Reliable Meaningful Communication

Madhu Sudan Microsoft Research

This Talk

- Part I: Reliable Communication
 - Problem and History (briefly)
- Part II: Recovering when errors overwhelm
 - Sample of my work in the area
- Part III: Modern challenges
 - Communicating amid uncertainty

Part I: Reliable Communication

Reliable Communication?

Problem from the 1940s: Advent of digital age.

Communication media are always noisy
But digital information less tolerant to noise!

Reliability by Repetition

Can repeat (every letter of) message to improve reliability:

WWW EEE AAA RRR EEE NNN OOO WWW ...

WXW EEA ARA SSR EEE NMN OOP WWW ...

- Elementary Calculations:
 - \uparrow repetitions $\Rightarrow \downarrow$ Prob. decoding error; but still +ve
 - \uparrow length of transmission \Rightarrow \uparrow expected # errors.
 - Combining above: Rate of repetition coding → 0 as length of transmission increases.
- Belief (pre1940):
 - Rate of any scheme $\rightarrow 0$ as length $\rightarrow \infty$

Shannon's Theory [1948]

- Sender "Encodes" before transmitting
- Receiver "Decodes" after receiving

• Encoder/Decoder arbitrary functions. $E: \{0,1\}^k \rightarrow \{0,1\}^n$ $D: \{0,1\}^n \rightarrow \{0,1\}^k$

• Rate =
$$\frac{k}{n}$$
;

• Requirement: m = D(E(m) + error) w. high prob.

What are the best E, D (with highest Rate)?

Shannon's Theorem

If every bit is flipped with probability p

• Rate $\rightarrow 1 - H(p)$ can be achieved.

$$H(p) \triangleq p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$$

- This is best possible.
- Examples:

$$\bullet p = 0 \Rightarrow Rate = 1$$

$$\bullet p = \frac{1}{2} \Rightarrow Rate = 0$$

• Monotone decreasing for $p \in (0, \frac{1}{2})$

• Positive rate for p = 0.4999; even if $k \to \infty$

Shannon's contributions

Far-reaching architecture:

- Profound analysis:
 - First (?) use of probabilistic method.
- Deep Mathematical Discoveries:
 - Entropy, Information, Bit?

Challenges post-Shannon

Encoding/Decoding functions not "constructive".

- Shannon picked *E* at random, *D* brute force.
- Consequence:
 - D takes time $\sim 2^k$ to compute (on a computer).
 - *E* takes time 2^{2^k} to find!
- Algorithmic challenge:
 - Find *E*, *D* more explicitly.
 - Both should take time $\sim k, k^2, k^3$... to compute

Progress 1950-2010

Profound contributions to the theory:

- New coding schemes, decoding algorithms, analysis techniques ...
- Major fields of research:
 - Communication theory, Coding Theory, Information Theory.
- Sustained Digital Revolution:
 - Widespread conversion of everything to "bits"
 - Every storage and communication technology relies/builds on the theory.
 - "Marriage made in heaven" [Jim Massey]

Part II: Overwhelming #errors

Explicit Codes: Reed-Solomon Code

- Messages = Coefficients of Polynomials.
 - Example:
 - Message = (100,23,45,76)
 - Think of polynomial $p(x) = 100 + 23x + 45x^2 + 76x^3$
 - Encoding: (p(1), p(2), p(3), p(4), ..., p(n))
 - First four values suffice, rest is redundancy!
 - (Easy) Facts:
 - Any k values suffice where k = length of message.
 - Can handle n k erasures or (n k)/2 errors.
 - Explicit encoding = polynomial evaluation \checkmark
 - Efficient decoding? [Peterson 1960]

Overwhelming Errors? List Decoding

Can we deal with more than 50% errors?

- $\frac{n}{2}$ is clearly a limit right?
 - First half = evaluations of p_1
 - Second half = evaluations of p_2

- What is the right message: p_1 or p_2 ?
- $\frac{n}{2}$ (even $\frac{n-k}{2}$) is the limit for "unique" answer.
- List-decoding: Generalized notion of decoding.
 - Report (small) list of possible messages.
 - Decoding "successful" if list contains the message polynomial.

Reed-Solomon List-Decoding Problem

- Given:
 - Parameters: n, k, t
 - Points: (x₁, y₁), ..., (x_n, y_n) in the plane (finite field actually)
- Find:
 - All degree k poly's that pass thru t of n points
 - i.e., all *p* s.t.
 - $\deg(p) < k$
 - #{ $i \mid p(x_i) = y_i$ } $\geq t$

Decoding by example + picture [S'96]

n = 14; k = 1; t = 5

Algorithm idea:

 Find algebraic explanation of all points.

 $x^4 - y^4 - x^2 + y^2 = 0$

Stare at the solution ③
(factor the polynomial)

$$(x+y)(x-y)(x^2+y^2-1)$$

Decoding by example + picture [S'96]

n = 14; k = 1; t = 5

Algorithm idea:

 Find algebraic explanation of all points.

 $x^4 - y^4 - x^2 + y^2 = 0$

Stare at the solution ③
(factor the polynomial)

 $(x + y) (x - y) (x^2 + y^2 - 1)$

Decoding Algorithm

- Fact: There is always a degree $2\sqrt{n}$ polynomial thru *n* points
 - Can be found in polynomial time (solving linear system).
- [80s]: Polynomials can be factored in polynomial time [Grigoriev, Kaltofen, Lenstra]
- Leads to (simple, efficient) list-decoding correcting κ fraction errors for $\kappa \rightarrow 1$

Part III: Modern Challenges **Communication Amid Uncertainty?**

New Kind of Uncertainty

- Uncertainty always has been a central problem:
 - But usually focusses on uncertainty introduced by the <u>channel</u>
 - Rest of the talk: Uncertainty at the endpoints (Alice/Bob)
- Modern complication:
 - Alice+Bob communicating using computers
 - Huge diversity of computers/computing environments
 - Computers as diverse as humans; likely to misinterpret communication.
- Alice: How should I "explain" to Bob?
- Bob: What did Alice mean to say?

New Era, New Challenges:

Interacting entities not jointly designed.

- Can't design encoder+decoder jointly.
- Can they be build independently?
- Can we have a theory about such?
 - Where we prove that they will work?

Hopefully:

- YES
- And the world of practice will adopt principles.

Example Problem

- Archiving data
 - Physical libraries have survived for 100s of years.
 - Digital books have survived for five years.
 - Can we be sure they will survive for the next five hundred?
- Problem: Uncertainty of the future.
 - What formats/systems will prevail?
 - Why aren't software systems ever constant?

Challenge:

- If Decoder does not know the Encoder, how should it try to guess what it meant?
- Similar example:
 - Learning to speak a foreign language

Humans do ... (?)

- Can we understand how/why?
- Will we be restricted to talking to humans only?
- Can we learn to talk to "aliens"? Whales? ☺
- Claim:
 - Questions can be formulated mathematically.
 - Solutions still being explored.

Modelling uncertainty

Modern questions/answers

- Communicating players share large context.
 - Knowledge of English, grammar, socio-political context
 - Or ... Operating system, communication protocols, apps, compression schemes.
- But sharing is not perfect.
 - Can we retain some of the benefit of the large shared context, when sharing is imperfect?
 - Answer: Yes ... in many cases ... [ongoing work]
 - New understanding of human mechanisms
 - New reliability mechanisms coping with uncertainty!

Language as compression

- Why are dictionaries so redundant+ambiguous?
 - Dictionary = map from words to meaning
 - For many words, multiple meanings
 - For every meaning, multiple words/phrases
 - Why?
- Explanation: "Context"
 - Dictionary:
 - Encoder: Context1 × Meaning → Word
 - Decoder: Context2 × Word → Meaning
 - Tries to compress length of word
 - Should works even if Context1 ≠ Context2
- [Juba,Kalai,Khanna,S'11],[Haramaty,S'13]: Can design encoders/decoders that work with uncertain context.

Summary

- Reliability in Communication
 - Key Engineering problem of the past century
 - Led to novel mathematics
 - Remarkable solutions
 - Hugely successful in theory and practice
 - New Era has New Challenges
 - Hopefully new solutions, incorporating ideas from ...
 - Information theory, computability/complexity, game theory, learning, evolution, linguistics ...
 - ... Further enriching mathematics

Thank You!

A challenging special case

- Say Alice and Bob have rankings of N movies.
 - Rankings = bijections $\pi, \sigma : [N] \rightarrow [N]$
 - $\pi(i)$ = rank of *i*th player in Alice's ranking.
- Further suppose they know rankings are close.

• $\forall i \in [N]: |\pi(i) - \sigma(i)| \le 2.$

- Bob wants to know: Is $\pi^{-1}(1) = \sigma^{-1}(1)$
- How many bits does Alice need to send (noninteractively).
 - With shared randomness O(1)
 - Deterministically?

• O(1)? $O(\log N)$? $O(\log \log \log N)$?

Meaning of Meaning?

- Difference between meaning and words
 - Exemplified in
 - Turing machine vs. universal encoding
 - Algorithm vs. computer program
 - Can we learn to communicate former?
 - Many universal TMs, programming languages
- [Juba,S.'08], [Goldreich,Juba,S.'12]:
 - Not generically ...
 - Must have a <u>goal</u>: what will we get from the bits?
 - Must be able to <u>sense</u> progress towards goal.
 - Can use sensing to <u>detect errors</u> in understanding, and to learn correct <u>meaning</u>.
- [Leshno,S'13]:
 - Game theoretic interpretation

Communication as Coordination Game [Leshno,S.'13]

Two players playing series of coordination games

- Coordination?
 - Two players simultaneously choose 0/1 actions.
 - "Win" if both agree:
 - Alice's payoff: not less if they agree
 - Bob's payoff: strictly higher if they agree.
 - How should Bob play?
 - Doesn't know what Alice will do. But can hope to learn.
 - Can he hope to eventually learn her behavior and (after finite # of miscoordinations) always coordinate?

Theorem:

- Not Deterministically (under mild "general" assumptions)
- Yes with randomness (under mild restrictions)