Algebraic Codes and Invariance

Madhu Sudan Microsoft Research

SIAM AAG: Algebraic Codes and Invariance

Disclaimer

- Very little Algebraic Geometry in this talk!
- Mainly:
 - Ex-Coding theorist's perspective on Algebraic and Algebraic-Geometric Codes
 - What additional properties it would be nice to have in algebraic-geometry codes.

Outline of the talk

- Part 1: Codes and Algebraic Codes
- Part 3: Algorithmics of Algebraic Codes
 ← Product property
- Part 4: Locality of (some) Algebraic Codes
 - ⇐ Invariances
- Part 5: Conclusions

Part 1: Basic Definitions

Error-correcting codes

- Notation: \mathbb{F}_q -finite field of cardinality q
- Encoding function: messages → codewords
 - $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$; associated Code $C \triangleq \{E(m) | m \in \mathbb{F}_q^k\}$
 - Key parameters:

• Rate R(C) = k/n;

• Distance $\delta(C) = \min_{x \neq y \in C} \{\delta(x, y)\}.$

$$\delta(x,y) = \frac{|\{i|x_i \neq y_i\}|}{n}$$

- Pigeonhole Principle $\Rightarrow R(C) + \delta(C) \le 1 + \frac{1}{n}$
- Algebraic codes: Get very close to this limit!

Algorithmic tasks

- Encoding: Compute E(m) given m.
- Testing: Given $r \in \mathbb{F}_q^n$, decide if $\exists m \text{ s.t. } r = E(m)$?
- Decoding: Given $r \in \mathbb{F}_q^n$, compute *m* minimizing $\delta(E(m), r)$
- [All linear codes nicely encodable, but algebraic ones efficiently (list) decodable.]

Locality

- Perform tasks (testing/decoding) in o(n) time.
 - Assume random access to r
 - Suffices to decode m_i , for given $i \in [k]$
- [Many algebraic codes locally decodable and testable!]

Algebraic Codes?

Others (BCH codes, dual BCH codes ...)

Part 2: Combinatorics ← Fund. Thm

August 4, 2015 SIAM AAG: Algebraic Codes and Invariance

8 of 29

Essence of combinatorics

- Rate of code ← Dimension of vector space
- Distance of code ← Scarcity of roots
 - Univ poly of deg $\leq k$ has $\leq k$ roots.
 - Multiv poly of deg $\leq k$ has $\leq \frac{k}{a}$ fraction roots.
 - Functions of order ≤ k have fewer than ≤ k roots
 - [Bezout, Riemann-Roch, Ihara, Drinfeld-Vladuts]
 - [Tsfasman-Vladuts-Zink, Garcia-Stichtenoth]

Consequences

- $q \ge n \Rightarrow \exists \text{ codes } C \text{ satisfying } R(C) + \delta(C) = 1 + \frac{1}{n}$
- For infinitely many q, there exist infinitely many n, and codes $C_{q,n}$ over \mathbb{F}_q satisfying

$$R(C_{q,n}) + \delta(C_{q,n}) \ge 1 - \frac{1}{\sqrt{q} - 1}$$

Many codes that are better than random codes

- Reed-Solomon, Reed-Muller of order 1, AG, BCH, dual BCH ...
- Moral: Distance property ← Algebra!

Part 3: Algorithmics \leftarrow **Product property**

August 4, 2015

SIAM AAG: Algebraic Codes and Invariance

11 of 29

Remarkable algorithmics

Combinatorial implications:

- Code of distance δ
 - Corrects $\frac{\delta}{2}$ fraction errors uniquely.
 - Corrects $1 \sqrt{1 \delta}$ fraction errors with small lists.
- Algorithmically?
 - For all known algebraic codes, above can be matched!
 - Why?

Product property

Obvious, but remarkable, feature:

• For every known algebraic code *C* of distance δ \exists code *E* of co-dimension $\approx \frac{\delta}{2}n$ s.t. E * C is a code of distance $\frac{\delta}{2}$. Terminology: $(E, E * C) \triangleq error-locating pair for C$

Unique decoding by error-locating pairs

- Given $r \in \mathbb{F}_q^n$: Find $x \in C$ s.t. $\delta(x,r) \le \frac{\delta}{2}$
- Algorithm
 - Step 1: Find $e \in E, f \in E * C$ s.t. e * r = f

[Pellikaan], [Koetter], [Duursma] – 90s

[Linear system again!]

- Analysis:
 - Solution to Step 1 exists?
 - Yes provided dim(E) > #errors
 - Solution to Step 2 $\hat{x} = x$?
 - Yes Provided $\delta(E)$ large enough.

List decoding abstraction

- Increasing basis sequence $b_1, b_2, ...$
- $C_i \triangleq \operatorname{span}\{b_1, \dots, b_i\}$
- $\delta(C_i) \approx n i + o(n)$
- $b_i * b_j \in C_{i+j}$ ($\Leftrightarrow C_i * C_j \subseteq C_{i+j}$)

Reed-Solomon Codes: $b_i = x^i$ (or its evaluations etc.) exist for codes with increasing basis sequences.

Increasing basis ⇒ Error-locating pairs)

Part 4: Locality ← Invariances

August 4, 2015

SIAM AAG: Algebraic Codes and Invariance

16 of 29

Locality in Codes

- General motivation:
 - Does correcting linear fraction of errors require scanning the whole code? Does testing?
 - Deterministically: Yes!
 - Probabilistically? Not necessarily!!
 - If possible, potentially a very useful concept
 - Definitely in other mathematical settings
 - PCPs, Small-set expanders, Hardness amplification, Private information retrieval ...
 - Maybe even in practice
- Aside: Related to LRCs from Judy Walker's talk.
 - Focus here on more errors.

Locality of some algebraic codes

- Locality is a rare phenomenon.
 - Reed-Solomon codes are not.
 - Random codes are not.
 - AG codes are (usually) not.
- Basic examples are algebraic ...
- ... and a few composition operators preserve it.
- Canonical example: Reed-Muller Codes = lowdegree polynomials.

Main Example: Reed-Muller Codes

Message = multivariate polynomial; Encoding = evaluations everywhere.

• $\operatorname{RM}[m, r, q] = \{\langle f(\alpha) \rangle_{\alpha \in \mathbb{F}_q^m} | f \in \mathbb{F}_q[x_1, \dots, x_m], \operatorname{deg}(f) \le r\}$

• Locality? (when r < q)

- Restrictions of low-degree polynomials to lines yield low-degree (univ.) polys.
- Random lines sample F^m_q uniformly (pairwise ind'ly)
- Locality ~ q

Locality *⇐* ?

- Necessary condition: Small (local) constraints.
 - Examples
 - $\deg(f) \le 1 \Leftrightarrow f(x) + f(x + 2y) = 2f(x + y)$
 - *f*|_{*line*} has low-degree (so values on line are not arbitrary)
- Local Constraints ⇒ local decoding/testing?
 No!
- Transitivity + locality?

Symmetry in codes

- $Aut(C) \triangleq \{\pi \in S_n \mid \forall x \in C, x^{\pi} \in C\}$
- Well-studied concept.
 - "Cyclic codes"
- Basic algebraic codes (Reed-Solomon, Reed-Muller, BCH) symmetric under affine group
 - Domain is vector space \mathbb{F}_Q^t (where $Q^t = n$)
 - Code invariant under non-singular affine transforms from $\mathbb{F}_Q^t \to \mathbb{F}_Q^t$

Symmetry and Locality

- Code has ℓ-local constraint + 2-transitive ⇒ Code is ℓ-locally decodable from $O\left(\frac{1}{\rho}\right)$ -fraction errors.
 - 2-transitive? –

■ $\forall i \neq j, k \neq l \ \exists \pi \in \operatorname{Aut}(C) \text{ s. t. } \pi(i) = k, \pi(j) = l$

- Why?
 - Suppose constraint f(a) = f(b) + f(c) + f(d)
 - Wish to determine f(x)

Find random $\pi \in \operatorname{Aut}(C) \text{ s.t. } \pi(a) = x$; $f(x) = f(\pi(b)) + f(\pi(c)) + f(\pi(d))$; $\pi(b), \pi(c), \pi(d)$ random, ind. of x

Symmetry + Locality - II

- Local constraint + affine-invariance ⇒ Local testing ... specifically
- Theorem [Kaufman-S.'08]:
 - C ℓ -local constraint & is \mathbb{F}_Q^t -affine-invariant $\Rightarrow C$ is $\ell'(\ell, Q)$ -locally testable.
- Theorem [Ben-Sasson,Kaplan,Kopparty,Meir]
 - C has product property & 1-transitive ⇒ ∃C' 1transitive and locally testable and product property
- Theorem [B-S,K,K,M,Stichtenoth]
 - Such C exists. (C = AG code)

Aside: Recent Progress in Locality - 1

- [Yekhanin,Efremenko '06]: 3-Locally decodable codes of subexponential length.
- [Kopparty-Meir-RonZewi-Saraf '15]:
 - $n^{o(1)}$ -locally decodable codes w. $R + \delta \rightarrow 1$
 - $\log n^{\log n}$ -locally testable codes w. $R + \delta \rightarrow 1$
 - Codes not symmetric, but based on symmetric codes.

Aside – 2: Symmetric Ingredients ...

Lifted Codes [Guo-Kopparty-S.'13]

• $C_{m,d,q} = \{f: \mathbb{F}_q^m \to \mathbb{F}_q | \deg(f|_{line}) \le d \forall line \}$

- Multiplicity Codes [Kopparty-Saraf-Yekhanin'10]
 - Message = biv. polynomial
 - Encode f via evaluations of (f, f_x, f_y)

Part 5: Conclusions

Remarkable properties of Algebraic Codes

- Strikingly strong combinatorially:
 - Often only proof that extreme choices of parameters are feasible.
- Algorithmically tractable!
 - The product property!
- Surprisingly versatile
 - Broad search space (domain, space of functions)

Quest for future

- Construct algebraic geometric codes with rich symmetries.
 - In general points on curve have few(er) symmetries.
 - Can we construct curve carefully?
 - Symmetry inherently?
 - Symmetry by design?

Still work to be done for specific applications.

Thank You!

August 4, 2015

SIAM AAG: Algebraic Codes and Invariance

29 of 29