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Communication (Complexity)

= Recall Shannon (Noiseless setting)

x ~ D({0,1}") Hopefully x

compress Decompress

In general, model
allows interaction.
For this talk, only
one way comm.

= What will Bob do with x?
Often knowledge of x is overkill.

[Yao]’'s model:
= Bob has private information y.

= Wants to know f(x,y) € {0,1}.
= Can we get away with much less communication?
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Example:

= Parity:

X =X1Xy ... X0; Y = V1YV2 .. Vs

fx,y) = Xi(xi+y;) (mod 2) £ B; (x; D y;)
= Solution:

Alice sends a =@; x; to Bob.

Bob computes b =@, y;. Outputs a @ b.
= 1 bit of communication!
= (No distributional assumption on x!)
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Randomness in Communication

= As In many aspects of CS, randomness often
helps find (more efficient) solutions.

= Two “Probabilistic Communication” Models:
Private randomness:

= Alice tosses random coins and uses that to
determine what to send to Bob.

Shared randomness:
= Alice and Bob share random string r € {0,1}"
= Alice’s message depends on r
= Bob’s use of message depends on r.
= Det. CC = Private. CC = Shared. CC
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Example: Equality Testing

» f(x,y)=1ifx=y and 0 o.w.
Deterministically: Communicate ((n) bits
With private randomness:
= Alice encodes x » E(x); (E:{0,1}" - {0,1}")
» Picks i < [N]; sends (i,E(x);) to Bob.
= Bob receives (i,b) and outputs 1 if E(y); = b
= Priv. CC = 0O(logn) bits
With shared randomness:
= Alice and Bob share .
= Alice sends E(x);.
= Shared CC = 0(1) bits.
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This talk: Imperfect Sharing

= Generic motivation:
Where does the shared randomness come from?
= Nature/Collective experience = Noisy
Do parties have to agree on their shares perfectly?
= Can they get away with imperfection?
= Is their a price?
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Model: Imperfectly Shared Randomness

= Alice < r;and Bob < s where
(r,s ) =1.i.d. sequence of correlated pairs (1}, s;);;
r;,S; € {—1,+1}; E[r;] = E|s;] = 0; E[r;s;] =p =0.
= Notation:
ist,(f) = cc of f with p-correlated bits.
psr(f): Perfectly Shared Randomness cc.
priv(f): cc with PRIVate randomness
= Starting point: for Boolean functions f
psr(f) < ist,(f) < priv(f) < psr(f) +logn
What if psr(f) < logn? E.g. psr(f) = 0(1)
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Results

= Model first studied by [Bavarian et al.’14]
(“Independently and earlier”).

They show isr(Equality) = 0(1)

= Our Results:
Generally: psr(f) <k = isr(f) < 2k
Converse: 3f with psr(f) < k & isr(f) = 2k
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_ _ X=X, X
Equality Testing (our proof) y=((yi, ...,Y,'VV))

XYy £ ) X,
= Key idea: Think inner products. i
Encode x » X = E(x);y» Y =E(y);X,Y € {—1,+1}"
sx=y= (X,Y)=N
ax#zy= (X,Y)<N/2
= Estimating inner products:
Using ideas from low-distortion embeddings ...
Alice: Picks Gaussian G € R", sends (G, X)
Bob: has G’ ~, G; compares (G, X) with (G',Y)
(mod details): 0,(1) bits suffice if G =, ¢’
[Bavarian et al.] Alternate protocol.
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General Commmunication

= ldea: All communication < Inner Products
For each random string R
= Alice’s message = ip € [2¥]
= Bob’s output = fz(ip) where fz: [2%] - {0,1}

= W.p. = % over R, fr(ig) is the right answer.
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General Commmunication

For each random string R
= Alice’s message = ip € [2¥]
= Bob’s output = fr(ip) where fz: [2%] = {0,1}

2 SN .
= W.p. 22, fr(ig) is the right answer.
Vector representation:
. ko _
mip > xp €{0,1}*" (unit coordinate vector)

s fr & Vg € {0,132" (truth table of fy).

= fr(ir) = (X, ¥r); Acc. Prob. o« (X,Y); X = (xp)r; ¥ = (Vr)r
= Gaussian protocol estimates inner products of unit
vectors to within +e with O (6—12) communication.
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Main Technical Result: Matching lower
bound

= There exists (promise) problem f s.t.
psr(f) <k
isT,(f) = exp(k)

= The Problem:
Gap Sparse Inner Product (G-Sparse-IP).
Alice gets sparse x € {0,1}"; wt(x) = 27%-n
Bob gets y € {0,1}"
Promise: (x,y) = (9)27%-n or {(x,y) < ((6)27% - n.
Decide which.
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psr Protocol for G-Sparse-IP

= ldea: x; #0 = y; correlated with answer.

= Use (perfectly) shared randomness to find
random index i s.t. x; # 0.

= Shared randomness: i, i,,13, ... uniform over [n]
= Alice - Bob: smallest index j s.t. xi; # 0.

= Bob: Accept if yi; =1

= Expect j = 2%;psr < k.
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ISR lower bounds

= Challenge: Usual CC lower bounds give a
distribution and prove lower bound against it.

= G-Sparse-IP has a low-complexity protocol for
every input, with shared randomness.

= Thus for every distribution, there exists a
deterministic low-complexity protocol!

= So usual method can’t work ...

= Need to fix strategy first and then “tailor-make” a
hard distribution for the strategy ...
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ISR lower bound for GSIP: Overview

= Strategies: Alice f.(x) € [¢]; Bob g.(y) € {0,1}*;
= Two possibilities:

Case 1: Alice’s strategy and Bob’s strategy
have common highly “influential coordinate:
(i s.t. flipping x; changes Alice’s message etc.)

Leads to protocol for “agreement distillation” [We prove
this is impossible.]

Case 2: Strategies have no common influential
variable:

Invariance Principle = Solves some Gaussian problem

High complexity lower bound for Gaussian problem.
(Details shortly)
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Case 1: Agreement Distillation

= Problem: Charlie < r; Dana < s; (r,s) p-correlated

= Goal: Charlie outputs u; Dana outputs v;
Hy(u),Hy,(v) = ¢t; Prlu=v]>y

= Lemma: With zero communication y = 279®);

= Proof: “Small-set expansion of noisy hypercube”
Well-known by now ... application of Bonami’s lemma.
See, e.g., [Analysis of Boolean functions, O’Donnell]

= Corollary: For ¢ bits of communication,
c=e-t+logy
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Completing Case 1

= Bad £ {i|Pr[Inf;(f,) = high| > large}
r
U {i | Pr[Inf;(g;) = high| > large}
S
= Fact: (for our defn of influence) any function has
bounded number of high influence variables.
» (By Fact + Markov) Can assume |Bad| < ¢ - n.
= Distributions on Yes and No instances:
No: x random sparse € {0,1}"; y <, {0,1}"
Yes: Same as No on Bad coordinates.
= On rest, y; Is more likely to be 1 if x; = 1.
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Completing Case 1 (contd.)

= Agreement strategy for Charlie + Dana:
Charlie: i € [n] \ Bad s.t. Inf;(f,-) high.
Dana: j € [n] \ Bad s.t. Inf;(gs) high.

= Analysis:
H,(i),H,(j) large since i,j ¢ Bad.
i = j?7: Case 1 assumption.

= Combined with lower bound for agreement
distillation, implies Case 1 can’t occur
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Case 2: No common influential variable

= Key Lemma: Fix r,s; let f = f, and g = g;.
If £ small (= 22) and f, g distinguish Yes/No
then f, g have common influential variable.

= ldea: Use “Invariance Principle”:

Remarkable theorem: Mossel, O'Donnell,
Oleskiewicz; Mossel++;

Informal form: f,g low-degree polynomials
with no common influential variable =

Exp,y [f(x)g(¥)] = Expyy[f (X)g (V)]
= where x,y Boolean n-wise product dist.
= and X,Y Gaussian n-wise product dist.
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The Gaussian-I1P Problem

= Suppose we can get the “perfect” invariance
theorem for us ...

= Would transform:
Sol'n for G-Sparse-IP —» Sol'n for G-Gaussian-IP
Alice, Bob get Gaussian unit vectors X,Y € R"
Yes: (X,Y) =>27%; No: (X,Y) <0

= Theorem: Non-sparse X = CC > 2* bits

Formally [Bar Yossef et al.]: Can reduce
“Indexing” to G-Gaussian-IP.
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Invariance Principle + Challenges

= Informal Invariance Principle: f, g low-degree
polynomials with no common influential variable

= Expyy[f(x)g(¥)] = Expxy[f (X)g(Y)]
where x,y Boolean n-wise product dist.
and X,Y Gaussian n-wise product dist
= Challenges [+ Solutions]:

Our functions not low-degree [Smoothening]

Our functions not real-valued
= g:{0,1}"* - {0,1}*: [Truncate range to [0,1]¢]
w f:{0,1}" - [£]: [???, [work with A(¥)]]
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Invariance Principle + Challenges

= Informal Invariance Principle: f, g low-degree
polynomials with no common influential variable

= Expyy[f (1) g(¥)] = Expxy [f (X)g (V)] caveat = ri=0)
= Challenges
Our functions not low-degree [Smoothening]
Our functions not real-valued [Truncate]

Quantity of interest is not f(x) - g(y) ...
= [Can express quantity of interest as inner
product. ]
... (lots of grunge work ...)
= Get a relevant invariance principle (next)
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Invariance Principle for CC

= Thm: For every convex K, K, < [-1,1]*
3 transformations T;, T, S.t.
if £:{0,1}" - K; and g:{0,1}" - K,
have no common influential variable, then
F=T,f:R*"—-> K, and ¢ =T,g: R" - K, satisfy
Expyy [{f (x), g(¥))] = Expyy[(F(X),G(Y))]

Main differences: f, g vector-valued.

Functions are transformed: f = F;g~ G

Range preserved exactly (K; = A(¥); K, = [0,1]%)!
= SO0 F,G are still communication strategies!
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Summarizing

= k bits of comm. with perfect sharing
— 2 bits with imperfect sharing.

= This is tight (for one-way communication)
Invariance principle for communication
Agreement distillation
Low-influence strategies
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Conclusions

= Imperfect agreement of context important.
Dealing with new layer of uncertainty.

Notion of scale (context LARGE)

= Many open directions+questions:
Imperfectly shared randomness:
= One-sided error?
= Does interaction ever help?
= How much randomness?
= More general forms of correlation?
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Thank Youl!
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