Reliable Meaningful Communication

Madhu Sudan Microsoft, Cambridge, USA

01/03/2015

ISCA-2015: Reliable Meaningful Communication

1 of 14

Reliable Communication?

Problem from the 1940s: Advent of digital age.

Communication media are always noisy
 But digital information less tolerant to noise!

Coding by Repetition

Can repeat (every letter of) message to improve reliability:

WWW EEE AAA RRR EEE NNN OOO WWW ...

WXW EEA ARA SSR EEE NMN OOP WWW ...

- Calculations:
 - t repetitions \Rightarrow Prob. Single symbol corrupted $\approx 2^{-t}$
 - To transmit k symbols, choose $t \approx \log k$
 - Rate of transmission $= \frac{1}{\log k} \to 0$ as $k \to \infty$
 - Belief (pre-1940s): Rate of any scheme $\rightarrow 0$ as $k \rightarrow \infty$

Shannon's Theory [1948]

- Sender "Encodes" before transmitting
- Receiver "Decodes" after receiving

• Encoder/Decoder arbitrary functions. $E: \{0,1\}^k \rightarrow \{0,1\}^n$ $D: \{0,1\}^n \rightarrow \{0,1\}^k$

• Rate =
$$\frac{k}{n}$$
;

• Requirement: m = D(E(m) + error) w. high prob.

What are the best E, D (with highest Rate)?

Shannon's Theorem

If every bit is flipped with probability p

• Rate $\rightarrow 1 - H(p)$ can be achieved.

$$H(p) \triangleq p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$$

- This is best possible.
- Examples:

$$\bullet p = 0 \Rightarrow Rate = 1$$

•
$$p = \frac{1}{2} \Rightarrow Rate = 0$$

- Monotone decreasing for $p \in (0, \frac{1}{2})$
- Positive rate for p = 0.4999; even if $k \to \infty$

Challenges post-Shannon

Encoding/Decoding functions not "constructive".

- Shannon picked *E* at random, *D* brute force.
- Consequence:
 - D takes time $\sim 2^k$ to compute (on a computer).
 - *E* takes time 2^{2^k} to find!
- Algorithmic challenge:
 - Find *E*, *D* more explicitly.
 - Both should take time $\sim k, k^2, k^3$... to compute

Explicit Codes: Reed-Solomon Code

- Messages = Coefficients of Polynomials.
 - Example:
 - Message = (100,23,45,76)
 - Think of polynomial $p(x) = 100 + 23x + 45x^2 + 76x^3$
 - Encoding: (p(1), p(2), p(3), p(4), ..., p(n))
 - First four values suffice, rest is redundancy!
 - (Easy) Facts:
 - Any k values suffice where k = length of message.
 - Can handle n k erasures or (n k)/2 errors.
 - Explicit encoding \checkmark
 - Efficient decoding? [Peterson 1960]

More Errors? List Decoding

- Why was (n k)/2 the limit for #errors?
 - $\frac{n}{2}$ is clearly a limit right?
 - First half = evaluations of p_1
 - Second half = evaluations of p_2
 - What is the right message: p_1 or p_2 ?
- $\frac{n}{2}$ (even $\frac{n-k}{2}$) is the limit for "unique" answer.
- List-decoding: Generalized notion of decoding.
 - Report (small) list of possible messages.
 - Decoding "successful" if list contains the message polynomial.

Reed-Solomon List-Decoding Problem

- Given:
 - Parameters: n, k, t
 - Points: (x₁, y₁), ..., (x_n, y_n) in the plane (finite field actually)
- Find:
 - All degree k poly's that pass thru t of n points
 - i.e., all *p* s.t.
 - $\deg(p) < k$
 - $\#\{i \mid p(x_i) = y_i\} \ge t$

• $t \ge \frac{(n+k)}{2}$: Answer unique; [Peterson 60] finds it.

• [S. 96, Guruswami+S. '98]: $t \ge \sqrt{kn}$; small list

Decoding by example + picture [S'96]

n = 14; k = 1; t = 5

Algorithm idea:

 Find algebraic explanation of all points.

 $x^4 - y^4 - x^2 + y^2 = 0$

Stare at the solution ③
 (factor the polynomial)

$$(x+y)(x-y)(x^2+y^2-1)$$

Decoding by example + picture [S'96]

n = 14; k = 1; t = 5

Algorithm idea:

 Find algebraic explanation of all points.

 $x^4 - y^4 - x^2 + y^2 = 0$

Stare at the solution ③
 (factor the polynomial)

 $(x + y) (x - y) (x^2 + y^2 - 1)$

Decoding Algorithm

- Fact: There is always a degree $2\sqrt{n}$ polynomial thru *n* points
 - Can be found in polynomial time (solving linear system).
- [80s]: Polynomials can be factored in polynomial time [Grigoriev, Kaltofen, Lenstra]
- Leads to (simple, efficient) list-decoding correcting κ fraction errors for $\kappa \rightarrow 1$

Summary and conclusions

- (Many) errors can be dealt with:
 - Pre-Shannon: vanishing fraction of errors
 - Pre-list-decoding: small constant fraction
 - Post-list-decoding: overwhelming fraction
- Future challenges?
 - Communication can overcome errors introduced by channels.
 - Can communication overcome errors in misunderstanding between sender and receiver?
 - [Goldreich, Juba, S. '2011];
 [Juba, Kalai, Khanna, S. '2011]

Thank You!

01/03/2015

ISCA-2015: Reliable Meaningful Communication

14 of 14