dim(A) = t, f \mid_A \in B \right\}$

- Lifted families of functions are "nice"
 - Inherit distance of base family (almost)
 - Generalize low-degree property: $B = \left\{h: \mathbb{F}_q^{t_{q,d}} \to \mathbb{F}_q | \deg(h) \le d\right\}$
 - Yield new codes of "high rate"
- Have a natural test: "Pick random t-dim subspace A and test if $\delta(f|_A) \in B$ "
 - Does this test work? [Haramaty, Ron-Zewi, S.14] Yes, with $\epsilon = \epsilon_q$
 - Is the test robust?
 - Don't know, but ...
 - The (2*t*)-dim test is! [Guo,Haramaty,S'15] with $\alpha = \alpha(\delta(B))$
 - Low-degree testing (Theorem 2) follows.

Testing Lifted Codes - 1

- For simplicity $B \subseteq \{h: \mathbb{F}_q \to \mathbb{F}_q\}$ (t = 1).
- General geometry + symmetry \Rightarrow Robustness of $B^{\uparrow 4} > 0 \Rightarrow$ Robustness of $B^{\uparrow n} > 0$
- How to analyze robustness of the test for constant *n*?

Tensors: Key to understanding Lifts

- Given $F \subseteq \{f: S \to \mathbb{F}_q\}$ and $G \subseteq \{g: T \to \mathbb{F}_q\}$, $F \otimes G = \{h: S \times T \to \mathbb{F}_q | \forall x, y, h(\cdot, y) \in F \& h(x, \cdot) \in G\}$
- $F^{\otimes n} = F \otimes F \otimes \dots \otimes F$
- $B^{\uparrow n} \subseteq B^{\otimes n}$; $B^{\uparrow n} = \bigcap_T T(B^{\otimes n})$ (affine transform T)
- (n-1)-dim test for $B^{\otimes n}$: Fix coordinate at random and test if $f(\dots, x_i, \dots) \in B^{\otimes (n-1)}$
- [Viderman'13]: Test is $\alpha_{\delta(B),n}$ -robust.
- Hope: Use $B^{\uparrow n} = \bigcap_T T(B^{\otimes n})$ to show that testing for random $T(B^{\otimes n})$ suffices;

 $-\delta_A(f), \delta_B(f) \text{ small } \not\equiv \delta_{A \cap B}(f) \text{ small } \otimes$

Actual Analysis

- Say testing $B^{\uparrow 4}$ by querying 2-d subspace.
- Let $C_a = \{f \mid f \mid_{\text{line}} \in B \text{ for coordinate parallel}$ line, and line in direction a}
- $B^{\uparrow 4} = \cap_a C_a$;
- *C_a* not a tensor code, but modification of tensor analysis works!
- $\bigcup_a C_a \subseteq B^{\otimes 4}$ is still an error-correcting code. - So $\delta_{C_a}(f), \delta_{C_b}(f)$ small $\Rightarrow \delta_{C_a \cap C_b}(f)$ small!
- Putting things together \Rightarrow Theorem 2.

Wrapping up

- Low-degree testing:
 - Basic, easy to state, problem.
 - Quite useful in complexity, combinatorics.
 - Powerful theorems known.
- Other connections?

Thank You!

(Appendix) References

- Page 7
 - <u>Manuel Blum</u>, <u>Michael Luby</u>, Ronitt Rubinfeld: Self-Testing/Correcting with Applications to Numerical Problems. <u>J.</u> <u>Comput. Syst. Sci. 47(3)</u>: 549-595 (1993)
 - <u>Mihir Bellare</u>, <u>Don Coppersmith</u>, <u>Johan Håstad</u>, <u>Marcos A. Kiwi</u>, Madhu Sudan: Linearity testing in characteristic two. <u>IEEE</u> <u>Transactions on Information Theory 42(6)</u>: 1781-1795 (1996)
- Page 9 (See references in survey below)
 - **Probabilistically Checkable Proofs**, Madhu Sudan. *Communications of the ACM*, <u>52</u>(3):76-84, March 2009.
- Page 14
 - Optimal testing of Reed-Muller codes. Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David Zuckerman. *Electronic Colloquium on Computational Complexity*, Technical Report TR 09-086, October 2, 2009.
 - Optimal testing of multivariate polynomials over small prime fields. Elad Haramaty, Amir Shpilka, and Madhu Sudan. SIAM Journal on Computing, <u>42</u>(2): 536--562, April 2013.
 - <u>Absolutely Sound Testing of Lifted Codes</u>. Elad Haramaty, Noga Ron-Zewi and Madhu Sudan. *Electronic Colloquium on Computational Complexity*, Technical Report TR 13-030, February 20, 2013.
 - <u>Alan Guo</u>, <u>Elad Haramaty</u>, <u>Madhu Sudan: Robust testing of lifted codes with applications to</u> low-degree testing. Electronic Colloquium on Computational Complexity (ECCC) 22: 43 (2015)
 - <u>Ran Raz, Shmuel Safra:</u>
 <u>A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant Error-Probability PCP</u> <u>Characterization of NP. STOC 1997: 475-484</u>