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Abstract

We introduce a new approach to computing an approximately maximum s-t flow in a capaci-
tated, undirected graph. This flow is computed by solving a sequence of electrical flow problems.
Each electrical flow is given by the solution of a system of linear equations in a Laplacian matrix,
and thus may be approximately computed in nearly-linear time.

Using this approach, we develop the fastest known algorithm for computing approximately
maximum s-t flows. For a graph having n vertices and m edges, our algorithm computes a (1−ε)-
approximately maximum s-t flow in time1 Õ

(
mn1/3ε−11/3

)
. A dual version of our approach

computes a (1 + ε)-approximately minimum s-t cut in time Õ
(
m+ n4/3ε−16/3

)
, which is the

fastest known algorithm for this problem as well. Previously, the best dependence on m and
n was achieved by the algorithm of Goldberg and Rao (J. ACM 1998), which can be used to
compute approximately maximum s-t flows in time Õ

(
mn1/2ε−1

)
, and approximately minimum

s-t cuts in time Õ
(
m+ n3/2ε−3

)
.
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1 Introduction

The maximum s-t flow problem and its dual, the minimum s-t cut problem, are two of the most
fundamental and extensively studied problems in Operations Research and Optimization [26, 2].
They have many applications (see [3]) and are often used as subroutines in other algorithms (see [4,
27]). Many advances have been made in the development of algorithms for this problem (see
Goldberg and Rao [14] for an overview). However, for the basic problem of computing or (1− ε)-
approximating the maximum flow in undirected, unit-capacity graphs with m = O(n) edges, the
asymptotically fastest known algorithm is the one developed in 1975 by Even and Tarjan [10], which
takes time O(n3/2). Despite 35 years of extensive work on the problem, this bound has not been
improved.

In this paper, we introduce a new approach to computing approximately maximum s-t flows
and minimum s-t cuts in undirected, capacitated graphs. Using it, we present the first algorithms
that break the O(n3/2) complexity barrier described above. In addition to being the fastest known
algorithms for this problem, they are simple to describe and introduce techniques that may be
applicable to other problems. Our algorithms reduce the problem of computing maximum flows
subject to capacity constraints to the problem of computing electrical flows in resistor networks.
An approximate solution to each electrical flow problem can be found in time Õ (m) using recently
developed algorithms for solving systems of linear equations in Laplacian matrices [29, 19, 20, 18].

There is a simple physical intuition that underlies our approach, which we describe here in the
case of a graph with unit edge capacities. We begin by thinking of each edge of the input graph as
a resistor with resistance one, and we compute the electrical flow that results from sending current
from the source s to the sink t. Such current obeys the flow conservation constraints, but might
not respect the capacities of the edges. To remedy this, we increase the resistance of each edge in
proportion to the amount of current flowing through it—thereby penalizing edges that violate their
capacities—and compute the electrical flow with these new resistances.

After repeating this operation Õ
(
m1/3 · poly(1/ε)

)
times, we are able to obtain a (1 − ε)-

approximately maximum s-t flow by taking a certain average of the electrical flows that we have
computed, and we are able to extract a (1 + ε)-approximately minimum s-t cut from the vertex
potentials2. This will give us algorithms for both problems that run in time Õ

(
m4/3 · poly(1/ε)

)
.

By combining this with the graph smoothing and sampling techniques of Karger [15], we can get
a (1 − ε)-approximately maximum s-t flow in time Õ

(
mn1/3ε−11/3

)
. Furthermore, by applying

the cut algorithm to a sparsifier [5] of the input graph, we can compute a (1 + ε)-approximately
minimum s-t cut in time Õ

(
m+ n4/3ε−16/3

)
.

We remark that the results in this paper immediately improve the running time of algorithms
that use the computation of an approximately maximum s-t flow on an undirected, capacitated
graph as a subroutine. For example, combining our work with that of Sherman [27] allows us to
achieve the best currently known approximation ratio of O(

√
log n) for the sparsest cut problem in

time Õ
(
m+ n4/3

)
.

1.1 Previous Work on Maximum Flows and Minimum Cuts

The best previously known algorithms for the problems studied here are obtained by combining
techniques of Goldberg and Rao [14] and Benczúr and Karger [6]. In a breakthrough paper, Gold-

2For clarity, we will analyze these two cases separately, and they will use slightly different rules for updating the
resistances.
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berg and Rao [14] developed an algorithm for computing exact maximum s-t flows in directed or
undirected capacitated graphs in time O(mmin(n2/3,m1/2) log(n2/m) logU), assuming that the
edge capacities are integers between 1 and U . In undirected graphs, one can find faster approxi-
mation algorithms for these problems by using the graph sparsification techniques of Benczúr and
Karger [5, 6]. Goldberg and Rao [14] observe that by running their exact maximum flow algorithm
on the sparsifiers of Benczúr and Karger [5], one can obtain a (1 + ε)-approximately minimum
cut in time Õ

(
m+ n3/2ε−3

)
. This provides an approximation of the value of the maximum flow.

To actually obtain a feasible flow whose value approximates the maximum one can combine the
algorithm of Goldberg and Rao with graph smoothing technique of Karger [15] (see also [6]). This
provides a (1 − ε)-approximately maximum flow in time Õ

(
m
√
nε−1

)
. We refer the reader to the

paper of Goldberg and Rao for a survey of previous breakthroughs in the development of algorithms
for computing maximum s-t flows.

In more recent work, Daitch and Spielman [8] showed that fast solvers for Laplacian linear
systems [29, 19, 20, 18] could be used to make interior-point algorithms for the maximum flow
and minimum-cost flow problems run in time Õ

(
m3/2 logU

)
, and Mądry [22] showed that one can

approximately solve a wide range of cut problems, including the minimum s-t cut problem, within
a polylogarithmic factor in almost linear time.

1.2 Subsequent Work

Since the initial publication of this paper, there was a number of developments on the maximum
s-t flow and minimum s-t cut problems. First, Kelner et al. [17] showed how to extend our
approach to tackle maximum concurrent multicommodity flow problem. They obtain an (1 − ε)-
approximation algorithm for that problem that runs in time Õ

(
m4/3poly(k, 1/ε)

)
, where k is the

number of commodities involved.
Later on, Lee et al. [21] developed a different framework for approximation of the maximum

s-t flow and the minimum s-t cut in undirected graphs. Their framework is also based on iterative
computation of electrical flows, but employs a purely gradient-descent perspective and makes use of
the accelerated gradient-descent method of Nesterov [24] instead of multiplicative-weights-update
method. This framework enables them to obtain a (1 − ε)-approximation algorithm for both the
maximum s-t flow and the minimum s-t cut problem in unit-capacity graphs that runs in time
Õ
(
mn1/3ε−2/3

)
, and thus achieves significantly better dependence on ε in that case.

Recently, this line of research was culminated with independent results of Sherman [28] and
Kelner et al. [16], who showed that one can compute a (1− ε)-approximation to undirected max-
imum s-t flow problem in time O(m1+o(1)ε−2). Their approaches have different flavor, but can be
viewed as being somewhat dual to each other. Roughly speaking, they are based on developing an
understanding of gradient-descent method with respect to non-Euclidean norms and combining it
with the ideas behind the ultra-sparsifier construction of Spielman and Teng [29], as well as, the
fast poly-logarithmic-approximation algorithms for cut problems of Mądry [22].

Finally, in parallel to the above progress on approximation algorithms for undirected maximum
s-t flow and minimum s-t cut, there was also a progress on exact algorithms for these problems
in directed graphs. Namely, Mądry [23] presented exact algorithms for the maximum s-t flow and
minimum s-t cut problems in directed unit-capacity graphs that run in Õ

(
m10/7

)
time. These

algorithms employ a primal-dual framework that combines the electrical flow computations with
the ideas underlying path-following interior point methods.
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1.3 Outline

We begin the technical part of this paper in Section 2 with a review of maximum flows and electrical
flows, along with several theorems about them that we will need in the sequel. In Section 3
we give a simplified version of our approximate maximum-flow algorithm that has running time
Õ
(
m3/2ε−5/2

)
. In Section 4, we will show how to improve the running time of our algorithm

to Õ
(
m4/3ε−3

)
; we will then describe how to combine this with existing graph smoothing and

sparsification techniques to compute approximately maximum s-t flows in time Õ
(
mn1/3ε−11/3

)
and

to approximate the value of such flows in time Õ
(
m+ n4/3ε−17/3

)
. In Section 5, we present a variant

of our algorithm that computes approximately minimum s-t cuts in time Õ
(
m+ n4/3ε−16/3

)
.

2 Maximum Flows, Electrical Flows, and Laplacian Systems

2.1 Graph Theory Definitions

Throughout the rest of the paper, let G = (V,E) be an undirected graph with n vertices and m
edges. We distinguish two vertices, a source vertex s and a sink vertex t. We assign each edge e a
nonzero integral capacity ue ∈ Z+, and we let U := maxe ue/mine ue be the ratio of the largest to
the smallest capacities.

We arbitrarily orient each edge in E; this divides the edges incident to a vertex v ∈ V into the
set E+(v) of edges oriented towards v and the set E−(v) of edges oriented away from v. These
orientations are merely for notational convenience. We use them to interpret the meaning of a
positive flow on an edge. If an edge has positive flow and is in E+(v), then the flow is towards
v. Conversely, if it has negative flow then the flow is away from v. One should keep in mind that
our graphs are undirected and that the flow on an edge can go in either direction, regardless of the
edge’s orientation.

We now define our primary objects of study, s-t cuts and s-t flows.

Definition 2.1 (Cuts). An s-t cut is a partition (S, V \S) of the vertices into two disjoint sets such
that s ∈ S and t ∈ V \S. The capacity u(S) of the cut is defined to be the sum u(S) :=

∑
e∈E(S) ue,

where E(S) ⊆ E is the set of edges with one endpoint in S and one endpoint in V \ S.

Definition 2.2 (Flows). An s-t flow is a function f : E → IR that obeys the flow-conservation
constraints ∑

e∈E−(v)

fe −
∑

e∈E+(v)

fe = 0 for all v ∈ V \ {s, t}.

The value |f | of the flow is defined to be the net flow out of the source vertex, |f | :=
∑

e∈E−(s) fe−∑
e∈E+(s) fe.

It follows easily from the flow conservation constraints that the net flow out of s is equal to the
net flow into t, so |f | may be interpreted as the amount of flow that is sent from s to t.

2.2 Maximum Flows and Minimum Cuts

We say that an s-t flow f is feasible if |fe| ≤ ue for each edge e, i.e., if the amount of flow routed
through any edge does not exceed its capacity. The maximum s-t flow problem is that of finding
a feasible s-t flow in G of maximum value. We denote a maximum flow in G (with the given
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capacities) by f∗, and we denote its value by F ∗ := |f∗|. We say that f is a (1− ε)-approximately
maximum flow if it is a feasible s-t flow of value at least (1− ε)F ∗.

To simplify the exposition, we will take ε to be a constant independent of m throughout the
paper, and m will be assumed to be larger than some fixed constant. However, our analysis will
go through unchanged as long as ε > Ω̃(m−1/3). In particular, our analysis will apply to all ε for
which our given bounds are faster than the O(m3/2) time required by existing exact algorithms.

One can easily reduce the problem of finding a (1− ε)-approximation to the maximum flow in
an arbitrary undirected graph to that of finding a (1 − ε/2)-approximation in a graph in which
the ratio of the largest to smallest capacities is polynomially bounded. To do this, one should
first compute a crude approximation of the maximum flow in the original graph. For example, one
can compute the s-t path of maximum bottleneck in time O(m+ n log n) [26, Section 8.6e], where
we recall that the bottleneck of a path is the minimum capacity of an edge on that path. If the
maximum bottleneck of an s-t path is B, then the maximum flow lies between B and mB. This
means that there is a maximum flow in which each edge flows at most mB, so all capacities can be
decreased to be at most mB. On the other hand, if one removes all the edges with capacities less
εB/2m, the maximum flow can decrease by at most εB/2. So, we can assume that the minimum
capacity is at least εB/2m and the maximum is at most Bm, for a ratio of 2m2/ε. Thus, by a
simple scaling, we can reduce our considerations to the case in which all edge capacities lie between
1 and 2m2/ε.

The minimum s-t cut problem is that of finding the s-t cut of minimum capacity. The Max
Flow-Min Cut Theorem ([12, 9]) states that the capacity of the minimum s-t cut is equal to F ∗,
the value of the maximum s-t flow.

In particular, the Max Flow-Min Cut Theorem implies that one can use the capacity of any s-t
cut as an upper bound on the value of any feasible s-t flow, and that the task of finding the value
of the maximum flow is equivalent to the task of finding the capacity of a minimum s-t cut.

One should note, however, that the above equivalence applies only to the values of the flow
and the capacity and that although one can easily obtain a minimum s-t cut of a graph given its
maximum flow, there is no known procedure that obtains a maximum flow from minimum s-t cut
more efficiently than just by computing the maximum flow from scratch.

2.3 Electrical Flows and the Nearly Linear Time Laplacian Solver

In this section, we review some basic facts about electrical flows in networks of resistors and
present a theorem that allows us to quickly approximate these flows. For an in-depth treatment of
the background material, we refer the reader to [7].

We begin by assigning a resistance re > 0 to each edge e ∈ E, and we collect these resistances
into a vector r ∈ IRm. For a given s-t flow f , we define its energy (with respect to r) to be

Er (f) :=
∑
e

ref
2
e .

The electrical flow of value F (with respect to r , from s to t) is the flow that minimizes Er (f)
among all s-t flows f of value F . This flow is easily shown to be unique, and we note that it need
not respect the capacity constraints.

From a physical point of view, the electrical flow of value one corresponds to the current that
is induced in G if we view it as an electrical circuit in which each edge e has resistance of re, and
we send one unit of current from s to t, say by attaching s to a current source and t to ground.
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2.3.1 Electrical Flows and Linear Systems

While finding the maximum s-t flow corresponds to solving an appropriate linear program, we
can compute the electrical flow by solving a system of linear equations. To do so, we introduce
the edge-vertex incidence matrix B , which is an n ×m matrix with rows indexed by vertices and
columns indexed by edges, such that

Bv,e =


1 if e ∈ E−(v),

−1 if e ∈ E+(v),

0 otherwise.

If we treat our flow f as a vector f ∈ IRm, where we use the orientations of the edges to
determine the signs of the coordinates, the vth entry of the vector BT f will be the difference
between the flow out of and the flow into vertex v. As such, the constraints that one unit of flow
is sent from s to t and that flow is conserved at all other vertices can be written as

Bf = χs,t ,

where χs,t is the vector with a 1 in the coordinate corresponding to s, a −1 in the coordinate
corresponding to t, and all other coordinates equal to 0.

We define the (weighted) Laplacian L of G (with respect to the resistances r) to be the n× n
matrix

L := BCBT ,

where C is the m×m diagonal matrix with C e,e = ce = 1/re. One can easily check that its entries
are given by

Lu,v =


∑

e∈E+(u)∪E−(u) ce if u = v,

−ce if e = (u, v) is an edge of G, and

0 otherwise.

Let R = C−1 be the diagonal matrix with Re,e = re. The energy of a flow f is given by

Er (f) :=
∑
e

ref
2
e = f TRf =

∥∥∥R1/2f
∥∥∥2
.

The electrical flow of value 1 thus corresponds to the vector f that minimizes
∥∥∥R1/2f

∥∥∥2
subject to

Bf = χs,t . If f is an electrical flow, it is well known that it is a potential flow, which means that
there is a vector φ ∈ IRV such that

f u,v =
φ(v)− φ(u)

ru,v
.

That is,
f = CBTφ = R−1BTφ.

Applying Bf = χs,t , we have Bf = BCBTφ = χs,t , and hence the vertex potentials are given
by

φ = L†χs,t ,
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where L† denotes the Moore-Penrose pseudo-inverse of L. Thus, the electrical flow f is given by
the expression

f = CBTL†χs,t .

This lets us rewrite the energy of the electrical flow of value 1 as

Er (f ) = f TRf =
(
χs,t

TL†
T
BC T

)
R
(
CBTL†χs,t

)
= χs,tL

†LL†χs,t = χs,t
TL†χs,t = φTLφ.

(1)

2.3.2 Effective s-t Resistance and Effective s-t Conductance

Our analysis will make repeated use of two basic quantities from the theory of electrical networks,
the effective s-t resistance and effective s-t conductance.

Let f be the electrical s-t flow of value 1, and let φ be its vector of vertex potentials. The
effective s-t resistance of G with respect to the resistances r is given by

Reff(r) = φ(s)− φ(t).

Using our linear algebraic description of the electrical flow and Equation (1), we have

Reff(r) = φ(s)− φ(t) = χs,t
Tφ = χs,t

TL†χs,t = Er (f ).

This gives us an alternative description of the effective s-t resistance as the energy of the electrical
flow of value 1.

It will sometimes be convenient to use the related notion of the effective s-t conductance of G
with respect to the resistances r , which we define by

Ceff(r) = 1/Reff(r).

We note that this is equal to the value of the electrical s-t flow in which φ(s)− φ(t) = 1.

2.3.3 Approximately Computing Electrical Flows

From the algorithmic point of view, the crucial property of the Laplacian L is that it is symmetric
and diagonally dominant, i.e., for any u,

∑
v 6=u |Lu,v| ≤ Lu,u. This allows us to use the result of

Koutis, Miller, and Peng [20], which builds on the work of Spielman and Teng [29] (see also [19, 18]),
to approximately solve our linear system in nearly-linear time. By rounding the approximate
solution to a flow, we can prove the following theorem (see Appendix A for a proof).

Theorem 2.3 (Fast Approximation of Electrical Flows). For any δ > 0, any F > 0, and any
vector r of resistances in which the ratio of the largest to the smallest resistance is at most R, we
can compute, in time Õ (m logR/δ), a vector of vertex potentials φ̃ and an s-t flow f̃ of value F
such that

a. Er (φ̃) ≤ (1 + δ)Er (f ), and Er (f̃) ≤ (1 + δ)Er (f) where f is the electrical s-t flow of value F ,

b. for every edge e, ∣∣∣ref2
e − ref̃2

e

∣∣∣ ≤ δ

2mR
Er (f),

where f is the true electrical flow.
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c.

φ̃(s)− φ̃(t) ≥
(

1− δ

12nmR

)
FReff(r).

We will refer to a flow meeting the above conditions as a δ-approximate electrical flow.

2.4 How the Resistance of an Edge Influences the Effective Resistance

In this section, we will study how changing the resistance of an edge affects the effective resistance
of the graph. This will be a key component of the analysis of our Õ

(
m4/3 · poly(1/ε)

)
algorithms.

We will make use of the following standard fact about effective conductance; we refer the reader to
Bollobas [7, Chapter IX.2, Corollary 5] for a proof.

Fact 2.4. For any G = (V,E) and any vector of resistances r ,

Ceff(r) = min
φ |φ(s)=1,
φ(t)=0

∑
(u,v)∈E

(φ(u)− φ(v))2

r(u,v)
.

Furthermore, the minimum is attained when φ is the vector of vertex potentials corresponding to
the electrical s-t flow in G (with respect to r) of value 1/Reff(r).

Corollary 2.5 (Rayleigh Monotonicity). If r′e ≥ re for all e ∈ E, then Reff(r ′) ≥ Reff(r).

Proof. For any φ, ∑
(u,v)∈E

(φ(u)− φ(v))2

r′(u,v)

≤
∑

(u,v)∈E

(φ(u)− φ(v))2

r(u,v)
,

so the minima of these expressions over possible values of φ obey the same relation, and thus
Ceff(r ′) ≤ Ceff(r). Inverting both sides of this inequality yields the desired result.

Our analysis of the Õ
(
m4/3

)
algorithm will require the following lemma, which gives a lower

bound on the change in effective resistance when the resistance of an edge increases.

Lemma 2.6. Let f be an electrical s-t flow on a graph G with resistances r . Suppose that some
edge h = (i, j) accounts for a β fraction of the total energy of f , i.e.,

f2
hrh = βEr (f).

For some γ > 0, define new resistances r ′ such that r′h = γrh, and r′e = re for all e 6= h. Then

Reff(r ′) ≥ γ

β + γ(1− β)
Reff(r).

In particular:

• If we “cut” the edge h by setting γ =∞, then

Reff(r ′) ≥ Reff(r)

1− β
.
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• If we slightly increase the effective resistance of the edge h by setting γ = (1 + ε) with ε ≤ 1,
then

Reff(r ′) ≥ 1 + ε

β + (1 + ε)(1− β)
Reff(r) ≥

(
1 +

εβ

2

)
Reff(r).

Proof. The assumptions of the theorem are unchanged if we multiply f by a constant, so we may
assume without loss of generality that f is the electrical s-t flow of value 1/Reff(r). If φ is the
vector of vertex potentials corresponding to f , this gives φ(s)− φ(t) = 1. Since adding a constant
to the potentials doesn’t change the flow, we may assume that φ(s) = 1 and φ(t) = 0. By Fact 2.4,

Ceff(r) =
∑

(u,v)∈E

(
φ(u)− φ(v)

)2
r(u,v)

=

(
φ(i)− φ(j)

)2
rh

+
∑

(u,v)∈E\{h}

(
φ(u)− φ(v)

)2
r(u,v)

.

The assumption that h contributes a β fraction of the total energy implies that, in the above
expression,

(φ(i)− φ(j))2

rh
= βCeff(r),

and thus ∑
(u,v)∈E\{h}

(φ(u)− φ(v))2

r(u,v)
= (1− β)Ceff(r).

We will obtain our bound on Ceff(r ′) by plugging the original vector of potentials φ into the
expression in Fact 2.4:

Ceff(r ′) = min
φ |φ(s)=1,
φ(t)=0

∑
(u,v)∈E

(
φ(u)− φ(v)

)2
r′(u,v)

≤
∑

(u,v)∈E

(
φ(u)− φ(v)

)2
r′(u,v)

=

(
φ(i)− φ(j)

)2
r′h

+
∑

(u,v)∈E\{h}

(
φ(u)− φ(v)

)2
r′(u,v)

=

(
φ(i)− φ(j)

)2
γrh

+
∑

(u,v)∈E\{h}

(
φ(u)− φ(v)

)2
r(u,v)

=
β

γ
Ceff(r) + (1− β)Ceff(r) = Ceff(r)

(
β + γ(1− β)

γ

)
.

Since Reff(r) = 1/Ceff(r) and Reff(r ′) = 1/Ceff(r ′), the desired result follows.

3 A Simple Õ
(
m3/2ε−5/2

)
-Time Flow Algorithm

Before describing our Õ
(
m4/3ε−3

)
algorithm, we will describe a simpler algorithm that finds a

(1− ε)-approximately maximum flow in time Õ
(
m3/2ε−5/2

)
. Our final algorithm will be obtained

by carefully modifying the one described here.
The algorithm will employ the multiplicative weights update method, a framework established

by Arora, Hazan and Kale [4] to encompass proof techniques exploited in [25, 30, 11, 13]. In our
setting, one can understand the multiplicative weights method as a way of taking an algorithm
that solves a flow problem very crudely and, by calling it repeatedly, converts it into an algorithm
that gives a good approximation to the maximum flow in G. The crude algorithm is called as a
black-box, so it can be thought of as an oracle that answers a certain type of query.
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In this section, we provide a self-contained description of the multiplicative weights method
when it is specialized to our setting. In Section 3.1, we will describe the requirements on the oracle,
give an algorithm that iteratively uses it to obtain a (1 − ε)-approximately maximum flow, and
state how the number of iterations required by the algorithm depends on the properties of the
oracle. In Section 3.2, we will describe how to implement the oracle using electrical flows. Finally,
in Section 3.3 we will provide a simple proof of the convergence bound set forth in Section 3.1.

3.1 Multiplicative Weights Method: From Electrical Flows to Maximum Flows

For an s-t flow f , we define the congestion of an edge e to be the ratio

congf (e) :=
|fe|
ue

of the flow on an edge to its capacity. In particular, an s-t flow is feasible if and only if congf (e) ≤ 1
for all e ∈ E.

The multiplicative weights method will use a subroutine that we will refer to as an (ε, ρ)-oracle.
This oracle will take as input a number F and a vector w of edge weights. For any F ≤ F ∗,
we know that there exists a way to route F units of flow in G so that all of the edge capacities
are respected. Our oracle will provide a weaker guarantee: When F ≤ F ∗, it will satisfy all of
the capacity constraints up to a multiplicative factor of ρ,3 and it will satisfy the average of these
constraints, weighted by the wi, up to a (much better) multiplicative factor of (1 + ε). When
F > F ∗, the oracle will either output an s-t flow satisfing the conditions above, or it will return
“fail”.

Formally, we will use the following definition:

Definition 3.1 ((ε, ρ) oracle). For ε > 0 and ρ > 0, an (ε, ρ) oracle is an algorithm that takes as
input an undirected, capacitated graph, a real number F > 0 and a vector w of edge weights with
we ≥ 1 for all e, and whose output satisfies:

1. If F ≤ F ∗, then it outputs an s-t flow f satisfying:

(i) |f | = F ;

(ii)
∑

ewecongf (e) ≤ (1 + ε)|w |1, where |w |1 :=
∑

ewe;

(iii) maxe congf (e) ≤ ρ.

2. If F > F ∗, then it either outputs a flow f satisfying conditions (i), (ii), (iii) or outputs
“fail”.

Our algorithm will be given a flow value F as an input. If F ≤ F ∗, it will return a flow of value
at least (1 − O(ε))F . If F > F ∗, it will either return a flow of value at least (1 − O(ε))F (which
may occur if F is only slightly greater than F ∗) or it will return “fail”. This allows us to find a
(1 − O(ε))-approximation of F ∗ using binary search. As outlined in Section 2.2, we can obtain a
crude bound B in time O(m+n log n) such that B ≤ F ∗ ≤ mB, so the binary search will only call
our algorithm O(log(m/ε)) times.

In Figure 1, we present our simple algorithm, which applies the multiplicative weights update
routine to approximate the maximum flow by calling an (ε, ρ)-flow oracle. The algorithm initializes

3Up to polynomial factors in 1/ε, the value of ρ will be Θ(
√
m) in this section, and Θ̃(m1/3) later in the paper.
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all of the weights to 1 and calls the oracle with these weights. It then multiplies the weight of each
edge e by (1 + ε

ρcongf i(e)). Note that if the congestion of an edge is high, say close to ρ, then its
weight will increase by a factor close to (1 + ε). On the other hand, if the flow on an edge is no
more than its capacity, then the new weight of the edge is essentially unchanged. This will put a
larger fraction of the weight on the violated constraints, so the oracle will be forced to return a
solution that comes closer to satisfying them (possibly at the expense of other edges). In the end,
the algorithm returns the average of all of the flows.

Input : A graph G = (V,E) with capacities {ue}e, a target flow value F , and an (ε, ρ)-oracle O
Output: Either a flow f̄ , or “fail” indicating that F > F ∗;

Initialize w0
e ← 1 for all edges e, and N ← 2ρ lnm

ε2

for i := 1, . . . , N do
Query O with edge weights given by w i−1 and target flow value F
if O returns “fail” then return “fail”
else

Let f i be the returned flow
wie ← wi−1e (1 + ε

ρcongfi(e)) for each e ∈ E
end

end

return f̄ ← (1−ε)2
(1+ε)N (

∑
i f

i)

Figure 1: Multiplicative-weights-update routine

The key point in the analysis of this algorithm is that the total weight on G does not grow too
quickly, due to the average congestion constraint on the flows returned by the oracle O . However, if
an edge e consistently suffers large congestion in a sequence of flows returned by O , then its weight
increases rapidly relative to the total weight. This will significantly penalize any further congestion
of that edge in subsequent flows. If this were to occur too many times, its weight would exceed the
total weight, which obviously cannot occur. In Section 3.3, we will prove the following theorem by
showing that our algorithm converges in 2ρ lnm/ε2 iterations.

Theorem 3.2 (Approximating Maximum Flows by Multiplicative Weights). For any 0 < ε < 1/2
and ρ > 0, given an (ε, ρ)-flow oracle with running time T (m, 1/ε, U), the algorithm in Figure 1
computes a (1 − O(ε))-approximately maximum flow in a capacitated, undirected graph in time
Õ
(
ρε−2 · T (m, 1/ε, U)

)
.

Note that the number of iterations of the algorithm above grows linearly with the value of ρ,
which we call the width of the oracle. Intuitively, this should be necessary because the final flow
across an edge e is equal to the average of the flows sent over it by all f i. If we send ρ · ue units of
flow across the edge e in some step, then we will need at least Ω(ρ) iterations to drop the average
to 1.4

4 Strictly speaking, it is possible that we could do better than this by sending a large amount of flow across the
edge in the opposite direction. However, nothing in our algorithm aims to obtain this kind of cancellation, so we
shouldn’t expect to be able to systematically exploit it.
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3.2 Constructing an Oracle of Width 3
√
m/ε Using Electrical Flows

Given Theorem 3.2, our problem is thus reduced to designing an efficient oracle that has a small
width. In this subsection, we give a simple Õ

(
m log(Umε−1)

)
time implementation of an (ε, 3

√
m/ε)

oracle for any 0 < ε < 1/2. By Theorem 3.2, this will immediately yield an Õ
(
m3/2ε−5/2

)
time

algorithm for finding an approximately maximum flow.
To build such an oracle, we set

re :=
1

u2
e

(
we +

ε|w |1
3m

)
(2)

for each edge e, and we use the procedure from Theorem 2.3 to approximate the electrical flow
that sends F units of flow from s to t in a network whose resistances are given by the re. The
pseudocode for this oracle is shown in Figure 2.

Input : A graph G = (V,E) with capacities {ue}e, a target flow value F , and edge weights {we}e
Output: Either a flow f̃ , or “fail” indicating that F > F ∗

re ← 1
u2
e

(
we + ε|w |1

3m

)
for each e ∈ E

Find an (ε/3)-approximate electrical flow f̃ using Theorem 2.3 on G with resistances r and target
flow value F

if Er (f̃) > (1 + ε)|w |1 then return “fail”
else return f̃

Figure 2: A simple implementation of an
(
ε, 3
√
m/ε

)
oracle

We now show that the resulting flow f̃ has the properties required by Definition 3.1. Since
|f̃ | = F by construction, we only need to demonstrate the bounds on the average congestion
(weighted by the we) and the maximum congestion. We will use the basic fact that electrical flows
minimize the energy of the flow. Our analysis will then compare the energy of f̃ with that of
a maximum flow. Intuitively, the we term in Equation (2) guarantees the bound on the average
congestion, while the ε|w |1/(3m) term guarantees the bound on the maximum congestion.

Suppose f∗ is a maximum flow. By its feasibility, congf∗(e) ≤ 1 for all e, so

Er (f∗) =
∑
e

(
we +

ε|w |1
3m

)(
f∗(e)

ue

)2

=
∑
e

(
we +

ε|w |1
3m

)(
congf∗(e)

)2
≤
∑
e

(
we +

ε|w |1
3m

)
=
(

1 +
ε

3

)
|w |1.

Since the electrical flow minimizes the energy, Er (f∗) is an upper bound on the energy of the
electrical flow of value F whenever F ≤ F ∗. In this case, Theorem 2.3 implies that the (ε/3)-

11



approximate electrical flow f̃ satisfies

Er (f̃) ≤
(

1 +
ε

3

)
Er (f∗) ≤

(
1 +

ε

3

)2
|w |1 ≤ (1 + ε) |w |1. (3)

This shows that the oracle will never output “fail” when F ≤ F ∗. It thus suffices to show that
the energy bound Er (f̃) ≤ (1 + ε)|w |1, which holds whenever the algorithm does not return “fail”,
implies the required bounds on the average and worst-case congestion. To see this, we note that
the energy bound implies that ∑

e

we

(
congf̃ (e)

)2
≤ (1 + ε) |w |1, (4)

and, for all e ∈ E,
ε|w |1
3m

(
congf̃ (e)

)2
≤ (1 + ε) |w |1. (5)

By the Cauchy-Schwarz inequality,(∑
e

wecongf̃ (e)

)2

≤ |w |1

(∑
e

we

(
congf̃ (e)

)2
)
, (6)

so inequality (4) implies ∑
e

wecongf̃ (e) ≤
√

1 + ε |w |1 < (1 + ε) |w |1, (7)

which is the required bound on the average congestion. Furthermore, inequality (5) and the fact
that ε < 1/2 implies that

congf̃ (e) ≤
√

3m(1 + ε)

ε
≤ 3
√
m/ε

for all e, which establishes the required bound on the maximum congestion. So our algorithm
implements an (ε, 3

√
m/ε)-oracle, as desired.

To bound the running time of this oracle, recall that all edge capacities lie between 1 and U ,
and compute

R = max
e,e′

re
re′
≤ U2 (1 + ε/3m) |w |1

(ε/3m) |w |1
= U2 3m+ ε

ε
≤ 4U2m/ε. (8)

This establishes an upper bound on the ratio of the largest resistance to the smallest re-
sistance. Thus, by Theorem 2.3, the running time of this implementation is Õ (m logR/ε) =
Õ (m log(Um/ε)). Combining this with Theorem 3.2 and the fact that we can assume that U is
polynomially bounded in m and 1

ε (see our discussion in Section 2.2), we have shown

Theorem 3.3. For any 0 < ε < 1/2, the algorithm in Figures 1 and 2 computes a (1 − ε)-
approximately maximum flow in Õ

(
m3/2ε−5/2

)
time.

12



3.3 The Convergence of Multiplicative Weights

In this section, we prove Theorem 3.2 by analyzing the multiplicative weights update algorithm
shown in Figure 1.

Our analysis will be based on the potential function µi := |w i|1. Clearly, µ0 = m and this po-
tential only increases during the course of the algorithm. It follows from condition (ii) of Definition
3.1 that if we run the (ε, ρ)-oracle O with F ≤ F ∗, then∑

e

wiecongf i+1(e) ≤ (1 + ε)|w i|1, for all i ≥ 1. (9)

By condition (iii) of Definition 3.1,

congf i(e) ≤ ρ, for all i ≥ 1 and every edge e. (10)

We start by upper bounding the total growth of µi thoughout the algorithm.

Lemma 3.4. For any i ≥ 0,

µi+1 ≤ µi exp

(
(1 + ε)ε

ρ

)
.

In particular, ‖wN‖1 = µN ≤ m exp
(

(1+ε)ε
ρ N

)
= nO(1/ε).

Proof. For any i ≥ 0, we have

µi+1 =
∑
e

wi+1
e =

∑
e

wie

(
1 +

ε

ρ
congf i+1(e)

)
=
∑
e

wie +
ε

ρ

∑
e

wiecongf i+1(e) ≤ µi +
(1 + ε)ε

ρ
|w i|1,

where the last inequality follows from (9). Thus, we can conclude that

µi+1 ≤ µi +
(1 + ε)ε

ρ
|w i|1 = µi

(
1 +

(1 + ε)ε

ρ

)
≤ µi exp

(
(1 + ε)ε

ρ

)
,

as desired. The lemma follows.

One of the consequences of the above lemma is that whenever we make a call to the oracle, the
total weight ‖w i‖1 is at most nO(1/ε).

Next, we bound the final weight wNe of a particular edge e with the congestion congf̄ (e) that
this edge suffers in our final flow f̄ .

Lemma 3.5. For every edge e and i ≥ 0,

wie ≥ exp

(1− ε)ε
ρ

i∑
j≥1

congfj (e)

 .

In particular, wNe ≥ exp
(

(1+ε)εN
(1−ε)ρ congf̄ (e)

)
.
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Proof. For any i ≥ 0, we have

wie =

i∏
j≥1

(
1 +

ε

ρ
congfj (e)

)
≥

i∏
j≥1

exp

(
(1− ε)ε

ρ
congfj (e)

)
,

where we used (10) and that for all ε and x in [0, 1], 1 + εx ≥ exp((1− ε)εx).
The lemma now follows since

wie ≥
i∏

j≥1

exp

(
(1− ε)ε

ρ
congfj (e)

)
= exp

(1− ε)ε
ρ

i∑
j≥1

congfj (e)

 ,

and for i = N

wNe ≥ exp

(1− ε)ε
ρ

N∑
j≥1

congfj (e)

 = exp

(
(1 + ε)εN

(1− ε)ρ
congf̄ (e)

)
.

Lemmas 3.4 and 3.5 imply that for every edge e,

m exp

(
(1 + ε)εN

ρ

)
≥ µN = |wN |1 ≥ wNe ≥ exp

(
(1 + ε)εN

(1− ε)ρ
congf̄ (e)

)
.

This implies that

congf̄ (e) ≤ 1− ε+
(1− ε)ρ lnm

(1 + ε)εN
= 1− ε+

ε(1− ε)
2(1 + ε)

≤ 1

for every edge e. Thus, we see that f̄ is a feasible s-t flow and, since each flow f i has value F , the
value |f̄ | of f̄ is (1−ε)2

(1+ε) F ≥ (1−O(ε))F for 1/2 > ε > 0, as desired.

4 An Õ
(
mn1/3ε−11/3

)
Algorithm for Approximate Maximum Flow

In this section, we modify our algorithm to run in time Õ
(
m4/3ε−3

)
. Then, in Section 4.4, we

combine this with the graph smoothing technique of Karger [15] to obtain an Õ
(
mn1/3ε−11/3

)
-time

algorithm.
For fixed ε, the algorithm in the previous section requires us to compute Õ

(
m1/2

)
electrical

flows, each of which takes time Õ (m), this leads to a running time of Õ
(
m3/2

)
. To reduce this time

bound to Õ
(
m4/3

)
, we will show how to find an approximately maximum flow while computing

only Õ
(
m1/3

)
electrical flows.

Our analysis of the oracle from Section 3.2 was fairly simplistic, and one might hope to improve
the running time of the algorithm by proving a tighter bound on the width. Unfortunately, the
graph in Figure 3 shows that our analysis was essentially tight. The graph consists of k parallel
paths of length k connecting s to t, along with a single edge e that directly connects s to t. The
max flow in this graph is k + 1. In the first call made to the oracle by the multiplicative weights
routine, all of the edges will have the same resistance. In this case, the electrical flow of value k+ 1
will send (k + 1)/2k units of flow along each of the k paths and (k + 1)/2 units of flow across e.
Since the graph has m = Θ(k2), the width of the oracle in this case is Θ(m1/2).
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k paths 
of length k

1 edge
e

s

t

Figure 3: A graph on which the electrical flow sends approximately
√
m units of flow across an

edge when sending the maximum flow F ∗ from s to t.

4.1 The Improved Algorithm

The above example shows that it is possible for the electrical flow returned by the oracle to exceed
the edge capacities by Θ(m1/2). However, we note that if one removes the edge e from the graph
in Figure 3, the electrical flow on the resulting graph is much better behaved, but the value of the
maximum flow is only very slightly reduced. This demonstrates a phenomenon that will be central
to our improved algorithm: while instances in which the electrical flow sends a huge amount of
flow over some edges exist, they are somewhat fragile, and they are often dramatically improved
by removing the bad edges.

This motivates us to modify our algorithm as follows. We’ll set ρ to be some value smaller than
the actual worst-case bound of Õ

(
m1/2

)
. (It will end up being Õ

(
m1/3

)
.) The oracle will begin

by computing an electrical flow as before. However, when this electrical flow exceeds the capacity
of some edge e by a factor greater than ρ, we’ll remove e from the graph and try again, keeping all
of the other weights the same. We’ll repeat this process until we obtain a flow in which all edges
flow at most a factor of ρ times their capacity (or some failure condition is reached), and we’ll use
this flow in our multiplicative weights routine. When the oracle removes an edge, it is added to a
set H of forbidden edges. These edges will be permanently removed from the graph, i.e., they will
not be included in the graphs supplied to future invocations of the oracle.

In Figures 4 and 5, we present the modified versions of the oracle and overall algorithm. We
have highlighted the parts that have changed from the simpler version shown in Figures 1 and 2.

4.2 Analysis of the New Algorithm

Before proceeding to a formal analysis of the new algorithm, it will be helpful to examine what is
already guaranteed by the analysis from Section 3, and what we’ll need to show to demonstrate
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Input : A graph G = (V,E) with capacities {ue}e, a target flow value F , edge weights {we}e,
and a set H of forbidden edges

Output: Either a flow f̄ and a set H of forbidden edges, or “fail” indicating that F > F ∗

ρ← 8m1/3 ln1/3m
ε

re ← 1
u2
e

(
we + ε|w |1

3m

)
for each e ∈ E \H

Find an approximate electrical flow f̃ using Theorem 2.3 on GH := (V,E \H) with resistances r ,

target flow value F , and parameter δ = ε/3.

if Er (f̃) > (1 + ε)|w |1 or s and t are disconnected in GH then return “fail”

if there exists e with congf̃ (e) > ρ then add one such e to H and start over

return f̃

Figure 4: The modified oracle O ′ used by our improved algorithm

Input : A graph G = (V,E) with capacities {ue}e, and a target flow value F ;
Output: Either a flow f̄ , or “fail” indicating that F > F ∗;

Initialize w0
e ← 1 for all edges e, H ← ∅ , ρ← 8m1/3 ln1/3m

ε , and N ← 2ρ lnm
ε2

for i := 1, . . . , N do
Query O ′ with edge weights given by w i−1, target flow value F , and forbidden edge set H

if O returns “fail” then return “fail”
else

Let f i be the returned answer
Replace H with the returned (augmented) set of forbidden edges

wie ← wi−1e (1 + ε
ρcongfi(e)) for each e ∈ E

end
end

return f̄ ← (1−ε)2
(1+ε)N (

∑
i f

i)

Figure 5: An improved (1−O(ε))-approximation algorithm for the maximum flow problem
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the algorithm’s correctness and bound its running time.
We first note that, by construction, the congestion of any edge in the flow f̃ returned by

the modified oracle from Figure 4 will be bounded by ρ. Furthermore, it enforces the bound
Er (f̃) ≤ (1 + ε)|w |1; by Equations (4), (6), and (7) in Section 3.2, this guarantees that f̃ will meet
the weighted average congestion bound required for a (ε, ρ)-oracle. So, as long as the modified
oracle always successfully returns a flow, it will function as an (ε, ρ)-oracle, and our analysis from
Section 3 will show that the multiplicative update scheme employed by our algorithm will yield an
approximately maximum flow after Õ (ρ) iterations.

Our problem is thus reduced to understanding the behavior of the modified oracle. To prove
correctness, we will need to show that whenever the modified oracle is called with F ≤ F ∗, it will
return some flow f̃ (as opposed to returning “fail”). To bound the running time, we will need to
provide an upper bound on the total number of electrical flows computed by the modified oracle
throughout the execution of the algorithm.

To this end, we will show the following upper bound on the cardinality |H| and the capacity
u(H) of the set of forbidden edges, whose proof we postpone until the next section:

Lemma 4.1. Throughout the execution of the algorithm,

|H| ≤ 30m lnm

ε2ρ2

and
u(H) ≤ 30mF lnm

ε2ρ3
.

If we plug in the value ρ = (8m1/3 ln1/3m)/ε used by the algorithm, Lemma 4.1 gives the
bounds |H| ≤ 15

32(m lnm)1/3 and u(H) ≤ 15
256εF < εF/12.

Given the above lemma, it is now straightforward to show the following theorem, which estab-
lishes the correctness and bounds the running time of our algorithm.

Theorem 4.2. For any 0 < ε < 1/2, if F ≤ F ∗ the algorithm in Figure 5 will return a feasible s-t
flow f̄ of value |f̄ | = (1−O(ε))F in time Õ

(
m4/3ε−3

)
.

Proof. To bound the running time, we note that, whenever we invoke the algorithm from Theorem
2.3 , we either advance the number of iterations or we increase the cardinality of H, so the number
of linear systems we solve is at most N + |H| ≤ N + 15

32(m lnm)1/3.
Equation (8) implies that the value of R from Theorem 2.3 is O((m/ε)O(1)), so solving each

linear system takes time at most Õ (m log 1/ε). This gives an overall running time of

Õ
((
N + 15

32(m lnm)1/3
)
m
)

= Õ
(
m4/3ε−3

)
,

as claimed.
It thus remains to prove correctness. For this, we need to show that if F ≤ F ∗, then the oracle

does not return “fail”, which would occur if we disconnect s from t or if Er (f̃) > (1 + ε)|w |1. By
Lemma 4.1 and the comment following it, we know that throughout the whole algorithm GH has
maximum flow value of at least F ∗ − εF/12 ≥ (1− ε/12)F and thus, in particular, we will never
disconnect s from t.

Furthermore, this implies that there exists a feasible flow in our graph of value (1− ε/12)F ,
even after we have removed the edges in H. There is thus a flow of value F in which every edge has
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congestion at most 1/ (1− ε/12). We can therefore use the argument from Section 3.2 (Equation (3)
and the lines directly preceding it) to show that we always have

Er (f̃) ≤ (1− ε/12)−2(1 + ε/3)2|w |1 ≤ (1 + ε)|w |1,

as required.

The above theorem allows us to apply the binary search strategy that we explained in Section 3.1.
This yields our main theorem:

Theorem 4.3. For any 0 < ε < 1/2, the algorithm in Figures 5 and 4 computes a (1 − ε)-
approximately maximum flow in Õ

(
m4/3ε−3

)
time.

4.3 The Proof of Lemma 4.1

All that remains is to prove the bounds given by Lemma 4.1 on the cardinality and capacity of H.
To do so, we will use the effective resistance of the circuits on which we compute electrical flows
as a potential function. The key insight is that we only cut an edge when its flow accounts for
a nontrivial fraction of the energy of the electrical flow, and that cutting such an edge will cause
a substantial change in the effective resistance. Combining this with a bound on how much the
effective resistance can change during the execution of the algorithm will guarantee that we won’t
cut too many edges.

Let r j be the resistances used in the jth electrical flow computed during the execution of the
algorithm5. If an edge e is in H when this electrical flow is computed, set rje = ∞. We define the
potential function

Φ(j) = Reff(r j) = Erj (frj ),

where frj is the (exact) electrical flow of value 1 arising from r j . Lemma 4.1 will follow easily from:

Lemma 4.4. Suppose that F ≤ F ∗ ≤ mF . Then:

1. Φ(j) never decreases during the execution of the algorithm.

2. Φ(1) ≥ m−4F−2.

3. If we add an edge to H after the computation of the (j − 1)−st electrical flow, then (1 −
ερ2

5m )Φ(j) > Φ(j − 1).

Proof. Proof of (1)

The only way that the resistance rje of an edge e can change is if the weight we is increased by
the multiplicative weights routine, or if e is added to H so that rje is set to ∞. As such, the
resistances are nondecreasing during the execution of the algorithm. By Rayleigh Monotonicity
(Corollary 2.5), this implies that the effective resistance is nondecreasing as well.

5 Note that the oracle can compute many electrical flows each time that it is called: it computes a new electrical
flow for each edge that it adds to H. So, r j is typically not the set of resistances arising from w j .
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Proof of (2)

In the first linear system, H = ∅ and r1
e = 1+ε/3

u2e
for all e ∈ E. Let (S, V \S) be the minimum s-t cut

of G. By the Max Flow-Min Cut Theorem ([12, 9]), we know that the capacity u(S) =
∑

e∈E(S) ue
of this cut is equal to F ∗. In particular, for all e ∈ E(S)

r1
e =

1 + ε/3

u2
e

≥ 1 + ε/3

F ∗2
>

1

F ∗2
.

As fr1 is an electrical s-t flow of value 1, it sends 1 unit of net flow across (S, V \S); so, some edge
e′ ∈ E(S) must have fr1(e′) ≥ 1/m. This gives

Φ(1) = Er1(fr1) =
∑
e∈E

fr1(e)2r1
e ≥ fr1(e′)2r1

e′ >
1

m2F ∗2
. (11)

Since F ∗ ≤ mF by assumption, the desired inequality follows.

Proof of (3)

Suppose we add the edge h to H after the j − 1st computation of an electrical flow. We will show
that h accounts for a substantial fraction of the total energy of the electrical flow with respect to
the resistances r j−1, and our result will then follow from Lemma 2.6.

Let w be the weights submitted to the oracle when the j − 1st electrical flow, f̃ , is computed.
Because we added h to H, we know that congf̃ (h) > ρ. Since our algorithm did not return “fail”

after computing this f̃ , we must have that

Erj−1(f̃) ≤ (1 + ε)|w |1. (12)

Using the definition of rj−1
h , the fact that congf̃ (h) > ρ, and inequality (12), we obtain:

f̃2
hr

j−1
h = f̃2

h

we + ε |w |13m

u2
e

≥ f̃2
h

ε|w |1
3mu2

e

=
ε

3m

(
f̃h
ue

)2

|w |1

=
ε

3(1 + ε)m
congf̃ (h)2 ((1 + ε)|w |1)

>
ερ2

3(1 + ε)m
Erj−1(f̃).

The above inequalities establish that edge h accounts for more than a ερ2

3(1+ε)m fraction of the

total energy Er i(f̃) of the flow f̃ .
The flow f̃ is the approximate electrical flow computed by our algorithm, but our argument

will require that an inequality like this holds in the exact electrical flow frj−1 . This is guaranteed
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by part b of Theorem 2.3, which, along with the facts that Er (f̃) ≥ Er (frj−1), ρ ≤ 1, and ε < 1/2,
gives us that

frj−1(h)2rj−1
h > f̃2

hr
j−1
h − ε/3

2mR
Er (frj−1) >

(
ερ2

3(1 + ε)m
− ε/3

2mR

)
Er (frj−1) >

ερ2

5m
Er (frj−1).

The result now follows from Lemma 2.6.

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. Let k be the cardinality of the set H at the end of the algorithm. Let j be
the number of approximate electrical flows computed by the algorithm, let r j be the resistances
used to compute the last electrical flow, let f̃ be the approximate electrical flow computed, and let
w be the weights submitted to the oracle when this flow was computed. Note that no edges are
added to H after the flow f̃ is computed.

As the energy required by an s-t flow scales with the square of the value of the flow,

Φ(j) =
Erj (frj )
F 2

≤ Erj (f̃)

F 2
. (13)

By the construction of our algorithm, it must have been the case that Erj (f̃) ≤ (1 + ε)|w |1. This
inequality together with inequality (13) and part 2 of Lemma 4.4 implies that

Φ(j) = Erj (frj ) ≤
Erj (f̃)

F 2
≤ (1 + ε)|w |1m4Φ(1).

Now, since k edges were added to H, parts 1 and 3 of Lemma 4.4, and Lemma 3.4 imply that(
1− ερ2

5m

)−k
≤ Φ(j)

Φ(1)
≤ (1 + ε)|w |1m4 ≤ (1 + ε)m4

(
m exp

(
(1+ε)ε
ρ N

))
≤ 2m5 exp(3ε−1 lnm),

where in the last inequality we used the fact that ε < 1/2. Rearranging the terms in the above
inequality gives us that

k ≤ − ln 2 + 5 lnm+ 3ε−1 lnm

ln
(

1− ερ2

5m

) < − 6ε−1 lnm

ln
(

1− ερ2

5m

) < 30m lnm

ε2ρ2
,

where we used the inequalities ε < 1/2 and log(1− c) < −c for all c ∈ (0, 1). This establishes our
bound on cardinality of the set H.

To bound the value of u(H), let us note that we add an edge e to H only when we send at least
ρue units of flow across it. But since we never flow more than F units across any single edge, we
have that ue ≤ F/ρ. Therefore, we may conclude that

u(H) ≤ |H|F
ρ
≤ 30mF lnm

ε2ρ3
,

as desired.
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4.4 Improving the Running Time to Õ
(
mn1/3ε−11/3

)
We can now combine our algorithm with existing methods to further improve its running time. In
[15] (see also [6]), Karger presented a technique, which he called “graph smoothing”, that allows
one to use random sampling to speed up an exact or (1 − ε)-approximate flow algorithm. More
precisely, his techniques yield the following theorem, which is implicit in [15] and stated in a similar
form in [6]:

Theorem 4.5 ([15, 6]). Let T (m,n, ε) be the time needed to find a (1− ε)-approximately maximum
flow in an undirected, capacitated graph with m edges and n vertices. Then one can obtain a
(1− ε)-approximately maximal flow in such a graph in time Õ

(
ε2m/n · T (Õ

(
nε−2

)
, n,Ω(ε))

)
.

By applying the above theorem to our Õ
(
m4/3ε−3

)
algorithm, we obtain our desired running

time bound:

Theorem 4.6. For any 0 < ε < 1/2, a (1 − ε)-approximately maximum flow can be computed in
Õ
(
mn1/3ε−11/3

)
time.

4.5 Approximating the Value of the Maximum s-t Flow in Time Õ
(
m+ n4/3ε−17/3

)
Given any weighted undirected graph G = (V,E,w) with n vertices and m edges, Benczúr and
Karger [5] showed that one can construct a graph G′ = (V,E′, w′) (called a sparsifier of G) on the
same vertex set in time Õ (m) such that |E′| = O(n log n/ε2) and the capacity of any cut in G′ is
between 1 and (1+ ε) times its capacity in G. Applying our algorithm from Section 4 to a sparsifier
of G gives us an algorithm for (1 − ε)-approximating the value of the maximum s-t flow on G in
time Õ

(
m+ n4/3ε−17/3

)
.

We note that this only allows us to approximate the value of the maximum s-t flow on G. It
gives us a flow on G′, not one on G. We do not know how to use an approximately maximum s-t
flow on G′ to obtain one on G in less time than would be required to compute a maximum flow in
G from scratch using the algorithm from Section 4.

For this reason, there is a gap between the time we require to find a maximum flow and the time
we require to compute its value. We note, however, that this gap will not exist for the minimum s-t
cut problem, since an approximately minimum s-t cut on G′ will also be an approximately minimum
s-t cut on G. We will present an algorithm for finding such a cut in the next section. By the Max
Flow-Min Cut Theorem, this will provide us with an alternate algorithm for approximating the
value of the maximum s-t flow. It will have a slightly better dependence on ε, which will allow us
to approximate the value of the maximum s-t flow in time Õ

(
m+ n4/3ε−16/3

)
.

5 A Dual Algorithm for Finding an Approximately Minimum s-t
Cut in Time Õ

(
m+ n4/3ε−16/3

)
In this section, we will describe a dual perspective that yields an even simpler algorithm for com-
puting an approximately minimum s-t cut. Rather than using electrical flows to obtain a flow, it
will use the electrical potentials to obtain a cut.

The algorithm will eschew the oracle abstraction and multiplicative weights machinery. Instead,
it will just repeatedly compute an electrical flow, increase the resistances of edges according to the
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amount flowing over them, and repeat. It will then use the electrical potentials of the last flow
computed to find a cut by picking a cutoff and splitting the vertices according to whether their
potentials are above or below the cutoff.

The algorithm is shown in Figure 6. It finds a (1 + ε)-approximately minimum s-t cut in time
Õ
(
m4/3ε−8/3

)
; applying it to a sparsifier will give us:

Theorem 5.1. For any 0 < ε < 1/7, we can find a (1 + ε)-approximately minimum s-t cut in
Õ
(
m+ n4/3ε−16/3

)
time.

We note that, in this algorithm, there is no need to deal explicitly with edges flowing more than
ρ, maintain a set of forbidden edges, or average the flows from different steps. We will separately
study edges with very large flow in our analysis, but the algorithm itself avoids the complexities
that appeared in the improved flow algorithm described in Section 4.

We further note that the update rule is slightly modified from the one that appeared in the
flow algorithm. It guarantees that the effective resistance increases substantially when some edge
flows more than ρ, without having to explicitly cut it. Our previous rule allowed the weight (but
not resistance) of an edge to constitute a very small fraction of the total weight; in this case, a
significant multiplicative increase in the weight of an edge may not produce a substantial change
in the effective resistance of the graph.

Input : A graph G = (V,E) with capacities {ue}e, and a target flow value F
Output: A cut (S, V \ S)

Initialize w0
e ← 1 for all edges e, ρ← 3m1/3ε−2/3, N ← 5ε−8/3m1/3 lnm, and δ ← ε2.

for i := 1, . . . , N do
Find an approximate electrical flow f̃ i−1 and potentials φ̃ using Theorem 2.3 on G with

resistances ri−1e =
wi−1

e

u2
e

, target flow value F , and parameter δ.

µi−1 ←
∑
e w

i−1
e

wie ← wi−1e + ε
ρcongf̃i−1(e)wi−1e + ε2

mρµ
i−1 for each e ∈ E

Scale and translate φ̃ so that φ̃(s) = 1 and φ̃(t) = 0

Let Sx = {v ∈ V | φ̃(v) > x}
Set S to be the set Sx that minimizes the capacity of the cut (Sx, V \ Sx)
If the capacity of (S, V \ S) is less than F/(1− 7ε), return (S, V \ S).

end
return “fail”“

Figure 6: A dual algorithm for finding an s-t cut

5.1 An Overview of the Analysis

To analyze this algorithm, we will track the total weight placed on the edges crossing some minimum
cut. The basic observation for our analysis is that the same amount of net flow must be sent across
every cut, so edges in small cuts will tend to have higher congestion than edges in large cuts.
Since our algorithm increases the weight of an edge according to its congestion, this will cause our
algorithm to concentrate a larger and larger fraction of the total weight on the small cuts of the
graph. This will continue until almost all of the weight is concentrated on approximately minimum
cuts.
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Of course, the edges crossing a minimum cut will also cross many other (likely much larger)
cuts, so we certainly can’t hope to obtain a graph in which every edge crossing a large cut has
negligible weight. In order to formalize the above argument, we will thus need some good way to
measure the extent to which the weight is “concentrated on approximately minimum cuts”.

In Section 5.2, we will show how to use effective resistance to formulate such a notion. In
particular, we will show that if we can make the effective resistance large enough then we can find
a cut of small capacity. In Section 5.3, we will use an argument like the one described above to
show that the resistances produced by the algorithm in Figure 6 converge after N = Õ

(
m1/3ε−8/3

)
steps to one that meets such a bound.

5.2 Cuts, Electrical Potentials, and Effective Resistance

During the algorithm, we scale and translate the potentials of the approximate electrical flow so
that φ̃(s) = 1 and φ̃(t) = 0. We then produce a cut by choosing x ∈ [0, 1] and dividing the graph
into the sets S = {v ∈ V | φ̃(v) > x} and V \ S = {v ∈ V | φ̃(v) ≤ x}. The following lemma upper
bounds the capacity of the resulting cut in terms of the electrical potentials and edge capacities.

Lemma 5.2. Let φ̃ be as above. Then there is a cut Sx of capacity at most∑
(u,v)∈E

|φ̃(u)− φ̃(v)|u(u,v). (14)

Proof. Consider choosing x ∈ [0, 1] uniformly at random. The probability that an edge (u, v) is cut
is precisely |φ̃(u)− φ̃(v)|. So, the expected capacity of the edges in a random cut is given by (14),
and so there is a cut of capacity at most (14).

Now, suppose that one has a fixed total amount of resistance µ to distribute over the edges of
a cut of size F , and that every other edge is assigned resistance zero. It is not difficult to see that
the maximum possible effective resistance between s and t in such a case is µ

F 2 , and that this is
achieved when one puts a resistance of µ

F on each of the edges. This suggests the following lemma,
which bounds the quantity in Lemma 5.2 in terms of the effective resistance and the total resistance
(appropriately weighted when the edges have non-unit capacities):

Lemma 5.3. Let µ =
∑

e u
2
ere, and let the effective s-t resistance of G with edge resistances given

by r be Reff(r). Let φ be the potentials of the electrical s-t flow, scaled to have potential drop 1
between s and t. Then ∑

e∈E
φ(e)ue ≤

√
µ

Reff(r)
.

If, φ̃ is an approximate electrical potential returned by the algorithm of Theorem 2.3 when run with
parameter δ ≤ 1/3, re-scaled to have potential difference 1 between s and t, then∑

e∈E
φ̃(e)ue ≤ (1 + 2δ)

√
µ

Reff(r)
.

Proof. By Fact 2.4, the rescaled true electrical potentials correspond to a flow of value 1/Reff(r)
and ∑

e

φ(e)2

re
=

1

Reff(r)
.
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So, we can apply the Cauchy-Schwarz inequality to prove

∑
e

φ(e)ue ≤
√∑

e

φ(e)2

re

∑
e

u2
ere

=

√
µ

Reff(r)
.

When we call the algorithm implicit in Theorem 2.3, we should specify the value of the flow,
even though it will become immaterial after we normalize the potential drop. Let’s assume the
value is F = 1. By part a of Theorem 2.3, the energy of the potential returned is at most (1 + δ)
times the energy of the electrical flow of value 1. By part c of that theorem, the potential drop
between s and t of the potential returned at least (1 − δ/12nmR) times the potential drop of the
electrical flow of value 1. So, if φ̃ is the result of rescaling the potential returned to have potential
drop 1 between s and t, then it will have energy

∑
e

φ̃(e)2

re
≤ 1 + δ

1− δ/12nmR

1

Reff(r)
≤ (1 + 2δ)

1

Reff(r)
,

as δ ≤ 1/3. The rest of the analysis follows from another application of Cauchy-Schwarz.

5.3 The Proof that the Dual Algorithm Finds an Approximately Minimum Cut

We’ll show that if F ≥ F ∗ and ε < 1/7, then within N = 5ε−8/3m1/3 lnm iterations, the algorithm
in Figure 6 will produce a set of resistances r i such that

Reff(r i) ≥ (1− 7ε)
µi

F 2
. (15)

Once such a set of resistances has been obtained, Lemmas 5.2 and 5.3 tell us that the best potential
cut of φ̃ will have capacity at most

1 + 2δ√
1− 7ε

F ≤ 1

1− 7ε
F, (as ε < 1/7).

The algorithm will then return this cut.
Let C be the set of edges crossing some minimum cut in our graph. Let uC = F ∗ denote the

capacity of the edges in C. We will keep track of two quantities: the weighted geometric mean of
the weights of the edges in C,

νi =

(∏
e∈C

(
wie
)ue)1/uC

,

and the total weight
µi =

∑
e

wie =
∑
e

rieu
2
e

of the edges of the entire graph. Clearly νi ≤ maxe∈C w
i
e. In particular,

νi ≤ µi
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for all i.
Our proof that the effective resistance cannot remain small for too many iterations will be similar

to our analysis of the flow algorithm in Section 4. To obtain a contradiction, we will examine what
happens if Reffist ≤ (1− 7ε) µ

i

F 2 for each 1 ≤ i ≤ N . We will show that, under this assumption:

1. The total weight µi doesn’t get too large over the course of the algorithm [Lemma 5.4].

2. The quantity νi increases significantly in any iteration in which no edge has congestion more
than ρ [Lemma 5.5]. Since µi doesn’t get too large, and νi ≤ µi, this will not happen too
many times.

3. The effective resistance increases significantly in any iteration in which some edge has con-
gestion more than ρ [Lemma 5.6]. Since µi does not get too large, and we are assuming
that the effective resistance is at most (1− 7ε) µ

i

F 2 , this cannot happen too many times.

The combined bounds on the number of iterations of the algorithm from 2 and 3 will be less than
N , which will yield a contradiction.

Lemma 5.4. For each i ≤ N such that Reff(r i) ≤ (1− 7ε) µ
i

F 2 ,

µi+1 ≤ µi exp

(
ε(1− 2ε)

ρ

)
.

So, if for all i ≤ N we have Reff(r i) ≤ (1− 7ε) µ
i

F 2 , then

µN ≤ µ0 exp

(
ε(1− 2ε)

ρ
N

)
. (16)

Proof. If Reff(r i) ≤ (1− 7ε) µ
i

F 2 then the electrical flow f of value F has energy

F 2Reff(r i) =
∑
e

(f ie)
2r2
e =

∑
e

congf i(e)
2wie ≤ (1− 7ε)µi.

By Theorem 2.3, the approximate electrical flow f̃ has energy at most (1 + δ) times the energy of
f i. So, ∑

e

congf̃ i(e)
2wie ≤ (1 + δ)(1− 7ε)µi ≤ (1− 6ε)µi (as δ = ε2 and ε < 1/7).

Applying the Cauchy-Schwarz inequality, we find∑
e

congf̃ i(e)w
i
e ≤

√∑
e

wie

√∑
e

congf̃ i(e)
2wie ≤

√
1− 6εµi ≤ (1− 3ε)µi.

Now we can compute

µi+1 =
∑
e

wi+1
e

=
∑
e

wie +
ε

ρ

∑
e

congf i(e)w
i
e +

ε2

ρ
µi

≤
(

1 +
ε(1− 2ε)

ρ

)
µi

≤ µi exp

(
ε(1− 2ε)

ρ

)
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as desired.

Lemma 5.5. If congf i(e) ≤ ρ for all e, then

νi+1 ≥ exp

(
ε(1− ε)

ρ

)
νi.

Proof. To bound the increase of νi+1 over νi, we use the inequality

(1 + εx) ≥ exp (ε(1− ε)x) , (17)

which holds for ε and x between 0 and 1. We apply this inequality with x = congf̃ i(e)/ρ. As f̃ i is

a flow of value F and C is a cut,
∑

e∈C

∣∣∣f̃ ie∣∣∣ ≥ F . We now compute

νi+1 =

(∏
e∈C

(
wt+1
e

)ue)1/uC

≥

(∏
e∈C

(
wie

(
1 +

ε

ρ
congf̃ i(e)

))ue)1/uC

= νi

(∏
e∈C

(
1 +

ε

ρ
congf̃ i(e)

)ue)1/uC

≥ νi exp

(
1

uC

∑
e∈C

ue
ε(1− ε)

ρ
congf̃ i(e)

)

= νi exp

(
1

uC

∑
e∈C

ε(1− ε)
ρ

∣∣∣f̃ ie∣∣∣
)

≥ νi exp

(
1

uC

ε(1− ε)
ρ

F

)
≥ νi exp

(
ε(1− ε)

ρ

)
,

as F ≥ F ∗ = uC .

Lemma 5.6. If Reff(r j) ≤ (1 − 7ε) µ
j

F 2 for all j and there exists some iteration i and edge e such
that congf̃ i(e) > ρ, then

Reff(r i+1) ≥ exp

(
ε2ρ2

4m

)
Reff(r i).

Proof. We first show by induction that
wie ≥

ε

m
µi.
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If i = 0 we have 1 ≥ ε. For i > 0, we have

wi+1
e ≥ wie +

ε2

mρ
µi

≥
(
ε

m
+

ε2

mρ

)
µi

=
ε

m

(
1 +

ε

ρ

)
µi

≥ ε

m
exp

(
ε(1− ε)

ρ

)
(by applying (17) with x = 1/ρ)

≥ ε

m
exp

(
ε(1− 2ε)

ρ

)
µi

≥ ε

m
µi+1,

by Lemma 5.4.
We now show that an edge e for which congf̃ i(e) ≥ ρ contributes a large fraction of the energy

to the true electrical flow of value F . By the assumptions of the lemma, the energy of the true
electrical flow of value F is

F 2Reff(r i) ≤ (1− 7ε)µi.

On the other hand, the energy of the edge e in the approximate electrical flow is

(f̃ ie)
2rie = congf̃ i(e)

2we ≥ ρ2 ε

m
µi.

As a fraction of the energy of the true electrical flow, this is at least

1

1− 7ε

ρ2ε

m
=

9

(1− 7ε)ε1/3m1/3
.

By part b of Theorem 2.3, the fraction of the energy that e accounts for in the true flow is at least

9

(1− 7ε)ε1/3m1/3
− ε2

2mR
≥ 9

ε1/3m1/3
=
ρ2ε

m
(as ε < 1/7 and R ≥ 1).

As

wi+1
e ≥ wie

(
1 +

ε

ρ
congf̃ i(e)

)
≥ (1 + ε)wie,

we have increased the weight of edge e, and therefore its resistance, by a factor of at least (1 + ε).
So, by Lemma 2.6,

Reff(r i+1)

Reff(r i)
≥
(

1 +
ρ2ε2

2m

)
≥ exp

(
ρ2ε2

4m

)
,

as ρ2ε2/2m ≤ 1 and 1 + x ≥ exp(x/2) for x ≤ 1.

We now combine these lemmas to obtain our main bound:

Lemma 5.7. For ε < 1/7 and F ≥ F ∗, after N iterations, the algorithm in Figure 6 will produce
a set of resistances such that Reff(r i) ≥ (1− 7ε) µ

i

F 2 .
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As observed at the beginning of this section, our main result follows by combining this lemma
with with Lemmas 5.2 and 5.3.

Theorem 5.8. On input ε < 1/7, the algorithm in Figure 6 runs in time Õ
(
m4/3ε−8/3

)
. If F ≥ F ∗,

then it returns a cut of capacity at most F/(1 − 7ε), where F ∗ is the minimum capacity of an s-t
cut.

To use this algorithm to find a cut of approximately minimum capacity, one should begin as
described in Section 2.2 by crudely approximating the minimum cut, and then applying the above
algorithm in a binary search. Crudely analyzed, this incurs a multiplicative overhead of O(logm/ε).

Proof of Lemma 5.7. Suppose as before that Reff(r i) ≤ (1−7ε) µ
i

F 2 for all 1 ≤ i ≤ N . By Lemma 5.4
and the fact that µ0 = m, the total weight at the end of the algorithm is bounded by

µN ≤ µ0 exp

(
ε(1− 2ε)

ρ
N

)
= m exp

(
ε(1− 2ε)

ρ
N

)
. (18)

Let A ⊆ {1, . . . , N} be the set of i for which congf̃ i(e) ≤ ρ for all e, and let B ⊆ {1, . . . , N}
be the set of i for which there exists an edge e with congf̃ i(e) > ρ. Let a = |A| and b = |B|, and
note that a+ b = N . We will obtain a contradiction by proving bounds on a and b that add up to
something less than N .

We begin by bounding a. By applying Lemma 5.5 to all of the steps in A and noting that νi

never decreases during the other steps, we obtain

νN ≥ exp

(
ε(1− ε)

ρ
a

)
ν0 = exp

(
ε(1− ε)

ρ
a

)
(19)

Since νN ≤ µN , we can combine inequalities (18) and (19) to obtain

exp

(
ε(1− ε)

ρ
a

)
≤ m exp

(
ε(1− 2ε)

ρ
N

)
.

Taking logs of both sides and solving for a yields

ε(1− ε)
ρ

a ≤ ε(1− 2ε)

ρ
N + lnm,

from which we obtain

a ≤ 1− 2ε

1− ε
N +

ρ

ε(1− ε)
lnm ≤ (1− ε)N +

ρ

ε(1− ε)
lnm < (1− ε)N +

7ρ

6ε
lnm. (20)

We now use a similar argument to bound b. By applying Lemma 5.6 to all of the steps in B
and noting that Reff(r i) never decreases during the other steps, we obtain

Reff(rN ) ≥ exp

(
ε2ρ2

4m
b

)
Reff(r0) ≥ exp

(
ε2ρ2

4m
b

)
1

m2F ∗2
≥ exp

(
ε2ρ2

4m
b

)
1

m2F 2
,

where the second inequality applies the bound Reff(r0) ≥ 1/(m2F ∗2), which follows from an argu-
ment like the one used to justify inequality (11). Using our assumption that Reff(rN ) ≤ (1−7ε)µ

N

F 2

and the bound on µN from inequality (18), this gives us

exp

(
ε2ρ2

4m
b

)
1

m2F 2
≤ 1− 7ε

F 2
m exp

(
ε(1− 2ε)

ρ
N

)
.
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Taking logs and rearranging terms gives us

b ≤ 4m(1− 2ε)

ερ3
N +

4m

ε2ρ2
ln
(
(1− 7ε)m3

)
<

4m

ερ3
N +

12m

ε2ρ2
lnm. (21)

Adding the inequalities in (20) and (21), grouping terms, and plugging in the values of ρ and N ,
yields

N = a+ b <

(
(1− ε) +

4m

ερ3

)
N +

(
7ρ

6ε
+

12m

ε2ρ2

)
lnm

=

(
(1− ε) +

4m

ε(27mε−2)

)
(5ε−8/3m1/3 lnm) +

(
7m1/3ε−2/3

2ε
+

12m

ε2(9m2/3ε−4/3)

)
lnm

=

(
(1− ε) +

4ε

27

)
(5ε−8/3m1/3 lnm) +

(
7m1/3

2ε5/3
+

12m1/3

9ε2/3

)
lnm

=
5m1/3

ε8/3
lnm−

(
41

54
− 12ε

9

)
m1/3

ε5/3
lnm

<
5m1/3 lnm

ε8/3
= N.

This is our desired contradiction, which completes the proof.
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[5] A. A. Benczúr and D. R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In STOC’96:
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A Computing Electrical Flows

Proof of Theorem 2.3. Without loss of generality, we may scale the resistances so that they lie
between 1 and R. This gives the following relation between F and the energy of the electrical s-t
flow of value F :

F 2

m
≤ Er (f ) ≤ F 2Rm. (22)

Let L be the Laplacian matrix for this electrical flow problem. Note that all off-diagonal entries
of L lie between −1 and −1/R. Recall that the vector of optimal vertex potentials φ of the electrical
flow is the solution to the following linear system:

Lφ = Fχs,t

For any ε > 0, the algorithm of Koutis, Miller and Peng [20], using the low-stretch trees of
Abraham and Neiman [1], provides in time O

(
m logm log logm log ε−1

)
a set of potentials φ̂ such

that ∥∥∥φ̂− φ
∥∥∥
L
≤ ε ‖φ‖L ,

where

‖φ‖L
def
=

√
φTLφ.
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Note also that
‖φ‖2L = Er (f ),

where f is the potential flow corresponding to φ. Now, let f̂ be the potential flow corresponding
to φ̂,

f̂ = CBT φ̂.

The flow f̂ is not necessarily an s-t flow because φ̂ only approximately satisfies the linear system.
The amount of flow entering and leaving s and t might not exactly equal F , and a small amount of
flow can enter or leave every other vertex. In other words, f̂ may not satisfy Bf̂ = Fχs,t . Below,
we will compute an approximation f̃ of f̂ that satisfies Bf̃ = Fχs,t .

But first, we first observe that the energy of f̂ is not much more than the energy of f . We have∥∥∥φ̂∥∥∥2

L
= Er (f̂ ),

and by the triangle inequality∥∥∥φ̂∥∥∥
L
≤ ‖φ‖L +

∥∥∥φ̂− φ
∥∥∥
L
≤ (1 + ε) ‖φ‖L .

So
Er (f̂ ) ≤ (1 + ε)2Er (f ).

We now set φ̃ = φ̂ to be the potentials returned by the algorithm. We will set ε < δ/3, so that
these potentials satisfy the requirements of part a.

To see that the flow f̂ does not flow too much into or out of any vertex other than s and t, note
that the flows into and out of vertices are given by the vector

i ext
def
= Bf̂ .

Note that the sum of the entries in i ext is zero. We will produce an s-t flow of value F by adding
a flow to f̂ to obtain a flow f̃ for which

Bf̃ = Fχs,t .

Let η be the maximum discrepancy between i ext and Fχs,t :

η
def
= ‖i ext − Fχs,t‖∞ .

We have

η ≤ ‖i ext − Fχs,t‖2 =
∥∥∥Lφ̂− Lφ

∥∥∥
2
≤ ‖L‖2

∥∥∥φ̂− φ
∥∥∥
L
≤ 2n

∥∥∥φ̂− φ
∥∥∥
L
≤ 2nε

√
Er (f ).

It is an easy matter to produce an s-t flow f̃ that differs from f̂ by at most nη on each edge. For
example, one can do this by solving a flow problem in a spanning tree of the graph. Let T be any
spanning tree of the graph G. We now construct a flow in T with the demands Fχs,t(u)− i ext(u)
at each vertex u. As the sum of the positive demands in this flow is at most nη, one can find such
a flow in which every edge flows at most nη. Moreover, since the edges of T are a tree, one can
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find the flow in linear time. We obtain the flow f̃ by adding this flow to f̂ . The resulting flow is
an s-t flow of value F . Moreover, ∥∥∥f̂ − f̃

∥∥∥
∞
≤ nη.

To ensure that we get a good approximation of the electrical flow, we will set

ε =
δ

14n2mR3/2
.

To check that f̃ satisfies the requirements of part a, observe that

Er (f̃ ) =
∑
e

ref̃
2
e

≤
∑
e

re(f̂ e + nη)2

≤
∑
e

re

(
(1 + δ/2)f̂

2

e + (1 + 2/δ)(nη)2
)

≤ (1 + δ/2)(1 + ε)2Er (f ) + (1 + 2/δ)4n4ε2Er (f )

≤ (1 + δ/2)(1 + ε)2Er (f ) + (δ/3)Er (f ) (by our choice of ε)

≤ (1 + δ)Er (f ),

as desired.
To establish part b, note that

‖φ‖L =
∑
e

ref
2
e

and so ∑
e

re(fe − f̂e)2 =
∥∥∥φ− φ̂

∥∥∥2

L
≤ ε2Er (f ).

We also have∑
e

re(fe + f̂e)
2 =

∥∥∥φ + φ̂
∥∥∥2

L
≤
(

2 ‖φ‖L +
∥∥∥φ− φ̂

∥∥∥
L

)2
≤ (2 + ε)2 ‖φ‖2L .

We may now bound
∣∣∣ref2

e − ref̂2
e

∣∣∣ by

∣∣∣ref2
e − ref̂2

e

∣∣∣2 ≤ ∥∥∥φ− φ̂
∥∥∥2

L

∥∥∥φ + φ̂
∥∥∥2

L

= re

(
fe − f̂e

)2
re

(
fe + f̂e

)2

≤ ε2Er (f )(2 + ε)2Er (f ),

which implies ∣∣∣ref2
e − ref̂2

e

∣∣∣ ≤ ε(2 + ε)Er (f ).
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It remains to bound
∣∣∣ref̂2

e − ref̃2
e

∣∣∣. We begin by recalling that we can assume all resistances lie
between 1 and R. So, ∣∣∣ref̂2

e − ref̃2
e

∣∣∣ =
√
re

∣∣∣f̂e − f̃e∣∣∣√re ∣∣∣f̂e + f̃e

∣∣∣
≤
√
R
∣∣∣f̂e − f̃e∣∣∣√re ∣∣∣f̂e + f̃e

∣∣∣
≤
√
Rnη
√
re

∣∣∣f̂e + f̃e

∣∣∣ .
We bound the right-hand part of the right-hand expression by

√
re

∣∣∣f̂e + f̃e

∣∣∣ ≤ 2
√
re

∣∣∣f̂e∣∣∣+
√
re

∣∣∣f̂e − f̃e∣∣∣
≤ 2

√
Er (f̂) +

√
renη

≤ 2(1 + ε)
√
Er (f ) + 2

√
ren

2ε
√
Er (f )

≤ 3
√
Er (f ),

by our choice of ε.
So, ∣∣∣ref̂2

e − ref̃2
e

∣∣∣ ≤ √Rnη√re ∣∣∣f̂e + f̃e

∣∣∣
≤ 3
√
Rnη

√
Er (f )

≤ 6ε
√
Rn2Er (f ).

Putting these inequalities together we find∣∣∣ref2
e − ref̃2

e

∣∣∣ ≤ Er (f )
(
ε(2 + ε) + 6ε

√
Rn2

)
≤ Er (f )

δ

2mR
,

by our choice of ε.
To prove part c, first recall that

Lφ = Fχs,t

and that
Er (f ) = F 2Reff(r).

So,

ε2 ‖φ‖2L ≥
∥∥∥φ− φ̃

∥∥∥2

L

=
(
φ− φ̃

)T
L
(
φ− φ̃

)
=
∥∥∥φ̃∥∥∥2

L
+ ‖φ‖2L − 2φTLφ̃

= ‖φ‖2L +
∥∥∥φ̃∥∥∥2

L
− 2FχTs,tφ̃.
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Thus,

2FχTs,tφ̃ ≥ ‖φ‖
2
L +

∥∥∥φ̃∥∥∥2

L
− ε2 ‖φ‖2L

≥
(
1 + (1− ε)2 − ε2

)
‖φ‖2L

= (2− 2ε) ‖φ‖2L
= (2− 2ε)F 2Reff(r).

Part c now follows from φ̃(s)− φ̃(t) = χTs,tφ̃.
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