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Abstract

Modern massive data are often dynamic and modeled as data streams. According to the Turn-
stile model, the input stream at = (it, It), it ∈ [1, D] arriving sequentially describes the underlying
signal A, meaning At[it] = At−1[it] + It, where the increment It can be either positive
(insertion) or negative (deletion). The length D could be as large as 264.

There are numerous interesting and challenging problems in data stream computations. One
heavily studied problem is to efficiently compute the α-th frequency moment F(α) =

∑D
i=1 At[i]α,

using small storage space. A closely related summary statistic is the Shannon entropy H =
−∑D

i=1
At[i]
F(1)

log At[i]
F(1)

, where F(1), the first moment, is the sum of the data stream. H can be

estimated using F(α) near α = 1, based on the fact that 1−xα

1−α → x log x, as α → 1.

When 0 < α ≤ 2, well-known algorithms based on symmetric stable random projections
could estimate moments using only O

(
1/ε2

)
space, to guarantee that the relative error is within a

1± ε factor. Unfortunately, to accurately estimate H , ε has to be extremely small, e.g., ε < 10−5.

About two years ago, I had the conjecture that, since the first moment F(1) =
∑D

i=1 At[i] =∑t
s=1 Is, can be computed exactly using just one counter (to sum the increments and decrements),

there might exist an intelligent counting system near α = 1 whose complexity will decrease con-
tinuously as α → 1. Then I found that using maximally-skewed stable random projections, also
named as Compressed Counting, could possibly achieve this goal. I developed estimators based
on geometric mean and harmonic mean and showed that their variances approached zero at the rate
of O(∆), where ∆ = 1 − α. In addition, I proved that the complexity is O (1/ε) instead of the
previously believed O

(
1/ε2

)
bound, near α = 1. While this is a very significant improvement,

unfortunately O (1/ε) is still too large for entropy estimation if ε < 10−5.

Very recently, I found an interesting estimator in the form of 1
∆∆

[
k∑k

j=1 x
−α/∆
j

]∆

, where xj’s are

the projected data and k is the sample size. This estimator has variance proportional to ∆2 (3− 2∆),
approaching zero extremely fast. We prove its complexity is O (1) near α = 1. This is another
very large improvement and leads to highly practical algorithms for entropy estimation. This new
estimator is also numerically very stable even for ∆ as small as 10−10.
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