
Linear languages recognition in deterministic

polynomial time and sub-linear space.

Aleksander M¡dry∗

Abstract: This paper addresses the problem of context-free language's recognition. Namely,

recognition of CFL in the minimum possible space but mantaining still polynomial time. The

best known result is the well-known CYK [2] [3] [4] algorithm which by usage of dynammic

programming paradigm, works in O(n2) space. On the other hand, as �rst shown by Cook [5],

deterministic context-free languages can be recognized in polynomial time and polylogarithmical

space. Therefore, a question arises whether this huge gap between CFL and DCFL can be tight-

ened. As an attempt to approach it, we consider this problem with respect to a strict subset of

CFL which is still nondeterministic - the linear languages. In this case just a straight-forward

adjustment of CYK algorithm yields an algorithm which uses only O(n) space. Thus we are

interested in investigation whether this linear space bound can be broken while still using only

polynomial-time. We present an algorithm which solves the problem using O(n2+δ

log n) time and

O(n
log n) space, where δ can be any positive constant. Thus it is possible to break the space

bound imposed by, the only known so far, dynamic programming approach.

1 Introduction

There has been much attention in computer science in the problem of context-
free language recognition. And one of the fundamental questions in this context are
the bounds on resources needed in order to solve it. Lewis et al. [6] described a
deterministic algorithm which performs this task using only log2 n space, but super-
polynomial time. His algorithm is based on divide&conquer method which allows �nding
derivation by cutting o� majority of possibilities thus reducing the space needed to keep
actual con�guration. On the other hand, there is a result of Valiant [7] which using
sophisticated algebraic approach yields an algorithm solving this problem in time needed
to multiply two n× n Boolean matrices. However, when we are interested in algorithm
that minimizes the space used and is still polynomial in time, then the best result known
is an dynamic programming algorithm by Cocke-Younger-Kasami [2] [3] [4] using O(n2)
space.

But when we restrict ourselves to the deterministic context-free languages then,
as �rst shown by Cook [5], there is an algorithm which runs in polynomial time and
O(log2 n) space simultaneously, putting DCFL in the class SC of languages recogniz-
able simultaneously in polynomial time and polynomial in log n space. This result was

∗Institute of Computer Science, University of Wrocªaw. E-mail address: a.madry@psz.pl.

extended by showing an optimal time-space tradeo� [1] for DCFL's recognition. There-
fore, a natural question arises whether this huge gap between CFL and DCFL can be
tightened. Unfortunately, at this time no such result is known. So, in an attempt to
approach it, we consider this problem with respect to a strict subset of CFL which is
still nondeterministic, the linear languages. This are those context-free languages which
have at most one non-terminal at the right side of each production, which makes them
much easier to recognize. As a result, just a straight-forward adjustment of CYK [2]
[3] [4] algorithm yields an algorithm which uses only O(n) space and O(n2) time. Thus
we are interested in investigation whether this linear space bound can be broken while
still using only polynomial-time. We present an algorithm which solves the problem
in O(n2+δ

log n
) time and O(n

log n
) space, where δ can be any positive constant. This result

can be seen as the �rst step towards showing that either linear languages (or even gen-
eral CFLs) are in SC or posing a lower bound on the space needed in such polynomial
deterministic calculations.

2 Preliminaries

We �rst de�ne the linear languages.

De�nition 1. Linear language is a context-free language over an alphabet A, which
can be recognized by a linear grammar i.e. a grammar G = 〈A, N,R, S〉 where N is
a set of nonterminals, S is a starting nonterminal and R is the set of productions such
that each production γ ∈ R has at most one nonterminal on the right side.

However, from our point of view it is more convenient to utilize the following straight-
forward observation.

Observation 2. If G = 〈A, N,R, S〉 is a linear grammar then we can assume that R
is the set of productions of the form:

X −→ aY (left production)
X −→ Y a (right production)
X −→ a (ending production)
where X, Y ∈ N and a ∈ A.

Throughout the whole paper G, A, N , R, S will always have the above meaning
and by w = w1 . . . wn we will mean the word over A being the input of the algorithm.

We use a convention that for a word v = v1 . . . vp, vp . . . vq = ε if p > q and v0 = ε.
We should note that any stage of some derivation S ⇒∗ w of the word w in G can

be represented by a phrase α = w1 . . . wkXwl . . . wn, where k < l and X ∈ N ∪ {ε}.
Having such phrase α in mind, we call the word w1 . . . wk the left side of w (with
respect to α), the word wl . . . wn - the right side of w (with respect to α) and
if X = ε then wl is the middle of w (with respect to α). Moreover, we say that a
production γ from R extends the phrase α = w1 . . . wkXwl . . . wn i� either

• γ = X → wk+1Y or γ = X → Y wl−1 for some Y ∈ N and k + 1 < l; or

• γ = X → wk+1 and k + 2 = l.

2

In other words, a production γ extends a phrase α i� γ can be applied to α and the
result is still a phrase.

Accordingly, we say that a phrase β extends the phrase α i� α ⇒∗ β, i.e., there
exists some (possibly empty) sequence of production whose consecutive application
derives β from α.

3 The algorithm

We can think of �nding the derivation of a word w in a grammar G as of a simple
nondeterministic algorithm, which starts with the phrase α0 = S and in i-th step, it
nondeterministically chooses a production from R extending already constructed phrase
αi−1 to a phrase αi if such production exists and rejecting otherwise. When this algo-
rithm reaches the phrase w1 . . . wn then it accepts. It can be easily seen that this algo-
rithm uses linear1 time and logarithmic space. Unfortunately, its performance depends
strongly on advantages of nondeterministic computation.

So, the idea to develop a deterministic polynomial time and sub-linear space algo-
rithm is the following: since simulating nondeterminism is expensive in both time and
space, we divide the word w into blocks and restrict our 'guessing' only to the order in
which we extend whole blocks, using dynamic programming techniques to manage the
ambiguity introduced by this abstracting. The precise description of this approach is
developed in the two following subsections.

3.1 Outline of a derivation of w

Let B1 . . . Bm be a division of w into m blocks, each of length d n
m
e at most. As-

sume for the sake of simplicity that n mod m = 0 and let o = n
m
. That is, Bi =

w(i−1)·o+1 . . . wi·o = wi.1 . . . wi.o, where we employed a convention that t.u = (t−1) ·o+u,
i.e., t.u is the index of u-th symbol in t-th block.

By an outline O = 〈i1, . . . , im〉 we mean some ordering of blocks Bi.

De�nition 3. We say that a derivation ρ = (S ⇒∗ α) of a phrase α = w1 . . . wkXwl . . . wn

is compatible with O, where O = 〈i1, . . . , im〉 is an outline i�, for every two blocks
Bij , Bij′

derived2 in α, if j < j′ then Bij was derived before Bij′
in ρ.

Intuitively, compatibility of a derivation ρ with an outline O means that the order
of blocks' deriving in ρ obeys the order indicated by O.

Going further, we say that a phrase α is compatible with O i� there exists a
derivation S ⇒∗ α compatible with O. Finally, it can be seen that any derivation
ρ = (S ⇒∗ w) de�nes an outline Oρ corresponding to the order in which blocks are
derived in ρ. By de�nition, ρ is compatible with Oρ. We say that an outline O is valid
i� O = Oρ for some derivation ρ of w in G.

We de�ne a k-pre�x P k(O) of an outline O = 〈i1, . . . , im〉, where 0 ≤ k ≤ m, as a
partial ordering corresponding to k �rst elements from O i.e. 〈i1, . . . ik〉.

1We measure the complexity with respect to the length of the given word.
2By derivation of a block we mean deriving all its letters, i.e., the block Bi is derived in α =

w1 . . . wkXwl . . . wn i� Bi is a subword of w1 . . . wk or wl . . . wn.

3

We should note now the following straight-forward observation.

Observation 4. If O = 〈i1, . . . , im〉 is a valid outline then for every 0 ≤ k ≤ m and
some boundary indices 0 ≤ bk

l (O) ≤ m + 1 (l = 0, 1) it holds that:
a block Bi is among the �rst k blocks derived, i.e., i ∈ {i1, . . . , ik} i�

1 ≤ i ≤ bk
0(O) ≤ m ∨ 1 ≤ bk

1(O) ≤ i ≤ m

Moreover, for each k ≥ 1, ik = bk
lk(O)

(O) for some lk(O) ∈ {0, 1}, we call lk(O)
k-parity of O.

The proof of the observation is based on noticing that valid outline O has to cor-
respond to some derivation ρ of w (i.e. O = Oρ). So, since G is linear then in each
stage of ρ (except the last one) the corresponding phrases α have one nonterminal with
B1 . . . Bbk

0(O) derived3 on the left and Bbk
1(O) . . . Bm � on the right, where k denotes

the number of blocks derived in α. In other words, every α corresponding to ρ is
of the form α = B1 . . . Bbk

0(O)wbk
0(O)+1.1 . . . wlXws . . . wbk

1(O)−1.oBbk
1(O) . . . Bm and lk(O)

indicates whether bk
0(O) or bk

1(O) was derived as the k-th one.
Rephrased in the above terms, our desired algorithm consists of generating all out-

lines which can be valid, and checking, for each such O, whether it is valid indeed i.e.
whether there exists a derivation of w compatible with O. The �rst issue in the context
of the space and time resources needed by such approach, is determining how much
outlines we do have to check to ensure that we have not omitted any valid one. The
question is answered in the following lemma

Lemma 5. There are at most 2m valid outlines and they can be easily encoded in space
O(m).

Proof.
Let O = Oρ for some derivation ρ of w. In order to settle the lemma, we construct

a string vρ
0 . . . vρ

m of m + 1 bits for each di�erent outline Oρ.
Let Oρ = 〈i1, . . . , im〉, we should observe that only one of border blocks i.e. B1 or

Bm can be derived in ρ as the �rst one. So, we set vρ
0 to encode this.

Let αf = w1 . . . wlXwl+2 . . . wn be the phrase corresponding to the stage of ρ im-
mediately before using the ending production X → wl+1. Now, for a block Bi we set
vρ

i = 0 i� the block Bj being derived immediately after Bi in ρ has its �rst letter wj·o
not on the right side of w (with respect to αf). For the last block Bim derived in ρ, vρ

im

is arbitrary. We see that in fact vik = lk+1(Oρ) for k > 0.
To decode the outlineO = 〈i1, . . . , im〉 from a string v0 . . . vm we employ the following

procedure. We obtain from v0 the value of i1. Now, let us assume that we have found the
value of ij for all j ≤ k i.e. we have found P k(O). We look at vik and set ik+1 = bk

0(O)+1
if vik = 0; and ik+1 = bk

1(O)− 1 otherwise (cf. Observation 4). Thus the lemma follows.

3We employ a convention that B0 = Bm+1 = ε.

4

3.2 Checking validity of an outline

Now, to follow the idea of our approach we have to develop the way of �nding (if any)
derivation of w compatible with some outline O i.e. checking whether O = 〈i1, . . . , im〉
is valid. Our method of ful�lling this task consists of tracing, with the help of dynamic-
programming paradigm, all phrases α compatible with O for increasing length of α.
More precisely, we employ the following de�nition.

De�nition 6. Let O = 〈i1, . . . , im〉 be an outline, 0 ≤ k < m, let

Dk
s,j(O) = {B1 . . . Bbk

0(O)wbk
0(O)+1.1 . . . wbk

0(O)+1.sXwbk
1(O).(1−j) . . . wbk

1(O).0Bbk
1(O) . . . Bm|X ∈ N},

for some 0 ≤ s, j ≤ o (we remind that t.u = (t− 1) · o + u). Finally, let for 0 ≤ j ≤ o

Dk
j (O) =

{⋃o−1
s=0 Dk

s,j(O) if lk+1(O) = 1⋃o−1
s=0 Dk

j,s(O) otherwise

We say that a set C is a (k, j)-con�guration with respect to O i� C ⊆ Dk
j (O)

and for every α ∈ C there is a derivation of α in G.
We say that such C is left (resp. right) i� lk+1(O) = 1 (lk+1(O) = 0).
We call C full i� it holds that for every α′ ∈ Dk

j (O) extending some phrase α ∈ C,
α′ ∈ C.

We call C complete i� every derivation of w compatible with O, extends some
phrase in C.

Clearly, any (k, j)-con�guration C can be easily implemented as an array consisting
of O(|N | · o + |k|+ |j|) = O(n

m
+ log n) bits corresponding to all elements of Dk

j (O).
Intuitively, a left (resp. right) (k, j)-con�guration C with respect to O corresponds

to some set of phrases derivable in G that have already derived all blocks from P k(O)
and contain exactly j �rst (resp. last) letters of Bik+1

. Furthermore, fullness of C
means that we cannot increase the number of elements of C using only left (resp. right)
productions. Finally, completeness ensures us that we did not 'lose track' of a possible
derivation of w compatible with O. We should also be aware that there can be more
than one full and complete (k, j)-con�guration with respect to O, but all of them will
contain a unique minimal one (in the set-theoretic sense). It is also worth noting that
(k, o)-con�guration for k < m−1 is (k+1, 0)-con�guration as long as lk+1(O) = lk+2(O).

Now, having some full and complete (k, j)-con�guration C with respect to O for
0 ≤ k < m − 1, 0 ≤ j < o by extending C we mean �nding full and complete
(k + 1, j′)-con�guration, for some j′ < o such that j′ = 0 if k = m− 2.4

Lemma 7. Let, for an outline O, 0 ≤ k < m − 1 and 0 ≤ j < o, C be a full and
complete (k, j)-con�guration with respect to O. We can extend C in deterministic time
O(n2

m2) and space O(n
m

).

4This condition is needed in order to ensure that if, for example, C is left then

wbk
0 (O)+1.1 . . . wbk

0 (O)+1.s does not overlap with wbk
1 (O).(1−j′) . . . wbk

1 (O).0 for some 0 ≤ s ≤ o− 1.

5

Proof.
Throughout the whole proof we assume that C is a left con�guration i.e. lk+1(O) = 1,

since the opposite case's treatment is completely analogous.

Obtaining full and complete (k, o)-con�guration

Let us focus �rst onto �nding a full and complete (k, j + 1)-con�guration C ′ with
respect to O. We start with C ′ := ∅. To make C ′ complete it is su�cient to add to
C ′ only those phrases α′ extending some phrase in C, which are from Dk

j+1(O). To
see this we should note that C is complete and no derivation of w compatible with O
can derive wbk

0(O)+1.o, before wbk
1(O).−j. The latter holds since deriving wbk

0(O)+1.o would
mean deriving Bbk

0(O)+1 before Bbk
1(O)−1 = Bik+1

6= Bbk
0(O)+1 (we remind that j < o and

k < m− 1). So, restricting the form of α′ only to the ones corresponding to Dk
j+1(O),

does not rule out from C ′ possible derivations of w compatible with O.
We should note now that if α′ ∈ Dk

j+1(O) has to extend some α ∈ C ⊆ Dk
j (O) then

there is exactly one right production in the derivation α ⇒∗ α′. Thus, by fullness of
C, to make C ′ complete it is su�cient to initially take C ′ to be the set A′ of those
α′ ∈ Dk

j+1(O) which can be derived from some α ∈ C by exactly one right production.
Then, by making C ′ full, we will ensure that all the desired α′ ∈ Dk

j+1(O) extending
α ∈ C are indeed in C ′.

Obviously, �nding A′ can be done in time O(|C|) = O(n
m

) and the space O(n
m

) �
needed to store only two con�gurations. It is left to make C ′ full. We can do this by
simply starting with i = 0, looking at each of phrases α′ ∈ C ′ ∩ Dk

i,j+1(O), checking
whether there exists a left production extending α′ to some α′′ ∈ Dk

i+1,j+1(O) and adding
α′′ to C ′ if so. After repeating this procedure with increasing i until i = o− 1, we end
up with full C ′. Obviously, this operation can be done in O(n

m
) time.

In the above manner we have obtained C ′ being a full and complete left (k, j + 1)-
con�guration with respect to O. If j + 1 < o then, after erasing C and renaming C ′ to
C, we can repeat the above procedure � after at most (o − 1) = O(n

m
) iterations we

would end up with C ′ being a full and complete (k, o)-con�guration.

Obtaining full and complete (k + 1, ·)-con�guration
If lk+2(O) = 1 then C ′ would be also the desired full and complete (k + 1, 0)-

con�guration. Thus it is left to consider the case lk+2(O) = 0 in which we will �nd a
full and complete right (k + 1, o− 1)-con�guration C ′′ with respect to O.

We should note �rst that bm
0 (O) = bm

1 (O)− 1 and thus lm(O) can be arbitrary. So,
if lk+2(O) = 0 then we may assume that k + 2 < m, since otherwise we could choose
lk+2(O) = lm(O) = 1. Therefore, we can be sure that no overlap of wbk+1

0 (O)+1.1 . . . wbk+1
0 (O)+1.(j′=o−1)

and wbk+1
1 (O).(1−s) . . . wbk+1

1 (O).0 will occur for some 0 ≤ s ≤ o− 1.

We will retrieve C ′′ by �nding C ′′ ∩ Dk+1
o−1,s(O) for all 0 ≤ s ≤ o − 1. Clearly,

by completeness of C ′, it su�ces only to ensure that C ′′ is full and all phrases α′′ ∈
Dk+1

o−1(O), extending some α′ ∈ C ′ by means of a derivation α′ ⇒∗ α′′ compatible with
O, are in C ′′.

Let O′ be an outline O altered by setting lk+2(O′) = 1 (instead of lk+2(O) = 0)5

5We recall that in proof of Lemma 7 it was shown that the outline can be described exclusively by

6

and let us analyze C ′ as a (k + 1, 0)-con�guration with respect to O′. Namely, let
C ′

0 = C ′ be a full and complete (k + 1, 0)-con�guration with respect to O′; and C ′
s, for

0 < s ≤ o−1, be a full and complete (k+1, s)-con�guration with respect to O′ obtained
by application to C ′

s−1 exactly the same procedure that we used earlier to obtain full
and complete left (k, j + 1)-con�guration from C.

The crucial observation here is that taking C ′′ =
⋃o−1

s=0 C ′
s ∩ Dk+1

o−1,s(O′) will make

C ′′ full and complete. To see this we should �rst convince ourselves that Dk+1
o−1,s(O′) =

Dk+1
o−1,s(O) because P k+1(O) = P k+1(O′) and thus bk+1

l (O) = bk+1
l (O′). Then we should

notice that any derivation ρ of w compatible with O has to derive wbk+1
0 (O)+1.o−1 before

wbk+1
1 (O)−1.1, because otherwise Bbk+1

1 (O)−1 would be derived before Bbk+1
0 (O)+1 = Bik+2(O).

Therefore, if α is the phrase corresponding to the stage of ρ in which wbk+1
0 (O)+1.o−1 was

just derived, then it must be the case that α ∈
⋃o−1

s=0 Dk+1
o−1,s(O′). Now, C ′

0 = C ′ is
complete with respect to O, so it contains a phrase α′ corresponding to some stage of ρ
such that (α′ ⇒∗ α) = β. However, β does not derive neither wbk+1

0 (O)+1.o nor wbk+1
1 (O)−1.1

so it cannot be ruled out during C ′
s computing. Therefore, α ∈

⋃o−1
s=0 C ′

s ∩Dk+1
o−1,s(O′) =

C ′′. Thus C ′′ is complete with respect to O and it is full because all C ′
s were also such

6.
So, we can compute C ′

s consecutively (i.e. keeping only the latest C ′
s) for increasing

s ≤ o − 1 and add for each s C ′
s ∩ Dk+1

o−1,s(O′) to (initially empty) C ′′. We convince
ourselves in this way that full and complete (k +1, o− 1)-con�guration C ′′ with respect
to O can be obtained in time O(n2

m2) and space O(n
m

), which concludes the proof.

We are ready now to state our main theorem

Theorem 8. Let G = 〈A, N,R, S〉 be a linear grammar, w = w1 . . . wn be a word over

A and δ > 0. One can check in deterministic time O(n2+δ

log n
) and space O(n

log n
) whether

w has a derivation in G.

Proof. Let m = bδ log nc, without loss of generality we may assume that n mod m =
0. We partition w into m blocks of length n

m
. The algorithm is following:

i1 and the values of lk(.). Thus O′ is well de�ned.
6But even if C ′′ would be only complete, but not full we could make it full within the desired time

and space bounds by the technique presented earlier.

7

1. Iterate through all valid outlines O

2. Decode the ordering of blocks corresponding to the current outline O

3. Prepare C being the initial complete and full (0, 0)-con�guration with

respect to O.

4. for k = 0 to m− 2

5. extend C (with respect to O) and save the result as C

6. perform an ending procedure

7. if a derivation of w has been found then accept

8. reject

The above sketch needs two explanations: how to generate the initial full and com-
plete (0, 0)-con�guration C and how to perform the ending procedure.

To resolve the �rst one, we just set C = {S}, which obviously makes C complete
and then we obtain fullness of C by the procedure analogous to one used in the proof
of Lemma 7.

To explain the way of treating the second one, consider, say left, complete and
full (m − 1, 0)-con�guration Cf with respect to some outline O. We are looking for
a letter wim.e (1 ≤ e ≤ o) being the middle of some hypothetic derivation of ρ of w
compatible with Pm(O) = O whose last production is γ = (X → wim.e). Clearly, if
e = o then γ has to extend some phrase from Cf ∩Dm−1

o−1,0(O). And in general, γ has to

extend a phrase from Cf
e ∩Dm−1

e−1,o−e(O), where Cf
e corresponds to a complete and full left

(m−1, o−e)-con�guration with respect to O, in which we discard phrases corresponding
to an overlapping fragments of w1 . . . wbm−1

0 (O).s and wbm−1
1 (O).(1−o+e). Clearly, we can

�nd all Cf
e consecutively by a procedure analogous to the one from Lemma 7 within the

respective time and space bounds. If we are unable to �nd the desired γ for any value
of e then there is no derivation of w compatible with O.

Now, the safeness of the whole algorithm is a consequence of the fact that we accept
only when we �nd some particular derivation of w in G. And the soundness is a result
of checking every possible outline. Thus if there is no derivation of w compatible with
some outline then there must be no derivation at all.

To see the time and space requirements of this algorithm, we should �rst note that
we need at most O(n

m
) = O(n

log n
) space since we never use more than two con�gurations

simultaneously. In case of time bounds, we have m iteration of extending procedure and
each requires O(n2

m2) time. So, for each of O(2δ log n) iterations corresponding to di�erent

outlines we need O(n2

m
) time. Thus the total time needed is O(n2+δ

log n
).

As a simple consequence we get

Corollary 9. Let G = 〈A, N,R, S〉 be a linear grammar, w = w1 . . . wn be a word
over A and f(n) > 0. One can check in deterministic time O(2f(n) · n2

f(n)
) and space

8

O(n
f(n)

+ f(n)) whether w has a derivation in G.

4 Conclusions and open problems

As it can be seen, even in case of non-deterministic CFLs recognition in deterministic
polynomial time, it is possible to break the space bound imposed by dynamic program-
ming. Of course, since the only known lower-bound is trivial O(log n) requirement, the
natural question arises whether in case of linear languages the upper-bound of n

log n
is

all we can hope ? If the answer is positive then it gives us the lower-bound on space
needed to recognition of general CFL in polynomial-time. If not, then the another big
problem is determining whether linear languages (or even all CFLs) are in SC.

It would be even interesting to determine if the algorithm stated above can be
improved, that is whether our 'guessing' of the derivation can consist of signi�cantly
fewer 'nondeterministic' steps. Answers to this question seem to have impact also on
the problem of space requirements in algorithms using dynamic programming paradigm.
This is so, because, informally speaking, exactly the same approach can be used to
reduce the space complexity (for the cost of increased, but only polynomialy, time)
in case of algorithms utilizing dynamic programming in the manner analogous to the
one considered in the paper. More precisely, in case of problems which are solved by
dynamic programming where dependencies are of existential nature and only the last
row of constructed array containing already solved cases is needed.

References

[1] B. von Braunmuehl, S. A. Cook, K. Mehlhorn, R. Verbeek, The Recognition of
Deterministic CFL's in Small Time and Space, Information and Control 56, 1983,
p. 34-51.

[2] John Cocke, Jacob T. Schwartz, Programming languages and their compilers:
Preliminary notes. Technical report, Courant Institute of Mathematical Sciences,
New York University.

[3] T. Kasami, An e�cient recognition and syntax-analysis algorithm for context-free
languages. Scienti�c report AFCRL-65-758, Air Force Cambridge Research Lab,
Bedford, MA.

[4] Daniel H. Younger, Recognition and parsing of context-free languages in time n3.
Information and Control 10(2).

[5] S. A. Cook, Deterministic CFL's are accepted simultaneously in polynomial time and
log squared space, Proceedings of the eleventh annual ACM symposium on Theory
of computing, Atlanta, 1979, p. 338-345.

9

[6] P. M. Lewis II, R. E. Stearns, J. Hartmanis: Memory bounds for recognition of
context-free and context-sensitive languages, Proceedings of Symposium on the Foun-
dations of Computer Science, 1965, p. 191-202.

[7] L. Valiant, General context free recognition in less than cubic time, Journal of
Computer and System Science, Vol. 10, 1975, p. 308-315.

10

