Imperfectly Shared Randomness in Communication

Madhu Sudan

Microsoft Research

Joint work with Clément Canonne (Columbia), Venkatesan Guruswami (CMU) and Raghu Meka (UCLA).

03/04/2015

TCS+: ISR in Communication

Communication Complexity

The model (with shared randomness)

TCS+: ISR in Communication

Communication Complexity: Motivation

Lower bounds:

- Circuit complexity, Streaming, Data Structures, extended formulations ...
- Upper bounds?
 - What is the right model for Communication (e.g., this talk)?
 Shannon'48 or Yao'79?
 - If you wish to reproduce this talk ...
 - Shannon '48
 - If goal is for you to learn something, or if we expect to use interaction ...
 - Yao '79!!

Natural (Contextual) communication

- Communication among humans:
 - Large context.
 - (Small) uncertainty about context.
 - Short communications.
- Can we use CC to study such communication?
 - What are example problems?
 - What are reliability mechanisms?
 - How do you leverage small uncertainty about large context?
- What are examples of problems with small communication complexity?

Aside: Easy CC Problems

Uncertainty in Communication

- Overarching question: Are there communication mechanisms that can overcome uncertainty?
- What is uncertainty? Some possible models
 - Bob wishes to compute f. Alice only has "approximate" knowledge of f.
 - Alice & Bob's inputs are strongly correlated.
- This talk: Alice, Bob don't share randomness perfectly; only approximately.

Rest of this talk

- Model: Imperfectly Shared Randomness
- Positive results: Coping with imperfectly shared randomness.
- Negative results: Analyzing weakness of imperfectly shared randomness.

Model: Imperfectly Shared Randomness

• Alice $\leftarrow r$; and Bob $\leftarrow s$ where

(r, s) = i.i.d. sequence of correlated pairs $(r_i, s_i)_i$;

 $r_i, s_i \in \{-1, +1\}; \mathbb{E}[r_i] = \mathbb{E}[s_i] = 0; \mathbb{E}[r_i s_i] = \rho \ge 0$.

Notation:

• $isr_{\rho}(f) = cc \text{ of } f \text{ with } \rho \text{-correlated bits.}$

- cc(f): Perfectly Shared Randomness cc. = $isr_1(f)$
- *priv(f)*: cc with PRIVate randomness
- Starting point: for Boolean functions f
 - $cc(f) \le isr_{\rho}(f) \le priv(f) \le cc(f) + \log n$

 $= isr_0(f)$

 $\begin{array}{l} \rho \leq \tau \Rightarrow \\ isr_{\rho}(f) \geq isr_{\tau}(f) \end{array}$

• What if $cc(f) \ll \log n$? E.g. cc(f) = O(1)

Results

- Model first studied by [Bavarian, Gavinsky, Ito'14] ("Independently and earlier").
 - Their focus: Simultaneous Communication; general models of correlation.
 - They show isr(Equality) = 0(1) (among other things)
- Our Results:
 - Generally: $cc(f) \le k \Rightarrow isr(f) \le 2^k$
 - Converse: $\exists f \text{ with } cc(f) \leq k \& isr(f) \geq 2^k$

Equality Testing (our proof)

Key idea: Think inner products.

• Encode $x \mapsto X = E(x); y \mapsto Y = E(y); X, Y \in \{-1, +1\}^N$

•
$$x = y \Rightarrow \langle X, Y \rangle = N$$

$$\bullet x \neq y \Rightarrow \langle X, Y \rangle \leq N/2$$

- Estimating inner products:
 - Building on sketching protocols ...
 - Alice: Picks Gaussians $G_1, ..., G_t \in \mathbb{R}^N$,
 - Sends $i \in [t]$ maximizing $\langle G_i, X \rangle$ to Bob.
 - Bob: Accepts iff $\langle G'_i, Y \rangle \ge 0$
 - Analysis: $O_{\rho}(1)$ bits suffice if $G \approx_{\rho} G'$

Gaussian Protocol

General One-Way Communication

- Idea: All communication ≤ Inner Products
- (For now: Assume one-way- $cc(f) \le k$)
 - For each random string R
 - Alice's message = $i_R \in [2^k]$
 - Bob's output = $f_R(i_R)$ where $f_R: [2^k] \rightarrow \{0,1\}$
 - W.p. $\geq \frac{2}{3}$ over R, $f_R(i_R)$ is the right answer.

General One-Way Communication

- For each random string R
 - Alice's message = $i_R \in [2^k]$
 - Bob's output = $f_R(i_R)$ where $f_R: [2^k] \rightarrow \{0,1\}$
 - W.p. $\geq \frac{2}{3}$, $f_R(i_R)$ is the right answer.
- Vector representation:
 - $i_R \mapsto x_R \in \{0,1\}^{2^k}$ (unit coordinate vector)
 - $f_R \mapsto y_R \in \{0,1\}^{2^k}$ (truth table of f_R).
 - $f_R(i_R) = \langle x_R, y_R \rangle$; Acc. Prob. $\propto \langle X, Y \rangle$; $X = (x_R)_R$; $Y = (y_R)_R$
 - Gaussian protocol estimates inner products of unit vectors to within $\pm \epsilon$ with $O_{\rho}\left(\frac{1}{\epsilon^2}\right)$ communication.

Two-way communication

- Still decided by inner products.
- Simple lemma:
 - $\exists K_A^k, K_B^k \subseteq \mathbb{R}^{2^k}$ convex, that describe private coin k-bit comm. strategies for Alice, Bob s.t. accept prob. of $\pi_A \in K_A^k, \pi_B \in K_B^k$ equals $\langle \pi_A, \pi_B \rangle$
- Putting things together:

Theorem:
$$cc(f) \le k \Rightarrow isr(f) \le O_{\rho}(2^k)$$

Main Technical Result: Matching lower bound

Theorem: There exists a (promise) problem f s.t. • $cc(f) \le k$

- $isr_{\rho}(f) \ge \exp(k)$
- The Problem:
 - Gap Sparse Inner Product (G-Sparse-IP).
 - Alice gets sparse $x \in \{0,1\}^n$; wt(x) ≈ 2^{-k} · n
 - Bob gets $y \in \{0,1\}^n$
 - Promise: $\langle x, y \rangle \ge (.9)2^{-k} \cdot n \text{ or } \langle x, y \rangle$
 - Decide which.

G-Sparse-IP: $x, y \in \{0, 1\}^n$; $wt(x) \approx 2^{-k} \cdot n$ Decide $\langle x, y \rangle \ge (.9) 2^{-k} \cdot n$ or $\langle x, y \rangle \le (.6) 2^{-k} \cdot n$?

psr Protocol for G-Sparse-IP

- Note: Gaussian protocol takes $O(2^k)$ bits.
 - Need to get exponentially better.
- Idea: $x_i \neq 0 \Rightarrow y_i$ correlated with answer.
- Use (perfectly) shared randomness to find random index i s.t. $x_i \neq 0$.
- Shared randomness: i₁, i₂, i₃, ... uniform over [n]
- Alice \rightarrow Bob: smallest index *j* s.t. $x_{i_i} \neq 0$.
- Bob: Accept if $y_{i_j} = 1$
- Expect $j \approx 2^k$; $cc \leq k$.

G-Sparse-IP: $x, y \in \{0, 1\}^n$; $wt(x) \approx 2^{-k} \cdot n$ Decide $\langle x, y \rangle \ge (.9) 2^{-k} \cdot n$ or $\langle x, y \rangle \le (.6) 2^{-k} \cdot n$?

Towards a lower bound: Ruling out a natural approach

- Natural approach:
 - Alice and Bob use (many) correlated bits to agree perfectly on few random bits?
 - For G-Sparse-IP need $O(2^k \log n)$ random bits.
- Agreement Distillation Problem:
 - Alice & Bob exchange t bits; generate k random bits, with agreement probability γ .
 - Lower bound [Bogdanov, Mossel]:

$$t \ge k - O\left(\log\frac{1}{\gamma}\right)$$

Towards Lower Bound

Explaining two natural protocols:

- Gaussian Inner Product Protocol:
 - Ignore sparsity and just estimate inner product.
 - Uses $\sim 2^{2k}$ bits. Need to prove it can't be improved!

• 03/04/2015

Optimality of Gaussian Protocol

Problem:

• $(x, y) \leftarrow \mu^n$: $\mu = \mu_{YES} \text{ or } \mu_{NO} \text{ supported on } \mathbb{R} \times \mathbb{R}$ μ_{YES} : ϵ -correlated Gaussians μ_{NO} : uncorrelated Gaussians

- Lemma: Separating $\mu_{YES}^n vs. \mu_{NO}^n$ requires $\Omega(\epsilon^{-1})$ bits of communication.
- Proof: Reduction from Disjointness
- Conclusion: Can't ignore sparsity!

G-Sparse-IP: $x, y \in \{0, 1\}^n$; $wt(x) \approx 2^{-k} \cdot n$ Decide $\langle x, y \rangle \ge (.9) 2^{-k} \cdot n$ or $\langle x, y \rangle \le (.6) 2^{-k} \cdot n$?

03/04/2015

Towards Lower Bound

- Explaining two natural protocols:
 - Gaussian Inner Product Protocol:
 - Ignore sparsity and just estimate inner product.
 - Uses $\sim 2^{2k}$ bits. Need to prove it can't be improved!
 - Protocol with perfectly shared randomness:
 - Alice & Bob agree on coordinates to focus on:

 $(i_1, i_2, \dots, i_{2^k}, \dots);$

- Either i₁ has high entropy (over choice of r, s)
 - Violates agreement distillation bound
- Or has low-entropy:
 - Fix distributions of x, y s.t. $x_{i_1} \perp y_{i_1}$

G-Sparse-IP: $x, y \in \{0, 1\}^n$; $wt(x) \approx 2^{-k} \cdot n$ Decide $\langle x, y \rangle \ge (.9) 2^{-k} \cdot n$ or $\langle x, y \rangle \le (.6) 2^{-k} \cdot n$?

Aside: Distributional lower bounds

Challenge:

- Usual CC lower bounds are distributional.
- $cc(G-Sparse-IP) \leq k$, ∀ inputs.

 \Rightarrow *cc*(G-Sparse-IP) $\leq k$ \forall distributions.

 \Rightarrow det-cc (G-Sparse-IP) $\leq k \forall$ distributions.

- So usual approach can't work ...
 - Need to fix strategy first and then "identify" a hard distribution for the strategy ...
 - G-Sparse-IP: $x, y \in \{0, 1\}^n; wt(x) \approx 2^{-k} \cdot n$ Decide $\langle x, y \rangle \ge (.9) 2^{-k} \cdot n$ or $\langle x, y \rangle \leq (.6) 2^{-k} \cdot n$?

Towards lower bound

- Summary so far:
 - Symmetric strategy $\Rightarrow 2^k$ bits of comm.
 - Strategy asymmetric; $x_1, y_1 \dots x_k, y_k$ have high influence \Rightarrow fix the distribution so these coordinates do not influence answer.
 - Strategy asymmetric; with random coordinate having high influence ⇒ violates agreement lower bound.
- Are these exhaustive? How to prove this?
 - Invariance Principle!!

[Mossel, O'Donnell, Oleskiewisz], [Mossel] ...

ISR lower bound for GSIP.

- One-way setting (for now)
- Strategies: Alice $f_r(x) \in [K]$; Bob $g_s(y) \in \{0,1\}^K$;
- Distributions:
 - If x_i, y_i have high influence on (f_r, g_s) w.h.p. over (r, s) then set $x_i = y_i = 0$. [*i* is BAD]
 - Else y_i correlated with x_i in YES case, and independent in NO case.
- Analysis:
 - $i \in BAD$ influential in both $f_r, g_s \Rightarrow No$ help.
 - $i \notin BAD$ influential ... \Rightarrow violates agreement lower bound.
 - No common influential variable
 ⇒ x, y can be replaced by Gaussians
 - $\Rightarrow 2^k$ bits needed.

Invariance Principle + Challenges

- Informal Invariance Principle: f, g low-degree polynomials with no common influential variable $\Rightarrow \operatorname{Exp}_{x,y}[f(x)g(y)] \approx \operatorname{Exp}_{X,Y}[f(X)g(Y)]$ (caveat $f \approx f; g \approx g$)
 - where x, y Boolean n-wise product dist.
 - and X, Y Gaussian n-wise product dist
- Challenges [+ Solutions]:
 - Our functions not low-degree [Smoothening]
 - Our functions not real-valued
 - $g: \{0,1\}^n \to \{0,1\}^{\ell}$: [Truncate range to $[0,1]^{\ell}$]
 - $f: \{0,1\}^n \rightarrow [\ell]: [???, [work with \Delta(\ell)]]$

Invariance Principle + Challenges

- Informal Invariance Principle: f, g low-degree polynomials with no common influential variable $\Rightarrow \operatorname{Exp}_{x,y}[f(x)g(y)] \approx \operatorname{Exp}_{X,Y}[f(X)g(Y)]$ (caveat $f \approx f; g \approx g$)
- Challenges
 - Our functions not low-degree [Smoothening]
 - Our functions not real-valued [Truncate]
 - Quantity of interest is not $f(x) \cdot g(y)$...
 - [Can express quantity of interest as inner product.]
 - ... (lots of grunge work ...)
- Get a relevant invariance principle (next)

Invariance Principle for CC

Theorem: For every convex $K_1, K_2 \subseteq [-1,1]^{\ell}$ \exists transformations T_1, T_2 s.t. if $f: \{0,1\}^n \to K_1$ and $g: \{0,1\}^n \to K_2$ have no common influential variable, then $F = T_1 f: \mathbb{R}^n \to K_1$ and $G = T_2 g: \mathbb{R}^n \to K_2$ satisfy $\operatorname{Exp}_{x,y}[\langle f(x), g(y) \rangle] \approx \operatorname{Exp}_{X,Y}[\langle F(X), G(Y) \rangle]$

- Main differences: *f*, *g* vector-valued.
- Functions are transformed: $f \mapsto F; g \mapsto G$
- Range preserved exactly (K₁ = Δ(ℓ); K₂ = [0,1]^ℓ)!
 So F, G are still communication strategies!

Summarizing

- k bits of comm. with perfect sharing
 - $\rightarrow 2^k$ bits with imperfect sharing.
- This is tight
- Invariance principle for communication
 - Agreement distillation
 - Low-influence strategies

G-Sparse-IP: $x, y \in \{0, 1\}^n; wt(x) \approx 2^{-k} \cdot n$ **Decide** $\langle x, y \rangle \ge (.9) 2^{-k} \cdot n$ or $\langle x, y \rangle \le (.6) 2^{-k} \cdot n$?

Conclusions

- Imperfect agreement of context important.
 - Dealing with new layer of uncertainty.
 - Notion of scale (context LARGE)
- Many open directions+questions:
 - Imperfectly shared randomness:
 - One-sided error?
 - Does interaction ever help?
 - How much randomness?
 - More general forms of correlation?

Thank You!

03/04/2015

28 of 28