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Abstract

In this paper, we study a set of combinatorial optimization problems on weighted graphs: the shortest
path problem with negative weights, the weighted perfect bipartite matching problem, the unit-capacity
minimum-cost maximum flow problem and the weighted perfect bipartite b-matching problem under
the assumption that kbk1 = O(m). We show that each one of these four problems can be solved in
˜O(m10/7

logW ) time, where W is the absolute maximum weight of an edge in the graph, which gives the
first in over 25 years polynomial improvement in their sparse-graph time complexity.

At a high level, our algorithms build on the interior-point method-based framework developed by
Mądry (FOCS 2013) for solving unit-capacity maximum flow problem. We develop a refined way to
analyze this framework, as well as provide new variants of the underlying preconditioning and perturba-
tion techniques. Consequently, we are able to extend the whole interior-point method-based approach to
make it applicable in the weighted graph regime.

1 Introduction

In 2013, Mądry [24] put forth an algorithm for the maximum flow and maximum-cardinality bipartite match-
ing problems that improved over a long standing O(n3/2

) running time barrier for sparse graphs. Specifically,
he presented an ˜O(m10/7

) time algorithm for computing maximum flow in a unit capacity network – which
implies an ˜O(m10/7

) time algorithm for the maximum-cardinality bipartite matching problem as well. The
core of his approach is a new path-following interior-point type algorithm for solving a certain “bipartite
b-matching” problem. At a high level, this algorithm uses electrical flow computations to improve the main-
tained primal dual solution and move it along the so-called central path, i.e., a set of primal dual solutions in
which every edge contributes approximately the same amount to the duality gap. As Mądry has shown, one
can use this framework to establish an O(m3/7

) bound on the number of such electrical flow computations
needed to compute a (near-) optimal solution to the considered problem and thus to improve upon the generic
worst-case O(

p
m) bound that all the previous interior-point-method-based algorithms provided. The key

ingredient needed to obtaining this improved bound was a technique for perturbing and preconditioning
the intermediate solutions that emerge during the computations. Unfortunately, the technique [24] used in
was inherently unable to cope with large capacity or any weights on edges. In fact, it did not provide any
meaningful result for the unit-capacity minimum cost maximum flow problem even when all the edge weights
were equal to 1. Consequently, it remains an open question whether a similar running time improvement can
be achieved for either: (a) non-unit capacity networks; or (b) weighted variants of the unit-capacity graph
problems.
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1.1 Our Contribution

In this paper, we answer the second question above affirmatively by providing an ˜O(m10/7
logW ) time

algorithm for the minimum cost unit-capacity maximum flow problem. In addition to the improvement for
this fundamental graph problem, this result also improves several other standard problems as immediate
corollaries. Namely, by well-known reductions, it implies ˜O(m10/7

logW ) time algorithms for the minimum-
weight bipartite perfect matching problem, the minimum-weight bipartite b-matching problem, and, the
shortest path problem for graphs with negative weights. This constitutes the first in more than 25 years
polynomial improvement of sparse graph time complexity for each one of these problems.
To obtain these results we simplify and extend the framework from [24] by developing new preconditioning
and perturbation techniques. These techniques provide us with much better control of the intermediate
solutions that we precondition/perturb. In particular, in stark contrast to [24], the preconditioning and
perturbation steps do not lead to any changes in edge costs. Also, the resulting changes in vertex demands
are very minimal. Thus, there is no more need for repeated fixing of these vertex demand changes throughout
the execution of the algorithm – a single demand correction step is performed only at the very end. Finally,
our analysis of the resulting algorithm is much more streamlined and principled compared to the analysis
performed in [24], providing us with much tighter grip of the trade-offs underlying the whole framework.

1.2 Previous Work

The minimum-cost flow, min-weight bipartite perfect matching as well as the shortest path with negative
weights problems are core combinatorial optimization tasks that now have been studied for over 85 years,
starting with the work of Egerváry [7] from 1931. Due to immense number of works on these topics we will
not review them. Instead we will concentrate only on the ones that are relevant to the sparse graph case, as
that is the regime where our results are of main importance.

Complexity Author
O(n4

) Shimbel (1955) [30]
O(Wn2m) Ford (1956) [14]

* O(nm) Bellman (1958) [1], Moore (1959) [25]
O(n

3
4m logW ) Gabow (1983) [9]

O(

p
nm log(nW )) Gabow and Tarjan (1989) [10]

* O(

p
nm log(W )) Goldberg (1993) [12]

* ˜O(Wn!
) Sankowski (2005) [27] Yuster and Zwick (2005) [35]

* ˜O(m10/7
logW ) this paper

Table 1: The complexity results for the SSSP problem with negative weights (* indicates asymptotically the
best bound for some range of parameters).

Shortest Paths with Negative Weights A list of the complexity results on single source shortest paths
with negative weights is included in Table 1. Observe that the sparse case can either be solved in O(mn) time
[1, 25] or ˜O(

p
nm logW) time [10, 12]. The only progress that we had since these papers was the reduction of

the problem to fast matrix multiplication [27, 35] that is relevant only for dense graphs with small integral
weights.
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Complexity Autor
O(Wn2m) Egerváry (1931) [7]
O(n4

) Khun (1955) [20] and Munkers (1957) [26]
O(n2m) Iri (1960) [13]
O(n3

) Dinic and Kronrod (1969) [5]
* O(nm+ n2

log n) Edmonds and Karp (1970) [6]
O(n

3
4m logW ) Gabow (1983) [9]

* O(

p
nm log(nW )) Gabow and Tarjan (1989) [10]

* O(W
p
nm) Kao, Lam, Sung and Ting (1999) [16]

* O(Wn!
) Sankowski (2006) [28]

* ˜O(m10/7
logW ) this paper

Table 2: The complexity results for the minimum weight bipartite perfect matching problem (* indicates
asymptotically the best bound for some range of parameters).

Min-cost Perfect Bipartite Matching The complexity survey of for the minimum weight bipartite
perfect matching problem is given in Table 2. Here, the situation is very similar to the case of shortest
paths. We have two results that are relevant for the sparse case considered here: O(nm+ n2

log n) time [6]
and O(

p
nm log(nW )) time [10]. Again the only polynomial improvement that was achieved during the last

25 years is relevant to the dense case only [28].

Complexity Author
O(m(m+ n log n) Edmonds and Karp (1972) [6]

O(n5/3m2/3
log(nW )) Goldberg and Tarjan (1987) [11]

O(min(

p
m,n2/3

)m log(nW )) Gabow and Tarjan (1989) [10]
˜O(m3/2

) Daitch and Spielman (2008) [4]
˜O(

p
nm) Lee and Sidford (2014) [23]

˜O(m10/7
logW ) this paper

Table 3: The summary of the results for the min-cost unit-capacity max-flow problem. For simplicity we
only list exact algorithms that yielded polynomial improvement or new strongly polynomial bounds. For the
full list of complexities we refer the reader to Chapter 12 in [29].

Minimum-cost Unit-capacity Maximum Flow Problem Due to the vast number of results for this
topic we restricted ourselves to present in Table 3 only algorithms for the unit-capacity case that yielded
significant improvement. We note, however, that handling general capacities for this problem is a major
challenge and our restriction to unit-capacity networks oversimplifies the history of this problem. Never-
theless, for there sparse case there are two relevant complexities: a ˜O(

p
nm) time bound of [23] that, for

the sparse graph case, matches the previously best known bound O(m3/2
log(nW )) due to [10]. We note

that there was also a limited progress [8] on fast matrix multiplication based algorithms for the small vertex
capacity variant of this problem.
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Complexity Author
O(m(m+ n log n) Edmonds and Karp (1972) [6]
O(m7/4

logW ) Gabow (1985) [9]
O(m3/2

log(nW )) Gabow and Tarjan (1989) [10]
˜O(m10/7

logW ) this paper

Table 4: The summary of the results for the min-cost perfect bipartite b-matching problem under assumption
that b(V ) = O(m). For simplicity we only list exact algorithms that yielded polynomial improvement or new
strongly polynomial bounds. For the full list of complexities we refer the reader to Chapter 21 in [29].

Minimum-cost Perfect Bipartite b-Matching Minimum-cost perfect bipartite b-matching problem
bears many similarities to the minimum-cost maximum flow problem, e.g., see our reduction of min-cost
flow to b-matchings in Section 3. Hence some of the complexities in Table 4 are the same as in Table 3.
However, not all results seem to carry over as exemplified in the tables. b-matchings seems slightly harder
than max-flow as one needs to route exact amount of flow between many sources and sinks. The results
relevant for sparse case are: weakly polynomial O(m3/2

log(nW )) time algorithm [10] or strongly polynomial
O(m(m+ n log n)) time algorithm [6].

1.3 The Outline of Our Algorithm

As mentioned above, our focus is on development of a faster, ˜O(m10/7
logW )-time algorithm for the minimum-

cost unit-capacity maximum flow problem, since well-known reductions immediately yield ˜O(m10/7
logW )-

time algorithms for the remaining problems (see also Section 8). In broad outline, our approach to solving
that flow problem follows the framework introduced by Mądry [24] and comprises three major components.
First, in Section 3, we reduce our input minimum-cost flow instance to an instance of the bipartite minimum-
cost b-matching problem. The latter instance will have a special structure. In particular, it can be viewed
as a minimum-cost flow problem instance that has general flow demands but no capacities.
Then, in Section 4, we put forth a basic interior-point method framework that builds on the framework
of Mądry [24] for solving this kind of uncapacitated minimum-cost flow instances. This basic framework
alone will not be capable of breaking the O(

p
m) iteration bound. Therefore, in Sections 5 and 6, we

develop a careful perturbation and preconditioning technique to help us control the convergence behavior
of our interior-point method framework. An important feature of this technique is that, in contrast to the
technique used by [24], our perturbations do no alter the arc costs. Thus they are suitable for dealing
with weighted problems. We then prove that the resulting algorithms indeed obtains the improved running
time bound of ˜O(m10/7

logW ) but the (near-)optimal flow solution it outputs might have some of the flow
demands changed.
Finally, in Section 7, we address this problem by developing a fast procedure that relies on classic combinato-
rial techniques and recovers from this perturbed (near-)optimal solution an optimal solution to our original
minimum-cost flow instance.

2 Preliminaries

In this section, we introduce some basic notation and definitions that we will need later.

2.1 Minimum Cost �-Flow

We denote by G = (V,E, c) a directed graph with vertex set V , arc set E and cost function c. We denote
by m = |E| the number of arcs in G, and by n = |V | its number of vertices. An arc e of G connects an
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ordered pair (w, v), where w is called tail and v is called head. We will be mostly working with �-flows in G,
where � 2 Rn, satisfying

P
v �v = 0, is the demand vector. A �-flow in G is defined to be a vector f 2 Rm

(assigning values to arcs of G) that satisfies the following flow conservation constraints:
X

e2E+
(v)

fe �
X

e2E�
(v)

fe = �v, for each vertex v 2 V . (2.1)

We denote by E+

(v) (resp. E�
(v)) the set of arcs of G that are leaving (resp. entering) vertex v. The above

constraints enforce that, for every v 2 V , the total out-flow from v minus the total in-flow (i.e. the net flow)
out of v is equal to �v.
Furthermore, we say that a �-flow f is feasible in G iff it satisfies non-negativity and capacity constraints (in
this paper we are only concerned with unit capacities):

0  fe  1, for each arc e 2 E. (2.2)

For our interior point method the basic object is the minimum cost �-flow problem consists of finding feasible
�-flow f that minimizes the cost of the flow c(f) =

P
e cefe.

2.2 Electrical Flows and Potentials

A notion that will play a fundamental role in this paper is the notion of electrical flows. Here, we just briefly
review some of the key properties that we will need later. For an in-depth treatment we refer the reader to
[2].
Consider an undirected graph G and a vector of resistances r 2 Rm that assigns to each edge e its resistance
re > 0. For a given �-flow f in G, let us define its energy (with respect to r) Er (f) to be

Er (f) :=
X

e

ref
2

e = f>Rf, (2.3)

where R = diag(r) is an m⇥m diagonal matrix with Re,e = re, for each edge e. In order to simplify notation,
we drop the subscript or the parameter whenever it is clear from the context.
For a given undirected graph G, a demand vector �, and a vector of resistances r, we define an electrical
�-flow in G (that is determined by the resistances r) to be the �-flow that minimizes the energy Er (f)
among all �-flows in G. As energy is a strictly convex function, one can easily see that such a flow is unique.
Also, we emphasize that we do not require here that this flow is feasible with respect to the (unit) capacities
of G (cf. (2.2)). Furthermore, whenever we consider electrical flows in the context of a directed graph G, we
will mean an electrical flow – as defined above – in the (undirected) projection ¯G of G.
One of very useful properties of electrical flows is that it can be characterized in terms of vertex potentials
inducing it. Namely, one can show that a �-flow f in G is an electrical �-flow determined by resistances r
iff there exist vertex potentials �v (that we collect into a vector � 2 Rn) such that, for any edge e = (u, v) in
G that is oriented from u to v,

fe =
�v � �u

re
. (2.4)

In other words, a �-flow f is an electrical �-flow iff it is induced via (2.4) by some vertex potentials �. (Note
that orientation of edges matters in this definition.)
Using vertex potentials, we are able to express the energy Er (f) (see (2.3)) of an electrical �-flow f in terms
of the potentials � inducing it as

Er (f) =
X

e=(u,v)

(�v � �u)
2

re
. (2.5)
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2.3 Laplacian Solvers

A very important algorithmic property of electrical flows is that one can compute very good approximations
of them in nearly-linear time. Below, we briefly describe the tools enabling that.
To this end, let us recall that electrical �-flow is the (unique) �-flow induced by vertex potentials via (2.4).
So, finding such a flow boils down to computing the corresponding vertex potentials �. It turns out that
computing these potentials can be cast as a task of solving certain type of linear system called Laplacian
systems. To see that, let us define the edge-vertex incidence matrix B being an n ⇥ m matrix with rows
indexed by vertices and columns indexed by edges such that

Bv,e =

8
><

>:

1 if e 2 E+

(v),
�1 if e 2 E�

(v),
0 otherwise.

Now, we can compactly express the flow conservation constraints (2.1) of a �-flow f (that we view as a vector
in Rm) as

Bf = �.

On the other hand, if � are some vertex potentials, the corresponding flow f induced by � via (2.4) (with
respect to resistances r) can be written as

f = R�1B>�,

where again R is a diagonal m⇥m matrix with Re,e := re, for each edge e.
Putting the two above equations together, we get that the vertex potentials � that induce the electrical
�-flow determined by resistances r are given by a solution to the following linear system

BR�1B>� = L� = �, (2.6)

where L := BR�1BT is the (weighted) Laplacian L of G (with respect to the resistances r). One can easily
check that L is a symmetric n⇥ n matrix indexed by vertices of G with entries given by

Lu,v =

8
><

>:

P
e2E(v) 1/re if u = v,

�1/re if e = (u, v) 2 E, and
0 otherwise.

(2.7)

One can see that the Laplacian L is not invertible, but – as long as, the underlying graph is connected – its
null-space is one-dimensional and spanned by the all-ones vector. As we require our demand vectors � to
have its entries sum up to zero (otherwise, no �-flow can exist), this means that they are always orthogonal
to that null-space. Therefore, the linear system (2.6) has always a solution � and one of these solutions1 is
given by

� = L+�,

where L+ is the Moore-Penrose pseudo-inverse of L.
Now, from the algorithmic point of view, the crucial property of the Laplacian L is that it is symmetric
and diagonally dominant, i.e., for any v 2 V ,

P
u 6=v |Lu,v|  Lv,v. This enables us to use fast approximate

solvers for symmetric and diagonally dominant linear systems to compute an approximate electrical �-flow.
Namely, there is a long line of work [33, 18, 19, 17, 3, 21, 22] that builds on an earlier work of Vaidya [34]
and Spielman and Teng [32], that designed an SDD linear system solver that implies the following theorem.

1Note that the linear system (2.6) will have many solutions, but any two of them are equivalent up to a translation. So, as
the formula (2.4) is translation-invariant, each of these solutions will yield the same unique electrical �-flow.
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Theorem 1. For any ✏ > 0, any graph G with n vertices and m edges, any demand vector �, and any
resistances r, one can compute in ˜O(m logm log ✏�1

) time vertex potentials ˜� such that k˜���⇤kL  ✏k�⇤kL,
where L is the Laplacian of G, �⇤ are potentials inducing the electrical �-flow determined by resistances r,
and k�kL :=

p
�>L�.

To understand the type of approximation offered by the above theorem, observe that k�k2L = �>L� is just
the energy of the flow induced by vertex potentials �. Therefore, k˜� � �⇤kL is the energy of the electrical
flow ¯f that “corrects” the vertex demands of the electrical �̃-flow induced by potentials ˜�, to the ones that
are dictated by �. So, in other words, the above theorem tells us that we can quickly find an electrical �̃-flow
˜f in G such that �̃ is a slightly perturbed version of � and ˜f can be corrected to the electrical �-flow f⇤ that
we are seeking, by adding to it some electrical flow ¯f whose energy is at most ✏ fraction of the energy of the
flow f⇤. (Note that electrical flows are linear, so we indeed have that f⇤

=

˜f +

¯f .) As we will see, this kind
of approximation is completely sufficient for our purposes.

2.4 Bipartite b-Matchings

For a given weighted bipartite graph G = (V,E) with V = P [ Q – where P and Q are the two sets
of bipartition – as well as, a demand vector b 2 RV

+

, a perfect b-matching is a vector x 2 RV
+

such thatP
e2E(v) xe = bv for all v 2 V. A perfect b-matching is a generalization of perfect matching; in the particular

case where all b’s equal 1, integer b-matchings (or 1-matchings) are exactly perfect matchings. x is called
b-matching if the equality in the above equation is satisfied with inequality, i.e., we have just

P
e2E(v) xe 

bv for all v 2 V . For perfect b-matchings we usually require that b(P ) = b(Q) as otherwise they trivially do
not exist.
A weighted perfect bipartite b-matching problem is a problem in which, given a weighted bipartite graph
G = (V,E,w) our goal is to either return a perfect b-matching in G that has minimum weight, or conclude
that there is no perfect b-matching in G. We say that a b-matching x in a graph G is h-near if the size of
x is within an additive factor of h of the size of a perfect b-matching. The dual problem to the weighted
perfect bipartite b-matching is a b-vertex packing problem where we want to find a vector y 2 RV satisfying
the following LP

max

X

v2V

yvbv,

yu + yv  wuv 8uv 2 E.

Also, we define the size of a b-matching x to be kxk
1

/2. A h-near b-matching is a b-matching with size
at least kxk

1

/2� h. Finally, we observe that a bipartiteb-matching instance can be reinterpreted as a unit
capacitated �-flow instance just by setting

�v =

(
bv if v 2 P ,

�bv otherwise.

and leaving costs unchanged. We require this alternative view, since our interior-point algorithm will work
with �-flows, but the rounding that will need to be performed at the end is done in the b-matching view.

3 Reducing Minimum-Cost Flow to Bipartite b-matching

In this section we show how to convert an instance of unit capacity min-cost flow into an instance of min-cost
b-matching. This is done via a simple combinatorial reduction similar to the one in [24]. As noted in the
preliminaries, bipartite b-matchings can be reinterpreted as �-flows. This alternative view will be useful for
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us, as our interior point method will work with �-flows, whereas it is easier to repair a near-optimal solution
in the b-matching view.
We first show a straightforward reduction from min-cost flow to b-matching. One desirable feature of this
reduction is that the obtained b-matching instance does not contain upper capacities on arcs, since these
are going to be implicitly encoded by properly setting the demands. The part of lemma that refers to
half-integral flow and half-integral matching will be essential for the initialization step.

Lemma 2. Given a directed graph G = (V,E, c) and a demand vector �, one can construct in linear time a
bipartite graph G0

= (V 0, E0, c0), V 0
= P [Q along with a demand vector b0 such that given a minimum cost

b0-matching in G0, one can reconstruct a flow f that routes demand � in G with minimum cost. Moreover,
if flow f =

1

2

·~1 is feasible in G then x =

1

2

·~1 is a feasible fractional b-matching in G0.

Proof. Let P = V and Q = E. For each arc (u, v) 2 E, let euv be the corresponding “edge” vertex in Q.
Create arcs (u, euv) with cost cuv, and (v, euv) with cost 0. For each euv 2 Q set demand b0(euv) = 1. For
each v 2 P , set demand b0(v) = �(v) + degGin(v). Let us now argue that the solution to b0-matching encodes
a valid flow in G. Observe that in the b0-matching instance each vertex euv can be in two states: it is either
matched to u or to v. When euv is matched to u we “read” that there is one unit of flow on arc (u, v),
whereas when euv is matched to v we “read” that there is no flow on arc (u, v). With this interpretation flow
conservation constraints (2.1) are satisfied.
Now assume that the flow f =

1

2

·~1 is feasible in G and consider the b-matching x =

1

2

·~1. We observe that
feasibility of f implies that x is feasible for each vertex in P , as each such vertex has the same number of
incident edges and the same demand as the corresponding vertex in G. On the other hand, by construction
vertices in Q have demand �1 and two incoming edges, what settles feasibility of x for them.

The effect of this reduction on a single arc is presented in the figure below. Note that vertices in P correspond
to vertices from the original graph, whereas vertices in Q correspond to arcs form the original graph.
Essentially, every arc (u, v) in G adds a demand pair of (1, 1) on the pair of vertices (v, euv) in the b-
matching instance. The amount of flow routed on (v, euv) corresponds to the residual capacity of the arc
(u, v) in the original graph.
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Figure 3.1: The left side contains two �-flow instances, the right side contains their corresponding reductions
to b-matching. In (a) we can see that the unit flow from u to v gets routed from u to euv in the reduction.
In (b), since there is no flow from u to v, the new demand added by the reduction gets routed directly from
v to euv.

While this reduction rephrases the problem into a form that is amenable to our interior-point framework,
the remaining issue is that we have to be able to start the algorithm with a feasible solution where all the
flows on arcs are similar in magnitude (this enables us to enforce the centrality property defined in 4.1).
Ideally, we should be able to obtain a feasible instance simply by placing half a unit of flow on every arc of
the b-matching instance. While doing so clearly satisfies the demands of vertices in Q, demand violations
might occur on vertices in P .
We can easily fix this problem by adding one extra vertex in the original graph, along with a set of arcs with
costs chosen sufficiently high, that the optimal solution will never consider them. The goal is to add the
extra arcs such that flowing 1

2

on every arc satisfies the demand. This instance can then be converted to a
b-matching instance with the same property. The reduction is described by the following lemma:

Lemma 3. Given a directed graph G = (V,E, c) and an integral demand vector �, one can construct in linear
time a graph G0

= (V 0, E0, c0) along with an integral demand vector �0 such that the demand is satisfied by
placing 1

2

units of flow on every arc. Furthermore, given a solution to the min-cost �0-flow satisfying demand
�0 in G0, one can reconstruct in linear time a solution f that routes demand � in G with minimum cost.

Proof. Create one extra vertex v
aux

with demand 0. Then, for all v 2 V , let t(v) = �(v) + 1

2

· degGin(v)/2�
1

2

· degGout(v) be the residual demand corresponding to the flow that has value 1

2

everywhere.
Fix this residual by creating |2t(v)| parallel arcs (v

aux

, v) with costs kck
1

, for each vertex with t(v) < 0,
respectively |2t(v)| parallel arcs (v, v

aux

) with costs kck
1

for each vertex v with t(v) > 0. This enforces our
condition to be satisfied for all vertices in V .
Also note that v

aux

has an equal number of arcs entering and leaving it, since the sum of residuals at
vertices in V equals the sum of degree imbalances, plus the sum of demands, both of which are equal to 0.
More precisely, degin(vaux

) =

P
v:t(v)>0

2t(v), and degout(vaux

) =

P
v:t(v)<0

�2t(v); since 0 =

P
v t(v) =

P
v:t(v)>0

t(v) �
P

v:t(v)<0

(�t(v)) = degG
0

in (vaux

)/2 � degG
0

out(vaux

)/2, the vertex v
aux

is balanced; hence
t(v

aux

) = 0, and the residual demand is 0 at all vertices in the graph.
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Finally, observe that a flow in G satisfying � is a valid flow in G0 for �0 that does not use any edge incident
to v

aux

. This flow has cost smaller than kck
1

. Hence, a min-cost �0-flow in G0, if it has cost smaller than
kck

1

, gives a min-cost �-flow in G.

A pictorial description of the reduction is presented in the figure below.

Figure 3.2: Two examples of balancing a vertex using extra arcs connected to v
aux

. In the first case, adding
two arcs to v

aux

makes the residual at v equal to 0, when routing 1/2 on every arc, since the in-degree of v
is equal to its out-degree, and there is no demand on v. In the second case, we add four arcs from v

aux

to v
in order for the net flow at v (when routing 1/2 on every arc) to match the demand �3.

We can use these two reductions together, first making the flow f =

1

2

·~1 feasible, then converting the instance
to a b-matching instance that can be directly changed back to �-flow instance. As a result we obtain an
instance where constructing a feasible starting solution that is required for our interior point method is
straightforward.

4 Our Interior-Point Method Framework

In this section we describe our interior point method framework for solving our instance of the uncapac-
itated minimum-cost �-flow problem that results from casting the bipartite b�matching problem instance
we produced in Section 3 as an instance of the minimum-cost ��flow problem. Our basic setup is largely
following the framework used by Mądry [24]. The crucial differences emerge only later on, in Sections 5 and
6, when we refine it to obtain our desired running time improvements.

4.1 Primal and Dual Solutions and Centrality

Our framework will be inherently primal dual. That is, we will always maintain a feasible primal dual
solution (f, y). Here, the primal solution f is simply a �-flow, i.e., a flow with demands � and its feasibility
condition is that fe � 0 for each arc e, i.e., the flow never flows against the orientation of the arc. The dual
solution y, on the other hand, corresponds to embedding of the vertices of our graph into the line, i.e., y
assigns a real value yv to each vertex v. The dual feasibility condition is that, for each arc e = (u, v), we
have that its slack se := ce + yu � yv is non-negative, i.e., se � 0, for each arc e. Intuitively, this means
that no arc e is stretched in the embedding defined by y more than its actual cost ce. (Note that here we
measure stretch only in the direction of the arc orientation.)
Observe that the dual solution y is define uniquely (up to a translation) by the slack vector s and the arc
costs c. So, we will sometime find it more convenient to represent our dual solution in terms of the slack
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vector s instead of the embedding vector y. From this perspective, the dual feasibility condition is simply
non-negativity of all the slacks s. (In fact, we will use y and s representation interchangeably, depending on
which one of them is more convenient in given context.)

Duality Gap. A very convenient feature of working with primal dual solutions is that they provide a
very natural way of measuring optimality: the duality gap, i.e., the difference between the upper bound on
the cost of the optimal solution provided by current primal feasible solution f and the lower bound on the
optimal cost provided by our current dual solution s. It turns out that the duality gap of a primal dual
solution (f, s) is exactly

f>s =
X

e

fese =
X

e

µe,

where µe := fese is the contribution of the arc e to that duality gap. Observe that by our primal dual
feasibility condition we have always that µe � 0, for each arc e.

Centrality. In the light of the above, the duality gap kµk
1

=

P
e µe provides a natural measure of

progress for our algorithm. In particular, our goal is simply to find a primal dual feasible solution (f, s) with
kµk

1

sufficiently close to 0, and, from this perspective, any way of updating that primal dual solution that
leads to reduction of the duality gap should be desirable.
However, for reasons that will become clear later, we will insist on reducing the duality gap kµk

1

in a more
restricted manner. To define this, let us first associate with each arc e a value ⌫e that we will refer to as
the measure of e. We will always make sure that ⌫e � 1, for each arc e, and that the total sum of all the
measures is not too large. Specifically, we want to maintain the following invariant that ensures that the
average measure of an arc is at most 3.

Invariant 1. We always have that k⌫k
1

=

P
e ⌫e  3m.

As it turns out, once we introduced the notion of arc measure, it will be much more convenient to introduce
analogues of the standard `p-norms that are reweighted by the measures of arcs. To this end, for a given
vector x 2 Rm, and measure vector ⌫, let us define

kxk⌫,p :=

 
X

e

⌫e |xe|p
! 1

p

(4.1)

We will sometimes extend this notation to refer to the weighted norm of a subset of indices in the support.
More specifically, given S ✓ {1, . . . ,m}, we will call

kxSk⌫,p :=

 
X

e2S

⌫e |xe|p
! 1

p

(4.2)

Also, we will extend our notation and use (f, s, ⌫) to denote a primal dual solution (f, s) with its corresponding
measure vector ⌫.
Now, we can make precise the additional constraint on our primal dual solutions (f, s, ⌫) that we want to
maintain. Namely, we want each solution (f, s, ⌫) to be bµ � centered (or, simply, centered), i.e., we want
that, for each arc e,

µe = ⌫ebµ, (4.3)
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where bµ is a normalizing value we will refer to as average duality gap. Intuitively, centrality means that each
arc’s contribution to the duality gap is exactly proportional to its measure.2

Note that the above notions enable us to express the duality gap of a solution (f, y, ⌫) as exactly
P

e ⌫ebµ,
which by Invariant 1 is at most 3mbµ. That is, we have that

X

e

µe =

X

e

⌫ebµ  3mbµ (4.4)

Consequently, we can view bµ as a measure of our progress - driving it to be smaller translates directly into
making the duality gap smaller too.

4.2 Making Progress with Electrical Flow Computations

Once we setup basic definitions, we are ready to describe how we initialize our framework and then how we
can use electrical flow computations to gradually improve the quality, i.e., the average duality gap bµ of our
bµ-centered primal dual solution (f, y, ⌫).

Initialization. As we want our solutions (f, y, ⌫) to be always centered, initialization of our framework,
i.e., finding the initial centered primal dual solution, might be difficult. Fortunately, one of the important
properties of the reduction we performed in Section 3 is that a centered primal dual feasible solution of the
resulting uncapacitated minimum-cost �-flow instance can be specified explicitly.

Lemma 4. Given a bipartite graph G = (V,E, c) along with an integral demand vector � and a subset of
vertices P such that that for all v 2 P we have �v = deg(v)/2, whereas for all v 62 P we have deg(v) = 2,
one can construct in linear time a feasible primal-dual set of variables (f, s) that satisfy the centrality bound
for bµ = kck1 and k⌫k

1

 m.

Proof. Since �v = deg(v)/2 for all v 2 P , while all w 662 P have degree precisely 2, we can set f =

1

2

· ~1 and
have all the demands satisfied exactly. Moreover, we set the dual variables yv = kck1 for all v 2 P , and
yw = 0 for all w 62 P . This way the slacks svw = cvw � yw + yv are all within the range [kck1 , 2 kck1]. We
set ⌫e =

se
2kck1

and bµ = kck1 so that

µe = fese =
1

2

se =
se

2 kck1
kck1 = ⌫ebµ,

and

k⌫k
1

=

X

e

⌫e =
X

e

se
2 kck1


X

e

1 = m.

Taking an Improvement Step. Let us fix some bµ-centered primal dual solution (f, y, ⌫) and let us define
resistances r to be equal to

re :=
1

µ̂
· se
fe

=

1

µ̂
· µe

f2

e

=

⌫e
f2

e

, (4.5)

for each arc e. (Note that f has to always be positive due to centrality condition, and thus these resistances
are well-defined.)

2The framework in [24] works with a slightly relaxed notion of centrality. However, we deviate from that here.
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The fundamental object that will drive our improvements of the quality of our current primal dual solution
will be the electrical ��flow ˆf determined by the above resistances r. For future reference, we will call the
electrical flow ˆf associated with (f, s, ⌫). The key property of that electrical flow is that it will enable us to
update our primal and dual solutions simultaneously. That is, we can use the flow itself to update the primal
solution f , and we can use the vertex potentials ˆ� that induced ˆf to update our dual solution s. Specifically,
our main improvement update step, for each arc e = (u, v) is:

f 0
e := (1� �)fe + � ˆfe,

s0e := se �
�

(1� �)

⇣
b�v � b�u

⌘
,

where � is a step size that we will choose later.
Remark 5. The step derived from the standard primal-dual interior-point method computes an electrical
flow along with potentials determined by resistances se

fe
, which are off by precisely a factor of µ̂ from the

resistances we consider in this paper. However, scaling all resistances by the same factor has no effect on the
electrical flow or the potentials produced. Setting resistances the way we do in (4.5) has the benefit that it
will enable us to relate the electrical energy with another quantity of interest without having to carry along
the extra 1

µ̂ factor, as we will see in Lemma 7.

Intuitively, this update step mixes the electrical flow ˆf with the current solution f by taking a convex
combination of them. (Note that the resulting flow is guaranteed to be a �- flow in this way.) On the other
hand, the dual update corresponds to updating the line embedding of each vertex by adding an appropriately
scaled vertex potential to it.
It is worth pointing out that the electrical flow ˆf is inherently undirected. So, it is not a priori clear if the
flow f 0 resulting from the above update is even feasible. As a result, we will need to ensure, in particular,
that the step size � is chosen to be small enough so as to ensure that f 0 is still feasible. (In fact, as we will
see shortly, there are some even stronger restrictions on the value of �. So, the feasibility will be enforced
implicitly.)

Congestion Vector. A notion that will be extremely useful in analyzing our improvement step and the
performance of our algorithm in general is the notion of congestion vectors. Specifically, given the electrical
�-flow bf associated with our solution (f, y, ⌫), let us define congestion ⇢e of an arc e as

⇢e :=

��� ˆfe
���

fe
(4.6)

Now, observe that we can express the duality contribution µ0
e of an arc e in the new solution (f 0, s0) as

µ0
e = f 0

es
0
e =

⇣
(1� �)fe + � ˆfe

⌘✓
se �

�

(1� �)

⇣
b�v � b�u

⌘◆

= (1� �)fese � �fe

⇣
b�v � b�u

⌘
+ � ˆfese �

�2

1� �
ˆfe

⇣
b�v � b�u

⌘

= (1� �)fese � �fe · ˆfe
se
fe

+ � ˆfese �
�2

1� �
ˆfe · ˆfe

se
fe

= (1� �)µe �
�2

1� �
µe⇢

2

e
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So, if we ignore the second-order term in �, the duality gap contribution of each arc e goes down at the same
rate. In this way, not only the duality gap gets reduced by a factor of (1� �) but also the centrality of the
solution would be perfectly preserved.
However, we cannot really ignore the second-order term and this term will make our solution lose centrality.
Fortunately, one can show that as long as the total degradation of centrality condition is not too large one
can easily correct it with a small number of electrical flow computations. Specifically, for the correction to
be possible, we need to have that the total `2

2

�norm of the degradations (measured with respect to measure
⌫ and normalized by the duality gap contributions µ) has to be a small constant. That is, we need that

X

e

⌫e

✓
µ0
e

(1� �)µe
� 1

◆
2

=

X

e

⌫e

✓
�2µe⇢

2

e

(1� �)2µe

◆
2

�4

(1� �)4

X

e

⌫e⇢
4

e =

�4

(1� �)4
k⇢k4⌫,4 

1

256

, (4.7)

which implies that it is sufficient to have

�  1

8 · k⇢k⌫,4
,

i.e., that the step size � should be bounded by the `
4

norm of the congestion vector ⇢. The following theorem
makes these requirements, as well as the result of the full improvement step, precise. Its complete proof can
be found in Appendix C.

Theorem 6. Let (f, s, ⌫) be a bµ�centered solution and let ⇢ the congestion vector of the electrical flow bf
associated with that solution. For any � > 0 such that

�  min

⇢
1

8 · k⇢k⌫,4
,
1

8

�
,

we can compute in ˜O(m) time a bµ0�centered solution (f 0, s0, ⌫0), such that ⌫0 = ⌫, bµ0  (1 � �)bµ, and, for
each arc e,

r0e =
1

µ̂
· s

0
e

f 0
e

� (1 + 4 · �⇢e + e)
�1

re,

where  is a vector with kk⌫,2  1.

4.3 A Simple O (

p
m logW )-iteration Bound

Once the `
4

norm bound provided in Theorem 6 is established we are already able to prove in a simple way
that our algorithm needs at most O (

p
m logW ) iterations to compute the optimal solution, making its total

running time be at most O
�
m3/2

logW
�
. To achieve that, we just need to argue that we always have that

k⇢k⌫,4  O
�p

m
�
. (4.8)

Once this is established, by Theorem 6, we know that we can always take � = ⌦(m�1/2
) and thus make bµ

decrease by a factor of (1 � �) in each iteration. So, after O (

p
m logW ) iterations, bµ and thus the duality

gap becomes small enough that a simple rounding (see Section 7) will recover the optimal solution.
Now, to argue that 4.8 indeed holds, we first notice that we can always upper bound `

4

norm k⇢k⌫,4 by the `
2

norm k⇢k⌫,2 and then bound the latter norm instead. Next, as it turns out, we can tie the energy E( ˆf) of the
electrical flow ˆf associated with a given solution (f, s, ⌫) to the corresponding `

2

norm k⇢k⌫,2. Specifically,
we have the following lemma.
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Lemma 7. For any centered solution (f, s, ⌫), we have that

k⇢k2⌫,2 = E( ˆf),

where ˆf is the electrical flow associated with that solution and ⇢ is its congestion vector.

Proof. Observe that by definition 4.6 and 4.5, we have that

k⇢k2⌫,2 =

X

e

⌫e⇢
2

e =

X

e

⌫e

 
bfe
fe

!
2

=

X

e

re ˆf
2

e = E( ˆf)

Note that we used (4.5) to write re =
⌫e
f2
e
, which assumes centrality.

Due to this identity, we can view the `
2

norm k⇢k2⌫,2 as energy. Finally, we can use the bound from Invariant
1 to show that the energy E( ˆf) and thus the norm k⇢k⌫,2 can be appropriately bounded as well.

Lemma 8. For a centered solution,k⇢k2⌫,2 
P

e ⌫e = k⌫k1.

Proof. By Lemma 7 and (4.5), we have that

k⇢k2⌫,2 = E( ˆf)  E(f) =
X

e

ref
2

e =

X

e

⌫e

✓
fe
fe

◆
2

=

X

e

⌫e = k⌫k
1

,

where the inequality follows as f is a �-flow and, by the virtue of being an electrical �-flow, bf has to have
minimum among all the �-flows.

Now, since by Invariant 1 , k⌫k
1

 3m, we can conclude that

k⇢k2⌫,4  k⇢k2⌫,2  k⌫k
1

 3m

and the bound 4.8 follows.
With this upper bound on the k⇢k⌫,4 we can immediately derive a bound on the running time required to
obtain an exact solution. This is summarized in the following theorem.

Theorem 9. We can produce an exact solution to the unit-capacitated minimum cost �-flow problem in
˜O
�
m3/2

logW
�

time.

Proof. Given an instance of the unit-capacitated minimum cost �-flow, we can apply the reduction from
Section 3 in linear time. Then, Lemma 4 establishes the initial centering with µ̂ = kck1  W . We
previously saw that k⇢k⌫,4 = O(

p
m). Therefore, according to Theorem 6, we can set � = 1/O(

p
m), and

reduce µ̂ by a factor of 1� 1

O(

p
m)

with every interior-point iteration. Therefore, in O
�
m1/2

(logm+ logW )

�

iterations we reduce µ̂ to O(m�3

). Using the fact that k⌫k
1

 3m, the duality gap of this solution will beP
e ⌫eµ̂  m�2. Note that each iteration requires ˜O(1) electrical flow computations, and each of them can

be implemented in near-linear time, according to Theorem 1.
Therefore in ˜O

�
m3/2

logW
�

time, we obtain a feasible primal-dual solution with duality gap less than m�2.
This can easily be converted to an integral solution in nearly-linear time using the method described in
Section 7. Hence the total running time of the algorithm is ˜O(m3/2

logW ).
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5 Taking Longer Steps

In the previous section, we established that the amount of progress we can make in one iteration of our
framework is limited by the `

4

norm of the congestion, k⇢k⌫,4 - see Theorem 6. We then showed (cf. (4.8))
that this norm is always upper bounded by O(

p
m) , which resulted in our overall eO

�
m3/2

logW
�

time
bound.
Unfortunately, a priori, this upper bound is tight, i.e., it indeed can happen that k⇢k⌫,4=k⇢k⌫,2= ⌦(

p
m).

In fact, this is exactly the reason why all classic analyses of interior-point algorithms are able to obtain only
an O(

p
m) iteration bound.

To circumvent this problem, [24] introduced a perturbation technique into the framework. These pertur-
bations target arcs that contribute a significant fraction of the norm k⇢k⌫,4 , by increasing their resistance
(and thus the corresponding energy), in order to discurage the emergence of such high contributing arcs in
the future. A careful analysis done in [24] shows that such perturbations indeed ensure that there are suffi-
ciently many iterations with relatively small k⇢k⌫,4 norm to guarantee ability to take longer steps, and thus
converge faster. Unfortunately the changes to the underlying optimization problem that these perturbations
introduced, although sufficiently mild to enable obtaining a result for unit-capacity maximum flow, were too
severe to enable solving any of the weighted variants that we aim to tackle here.
Our approach will also follow the same general outline. The crucial difference though is that we use a
different perturbation technique, along with a somewhat simpler analysis. This technique still achieves the
desired goal of increasing the resistance of the perturbed arcs. However, in big contrast to the technique
used by [24], our technique does not affect the costs of those arcs – it affects only their measure. Also, as an
added benefit, our perturbation treatment simplifies the analysis significantly.
We describe our preconditioning technique in Section 5.1. Also, in the table below we present a general
outline of our algorithm. (This algorithm will be later modified further to include a preconditioning step.)
Observe that this algorithm uses a stronger, `

3

norm criterion for whether to make a perturbation or a
progress step, instead of the `

4

norm criterion that Theorem 6 suggests. As we will see, the reason for that is
that maintaining such an `

3

norm condition will enable us to have a sufficiently tight control over the change
after each progress step of our potential function: the energy of electrical flows ˆf associated with our primal
dual solutions.
Our goal is to obtain an ˜O(m1/2�⌘

) bound on the overall number of iterations, where we fix ⌘ to be

⌘ =

1

14

Algorithm 1 Perturbed interior-point method (parameters: c⇢ = 400

p
3 · log1/3 W , cT = 3c⇢ logW )

1. initialize primal and dual variables (f, y) (as shown in Section 4);

2. repeat cT ·m1/2�⌘ times

3. while k⇢k⌫,3 > c⇢ ·m1/2�⌘

4. perform perturbation (as shown in Section 5.1)

5. perform progress steps (as shown in Section 4.2)
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5.1 Our Perturbation Technique

Let us start by describing our perturbation technique, which heavily uses the structure of the b-matching
instance obtained after applying the reduction from Section 3. We first show how a perturbation is applied
to an arc, then we define the set of arcs that get perturbed in each iteration. As we will see, whenever we
perturb a particular arc (to increase its resistance) we always make sure to perturb its “partner” arc, i.e.,
the unique arc sharing a common vertex from the set Q of the bipartition, as well.

Definition 10. Given an arc e = (u, v), with u 2 P , v 2 Q, the partner arc of e is the unique arc ē = (ū, v),
ū 2 P sharing vertex v with e.

5.1.1 Perturbing an Arc.

Let e = (u, v) be an arc with cost cuv and vertex potentials yu, respectively yv, and slack suv = cuv+yu�yv.
Note that due to the structure of our b-matching instance (see Section 3), vertex v is of degree 2. Let
e = (u, v) be the partner arc that shares with e this vertex v. We first modify our dual solution by setting
yv  yv � suv. This effectively doubles the resistance of e, defined as in (4.5), which is our desired effect.
Unfortunately, this update breaks centrality of both arc e and its partner arc ē. To counteract that, we first
double the measure ⌫e of e - this immediately restores the centrality of that arc. Now, it remains to fix the
centrality of the partner arc e = (u, v). Specifically, we need to deal with the fact that the slack se of that
partner arc gets increased by se. To fix this problem, recall that the centrality condition for e guaranteed
that sefe = ⌫eµ̂. So, we need to set the new measure ⌫0e such that (se + se)fe = ⌫0eµ̂. Therefore we just set
the new measure to be

⌫0e =
(se + se)fe

µ̂
= ⌫e +

sefe
µ̂

= ⌫e + ⌫e ·
fe
fe

Consequently, the total change in measure of that arc is

⌫e

✓
1 +

fe
fe

◆
 ⌫e

✓
1 +

1

fe

◆
(5.1)

as in our instance we have that fe  1, since the arcs are unit capacitated, and f is always feasible.
We remark that we may want to perturb both an arc e = (u, v) and its partner ē = (ū, v). In this case, we can
perturb the arcs simultaneously by setting yv  yv�suv�sūv, and updating the measures: ⌫ē  2⌫ē+⌫e · fēfe ,
⌫e  2⌫e + ⌫ē · fe

fē
. This maintains centrality, and the bound from (5.1) still holds.

So, to summarize, one effect of the above operation is that it made the resistance of the perturbed arc
e double. As we will see, similarily as it was the case in [24], this will enable us to ensure that the total
number of perturbation steps is not too large. Also, note that the above operation does not change any vertex
demands or costs. It only affects the dual solution and the arcs’ measure. Therefore, the only undesirable
long term effect of it is the measure increase, since it might lead to violation of Invariant 1. 3

5.1.2 Which Arcs to Perturb?

As we have just seen, while perturbing an arc doubles its resistance, this operation has the side effect of
increasing the total measure. To control the latter, undesirable effect, we show that every time we need to
pertrub the problem, we can actually select a subset of arcs with the property that perturbing all of them

3In fact, if we were to formulate our problem as a primal interior-point method, one could think of these perturbations on
arcs and their partners as acting on both the lower and the upper barriers. In that formulation, the barrier would be of the
form �

P
e ⌫e log fe + ⌫ē log(1� fe). The reduction from Section 3 essentially eliminates the upper barrier, in order to be make

our problem amenable to a primal-dual approach, which we preferred to use here.
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increases the energy by a lot while keeping the measure increase bounded. Ultimately, the entire goal of the
analysis will be to show that:

1. We do not need to perturb the problem more than ˜O(m1/2�⌘
) times

2. The total increase in measure caused by the perturbations is at most 2m, thus maintaing Invariant 1.

Below we define the subset of arcs that will get perturbed. Intuitively, we only want to perturb arcs e with
high congestion ⇢e. Furthermore, we choose to perturb them only if the amount of flow they carry is not very
small. This extra restriction enforces an upper bound on the amount by which the measure of the perturbed
arc increases, as per equation 5.1.
As we will see in Corollary 16, perturbing edge e will increase total energy by at least a quantity that is
proportional to the amount of contribution to total energy of that edge; therefore the total measure increase
will be upper bounded by a quantity proportional the total energy increase due to perturbations.
We will soon see that the total energy increase across iterations is, as a matter of fact, bounded by
O
�
cT c

2

⇢ ·m3/2�3⌘
�
, where cT and c⇢ are some appropriately chosen constants, which immediately yields

the desired bound on the total measure increase.

Definition 11. An arc e is perturbable if 1

fe
 m1/2�3⌘ and ⇢e �

q
40cT c2⇢ · m1/2�3⌘. An arc that is not

perturbable is called unperturbable. Denote by S the set of all perturbable arcs.

A useful property of perturbable arcs the way they are chosen enforces a small increase in measure compared
to that in energy during each perturbation. We will make this property precise below, and it is what we will
be using for the remainder of the section.

Corollary 12. A perturbable arc satisfies 1 +

1

fe
 C⇢2e, where C =

1

20cT c2⇢
·m�1/2+3⌘.

5.2 Runtime Analysis

The analysis of our algorithm is based on two major parts.
The first part shows that throughout the execution of the algorithm, the total energy increase caused by
perturbations can not be too large. This will automatically imply that total measure increase will be bounded
by 2m, and therefore Invariant 1 is preserved. The key idea is that, since they are applied only when the `

3

norm of the congestion is “small” (i.e. c⇢ ·m1/2�⌘), progress steps do not decrease the energy by a lot (i.e.
O(c2⇢ · m1�2⌘

) , as we will soon see). However, since total measure, and hence energy, was O(m) to begin
with, perturbations could not have increased energy by more than progress steps have decreased it overall.
Over the O

�
cT ·m1/2�⌘

�
iterations, progress steps decrease energy by at most O(cT c

2

⇢ ·m3/2�3⌘
); therefore

this is also a bound on the total increase in energy.
The second part use the invariant that perturbable edges consume most of the energy in the graph, in order to
argue that the number of perturbations is small. While a priori we only had a bound on the time required for
progress steps, with no guarantee on how many iterations the algorithm spends performing perturbations,
this argument provides a bound on the number of perturbations, and hence on the running time of the
algorithm. Showing that, every time we perform a perturbation, energy increases by at least ⌦

�
c⇢ ·m1�2⌘

�

implies, together with the bound proven in the first part, that throughout the execution of the algorithm we
perform only O

�
cT c⇢ ·m1/2�⌘

�
perturbations. This bounds the running time by ˜O

�
cT c⇢ ·m3/2�⌘

�
, since

perturbing the problem takes only ˜O(m) time.
The invariant that the second part relies on is motivated by the fact that, whenever we have to perturb
the problem, the `

3

norm of the congestion vector is large, so the energy of the system is also large (at
least c2⇢ · m1�2⌘). Since perturbable arcs are highly congested, we expect them to contribute most of the
energy; so perturbing those should increase the energy of the system by a quantity proportional to their
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current contribution to energy. Maintaining this invariant requires a finer control over how the electrical
flows behave, and will be guaranteed via a modification of the algorithm, which will be carefully analyzed
in Section 6. However, the future modification will not affect any of the analysis described in this section.
Therefore this section will be concerned only with proving the runtime guarantee, assuming validity of the
invariant.

5.2.1 Bounding the Total Increase in Measure and Energy

We formalize the intuition described at the beginning of the section. First, we show that Theorem 6 provides
a bound on how much energy can decrease during one progress step. This relies on the following lemma,
which allows us to lower bound the energy of an electrical flow.

Lemma 13. Let Er be the energy of the electrical flow in a graph with demands � and resistances r. Then

Er = max

�

0

@
2�>��

X

e=(u,v)

(�u � �v)
2

re

1

A (5.2)

Proof. The result can be derived by letting L be the Laplacian corresponding to the graph with resistances r,
and rewriting the above maximization problem as max� 2�

>���>L� . By first order optimality conditions
we get that the maximizer satisfies L� = �, hence � = L+�. Plugging in makes the expression equal to
�TL+�, which is precisely the energy Er.

In our context, this lemma enables us to provide a more convenient formula for lower bounding the new
value of energy after resistances change.

Lemma 14. Let Er be the energy of the electrical flow corresponding to a centered instance with resistnaces
r, and let Er0 be the energy of the electrical flow corresponding to the new centered instance with resistances
r0, obtained after applying one progress step or one perturbation. Then the change in energy can be lower
bounded by:

Er0 � Er �
X

e=(u,v)

⌫e⇢
2

e(1� re/re0) (5.3)

Proof. Let ˆ� be the potentials that maximize the expression from (5.2) for resistances Er. Therefore we have

Er = 2�>
ˆ��

X

e=(u,v)

⇣
ˆ�u � ˆ�v

⌘
2

re

Using the same set of potentials in order to certify a lower bound on the new energy, we obtain:
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Er0 � 2�>
ˆ��

X

e=(u,v)

⇣
ˆ�u � ˆ�v

⌘
2

r0e

= 2�>
ˆ��

X

e=(u,v)

⇣
ˆ�u � ˆ�v

⌘
2

re
+

X

e=(u,v)

⇣
ˆ�u � ˆ�v

⌘
2

re

✓
1� re

r0e

◆

= Er +
X

e=(u,v)

⇣
ˆ�u � ˆ�v

⌘
2

re

✓
1� re

r0e

◆

= Er +
X

e=(u,v)

⌫e⇢
2

e

✓
1� re

r0e

◆

For the last identity we used the fact that if ˆf is the eletrical flow corresponding to potentials ˆ�, then
(

ˆ�u�ˆ�v)
2

re
= re ˆf

2

e =

⌫e
f2
e

ˆf2

e = ⌫e⇢
2

e.

A first application of this lemma is that it enables us to lower bound the increase in energy when perturbing
arcs.

Lemma 15. After perturbing arcs in S, energy increases by at least 1

2

k⇢Sk2⌫,2.

Proof. According to the effects of the perturbation described in Section 5.1.1, all resistances of arcs in S get
doubled, while the others can only increase. Therefore, applying Lemma 14, we obtain a lower bound on the
energy increase:

Er0 � Er �
X

e2S
⌫e⇢

2

e

✓
1� re

2re

◆

=

1

2

X

e2S
⌫e⇢

2

e

=

1

2

k⇢Sk2⌫,2

An immediate corollary is that the increase in energy during a perturbation upper bounds the increase in
measure.

Corollary 16. If a perturbation increases energy by �, then the total measure increases by at most 2C ·�.

Proof. By definition, the arcs we perturb satisfy 1+

1

fe
 C⇢2e. According to (5.1), the measure increase cause

by perturbing an arc e is at most ⌫e

⇣
1 +

1

fe

⌘
. Therefore, perturbing all the arcs in ˆS, increases measure

by at most
P

e2 ˆS ⌫e · C⇢2e = C · k⇢Sk2⌫,2. But Lemma 15 shows that � � 1

2

k⇢Sk2⌫,2. Combining these two
bounds yields the result.

While Lemma 15 tells us that perturbations increase energy, we can show that progress steps do not decrease
it by too much, using another application of Lemma 14.
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Lemma 17. Let Er be the energy of an electrical flow corresponding to a centered solution with congestion
vector ⇢, and let Er0 be the new energy after applying one progress step. Then Er0 � Er � 5 · k⇢k2⌫,3.

Proof. Combining Lemma 14 with Theorem 6 we obtain:

Er0 � Er �
X

e=(u,v)

⌫e⇢
2

e

✓
1� re

r0e

◆

�
X

e=(u,v)

⌫e⇢
2

e (�4�⇢e � e)

= �4� ·
X

e=(u,v)

⌫e⇢
3

e �
X

e=(u,v)

⌫e⇢
2

ee

= �4� · k⇢k3⌫.3 �
X

e=(u,v)

p
⌫e⇢

2

e ·
p
⌫ee

� �4
k⇢k3⌫,3
k⇢k⌫,4

�

vuuut

0

@
X

e=(u,,v)

⌫e⇢4e

1

A

0

@
X

e=(u,v)

⌫e2

e

1

A (by Cauchy-Schwarz)

� �4 k⇢k2⌫,3 �
q
k⇢k4⌫,4 · kk

2

⌫,2

= �4 k⇢k2⌫,3 � k⇢k
2

⌫,4 (using kk2⌫,2  1)

� �5 k⇢k2⌫,3

With this tool in hand we can now upper bound the total energy increase caused by perturbations.

Lemma 18. The total energy increase due to perturbations is at most 16cT c2⇢ ·m3/2�3⌘. Furthermore, the
total measure always satisfies k⌫k

1

 3m, i.e. Invariant 1 is preserved.4

Proof. We start by introducing some notation. Let Et and ⌫t be the energy, respectively the vectore of
mesures at the end of the tth iteration. Also, let �

t be the total amount of energy increases during that
iteration.5

Note that, since we only perform progress steps when k⇢k⌫,3  c⇢m
1/2�⌘, one progress step decreases energy

by at most 5 · c2⇢m1�2⌘, according to Lemma 17. Therefore the amount by which energy increases during an
iteration can be bounded by

�

t  Et � Et�1

+ 5c2⇢ ·m1�2⌘ (5.4)

At any point, the energy is capped by the total measure (Lemma 8). Therefore

Et 
��⌫t
��
1

(5.5)

Also, using Corollary 16 we get that every increase in energy by �

t increases the total measure by at most
2C ·�t. Hence ��⌫t

��
1


��⌫t�1

��
1

+ 2C ·�t (5.6)

4While the constants provided here are worse than those seen in the proof, we will use these loose bounds in order to
accomodate some future changes in the algorithm.

5Remember that energy can decrease during progress steps, as per Lemma 17; �t measures the total amount of all increases,
without accounting for the lost energy due to progress steps.
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Using (5.4) and summing over all T = cT ·m1/2�⌘ iterations of the algorithm we obtain:

TX

t=1

�

t 
TX

t=1

�
Et � Et�1

+ 5c2⇢ ·m1�2⌘
�

 ET
+ T · 5c2⇢ ·m1�2⌘


��⌫T

��
1

+ T · 5c2⇢ ·m1�2⌘


 
��⌫0
��
1

+

TX

t=1

2C ·�t

!
+ T · 5c2⇢ ·m1�2⌘

= m+ 2C ·
TX

t=1

�

t
+ T · 5c2⇢ ·m1�2⌘ (5.7)

where for the last two inequalities we applied (5.5) and (5.6).
Hence we obtain

TX

t=1

�

t  1

1� 2C

�
m+ T · 5c2⇢ ·m1�2⌘

�
 2 · cTm1/2�⌘ · 5c2⇢m1�2⌘

= 10cT c
2

⇢ ·m3/2�3⌘ (5.8)

and the measure increase is upper bounded by

2C ·
 

TX

t=1

�

t

!
= 2C · 10cT c2⇢ ·m3/2�3⌘

= m (5.9)

So Invariant 1 is satisfied.

5.2.2 Bounding the Number of Perturbations

We have just seen that the energy increase suffered due to perturbations is O(cT c
2

⇢ ·m3/2�3⌘
), which should

intuitively enable us to bound the number of perturbations, and thus wrap up the analysis of the algorithm.
The reason is that whenever we have to perturb the problem, the `

3

norm of the congestion vector is large
(i.e. k⇢k⌫,3 � c⇢ · m1/2�⌘), so the energy of the system is large: E = k⇢k2⌫.2 � k⇢k

2

⌫,3 � c2⇢ · m1�2⌘. Since
perturbable arcs are highly congested (see Definition 11), we expect them to contribute most of the energy.
This feature of perturbable args is highlighted by the following invariant:

Invariant 2. Whenever we perform a perturbation, k⇢Sk2⌫,2 �
1

2

c⇢ ·m1�2⌘.

This guarantees that every perturbation increases energy by at least ⌦
�
m1�2⌘

�
, which automatically implies

that the number of perturbations is bounded by O
�
cT c

2

⇢ ·m1/2�⌘
�
. Indeed, as seen in Lemma 15, with every

perturbation energy increases by 1

2

k⇢Sk2⌫,2. Therefore, assuming Invariant 2, we get that each perturbation
increases energy by at least 1

4

c⇢ ·m1�2⌘. Since we know from Lemma 18 that total energy increase is bounded
by 16cT c

2

⇢ ·m3/2�3⌘, we get that the number of perturbations performed during the execution of the algorithm
is at most 64cT c⇢ ·m1/2�⌘.
Enforcing the validity of this invariant will be done in Section 6, where we introduce a preconditioning
technique which enables us to gain more control over the behavior of electrical flows.
Hence we have proved the following Lemma:

Lemma 19. Assuming Invariant 2 is valid, the number of perturbations is at most 64cT c⇢ ·m1/2�⌘.
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This immediately concludes the running time analysis. Indeed, both progress steps and perturbations can be
implemented in ˜O(m) time by computing electrical flows using a fast Laplacian solver (see Theorem 1). The
number of progress steps is precisely cT ·m1/2�⌘, since this is hard coded in the description of the algorithm.
Also, the number of perturbations is O(cT c⇢ ·m1/2�⌘

), according to Lemma 19. Therefore the total running
time is ˜O

�
cT c⇢ ·m3/2�⌘

�
.

Theorem 20. Asumming Invariant 2 is valid, we can produce an exact solution to the unit-capacitated
minimum cost �-flow problem in ˜O

⇣
m10/7

log

4/3 W
⌘

time.

Proof. The proof is similar to the one for Theorem 9.
The algorithm performs a progress step only when k⇢k⌫,4  k⇢k⌫,3  m1/2�⌘, therefore µ̂ decreases by

a factor of 1 � 1

c⇢·m1/2�⌘ with every iteration. Therefore, in c⇢m
1/2�⌘

⇣
2 logm+ log

˜W
⌘
 cT · m1/2�⌘

iterations we reduce µ̂ to O(m�3

), and by Invariant 1 the duality gap of this solution will be
P

e ⌫eµ̂  m�2.
Each of the cT · m1/2�⌘ progress steps requires ˜O(1) electrical flow computations, and each of them can
be implemented in near-linear time, according to Theorem 1. Furthermore, assuming Invariant 2, we have
that the number of perturbations is at most 64cT c⇢ · m1/2�⌘, by Lemma 19. Similarly, each perturbation
can be implemented in nearly-linear time. Therefore the total running time required for obtaining a duality
gap of m�2 is ˜O

�
cTm

3/2�⌘
+ cT c⇢ ·m3/2�⌘

�
=

˜O
⇣
m10/7

log

4/3 W
⌘
. Then, using the repairing algorithm

from Section 7, we can round the solution to to an optimal one in nearly-linear time. So the total time is
˜O
⇣
m10/7

log

4/3 W
⌘
.

One should note that the ˜O
⇣
m10/7

log

4/3 W
⌘

running time can be reduced to ˜O
�
m10/7

logW
�

by employing
the scaling technique of [9]. Thus, we can reduce our problem to solving O(logW ) instances of our problem
where the costs are polynomially bounded. This enables us to change the poly logW factors from the running
time to poly log n (and thus have them absorbed by the ˜O notation) at the cost of paying only an extra
factor of logW .
However, ensuring that Invariant 2 always holds is a bit more subtle. Obtaining a provable guarantee will
actually be done by adding a preconditioner, which is carefully analyzed in Section 6.

6 Preconditioning the Graph

Our analysis from the previous section was crucially relying on the assumption that perturbable arcs con-
tribute most of the energy. Unfortunately, this assumption is not always valid. To cope with this problem,
we develop a modification of our algorithm that ensures that this assumption holds after all. Roughly
speaking, we achieve that by an appropriate preconditioning of our graph. This preconditioning is based
on augmenting the graph with additional, auxiliary edges which make the computed electrical flows better
behaved. These edges should not be thought of as being part of the graph we are computing our �-flows on.
Their sole effect is to guide the electrical flow computation in order to obtain a better electrical flow in the
original graph at the cost of slightly changing the demand we are routing.
These edges achieve the optimal trade-off between providing good connectivity in the augmented graph
(which lowers the congestion of arcs with low residual capacity) and preventing too much flow from going
through them (because of their sufficiently high resistance).
One difficulty posed by this scheme is that we need to control how much the routed demand gets modified.
This is easily controled by setting the resistances of the auxiliary edges to be sufficiently high; in contrast,
the magnitude of these resistances needs to be traded against the effect they have on the computed electrical
flow. At the end, we fix the demand using a combinatorial procedure (see Section 7) whose running time is
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proportional to the `
1

difference between the initial demand and the one routed by the algorithm. Therefore
we need to simultaneously ensure that preconditioner edges have sufficiently high resistance such that the
change in demand is not significant, and guarantee that the graph has good enough connectivity for Invariant
2 to hold. This trade-off will ultimately determine the choice of the parameter ⌘ = 1/14.

6.1 Using Auxiliary Edges for Electrical Flow Computations

In order to properly describe preconditioning, we need to partition the iterations of the algorithm into phases
(each of them consisting of a sequence of m2⌘ iterations), and show that a finer version of Lemma 18 holds,
for each of these phases. The reason is that the resistances on the auxiliary edges need to depend on the set of
measures in the graph. But measures increase over time, so the resistances need to be updated accordingly.
One should be careful about this aspect, since changing the resistances of auxiliary edges during every
iteration of the algorithm would destroy the potential based argument we described in Section 5. Therefore,
instead of adjusting the resistances every iteration, we do this only at the beginning of a phase. Over the
course of a phase, measures can not change too much, so the preconditioning argument will still be valid.

Definition 21. Partition the cT · m1/2�⌘ iterations of the algorithm into consecutive blocks of size m2⌘.
Such a block is called a phase. Hence the algorithm consists of cT ·m1/2�3⌘ phases.

Preconditioning consists of adding an extra vertex v
0

along with undirected edges (v
0

, v) for each vertex
v 2 P (recall that vertices in P correspond to vertices from only one side of the bipartition in the b-matching
instance). We will call these newly added edges auxiliary edges. Each of these auxiliary edges will have
resistance set to

rv0v =

m1+2⌘

a(v)
(6.1)

where we define
a(v) =

X

u2Q:e=(v,u)2E

⌫e + ⌫ē (6.2)

Recall that by ē we denote the partner arc of e (introduced in Definition 10), and that the quantities above
are defined with respect to the measures existing at the beginning of the phase.
Also, remember that these auxiliary edges exist only in order to provide a mildly different demand for which
electrical flows are better behaved. Once we are done perturbing, we perform a progress step on the graph
without auxiliary edges, but with the modified demand (i.e. the one that gets routed on the original graph,
after removing auxiliary edges).
The inclusion of auxiliary edges in the electrical flow computations requires the contribution of these edges to
the energy of the system to be included in the potential based argument from Theorem 18, when analyzing
the preconditioned steps.6

Remark 22. Even though we include additional edges for electrical flow computations, the energy bound
from Lemma 8 still holds (since including additional edges can only decrease energy).

This motivates partitioning the iterations into phases, since changing the resistances of auxiliary edges too
often could potentially make the energy vary wildly.
The following lemma shows that we can individually bound the energy and measure increase over any single
phase. What is crucial about the new proof is that it does not require any control over how energy changes
between iterations belonging to different phases. Therefore, resetting the resistances of auxiliary edges at
the beginning of a phase will have no effect on the result described in Lemma 18.

6The `3 norm of the congestion vector will still be measured only with respect to the arcs in the original graph.
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The precise statement concerning energy and measure increase during a phase is summarized in the following
lemma, whose proof we defer to Appendix D.

Lemma 23. During a single phase, the total energy increase due to perturbations is at most 16c2⇢ · m.
Furthermore, the measure increase during a single phase is at most 2

cT
· m1/2+3⌘. Also, the total mesure

always satisfies k⌫k
1

 3m, i.e. Invariant 1 is preserved.

It immediately follows that this is simply a refinement of Lemma 18:

Corollary 24. The total energy increase due to perturbations is at most 16cT c
2

⇢ · m3/2�3⌘, and the result
described in Lemma 18 is still valid.

The new version of the algorithm which includes the effect of the auxiliary edges is described below.

Algorithm 2 Perturbed interior-point method with preconditioning edges (parameters: c⇢ = 400

p
3 ·

log

1/3
˜W , cT = 3c⇢ log ˜W )

1. initialize primal and dual variables (f, y) (as shown in Section 4)

2. repeat for cT ·m1/2�3⌘ phases

3. reset auxiliary edge resistances (as described in (6.1))

4. repeat m2⌘ times

5. while k⇢k⌫,3 > c⇢ ·m1/2�⌘

6. perform perturbation (as shown in Section 5.1)

7. perform progress steps on the original graph (as shown in Section 4.2)

Before proving that this version of the algorithm forces Invariant 2 to stay valid, we first bound the change
in demand caused by the auxiliary edges. We first show that, due to Invariant 1, the total amount of flow
that gets routed electrically through auxiliary edges is small.

Proposition 25. Let P be the set of auxiliary edges. Then the total amount of electrical flow on these edges
during any progress step satisfies

��� ˆfP
���
1

 5 ·m1/2�⌘.

Proof. From Invariant 1 and Lemma 8 we have that the total energy satisfies E  3m. The energy contributed
by the auxiliary edges is

X

(v0,v)2P

rv0v · f2

v0v =

X

e2P

m1+2⌘

a(v)
· f2

v0v  3m (6.3)

Applying Cauchy-Schwarz we obtain a bound for the `
1

norm of fP :

25



kfPk
1

=

X

(v0,v)2P

p
a(v) · |fv0v|p

a(v)



vuuut

0

@
X

(v0,v)2P

a(v)

1

A

0

@
X

(v0,v)2P

f2

v0v

a(v)

1

A


r
2 k⌫k

1

· 3m

m1+2⌘


r
2 · 3m · 3m

m1+2⌘

 5 ·m1/2�⌘

We used the fact that summing over all a(v)’s we obtain precisely twice the total measure, since each measure
on an arc gets counted exactly twice. Then we used Invariant 1, and (6.3).

This proposition shows that the demand routed within a progress step is off by at most 5m1/2�⌘ from the
demand routed by the iterate f at that point. Using this fact, we can show that the flow obtained in the
end routes a demand that is off by at most cT ·m1/2�⌘ from the original demand.

Lemma 26. Consider the last flow iterate fT , and let �T be the demand routed by this flow. Then the
difference between �T and the original demand � satisfies

���T � �
��
1

 cT ·m1/2�⌘.

Proof. We show by induction that after t iterations, the demand routed by f t satisfies k�t � �k
1

 t.
The base case is t = 0 where �0

= �, and the hypothesis holds. Now let us show that if the induction
hypothesis holds after t � 1 iterations, then it also holds after t. By Proposition 25 we have that the
progress step first produces an electrical flow ˆf t which routes a demand �̂t on the original graph satisfying���̂t � �t�1

��
1

 5m1/2�⌘. Therefore, noting that the flow gets updated by setting it to (1 � �)f t
+ � ˆf t for

�  1

8k⇢k⌫,4
(see Section 4.2), and using the fact that progress steps are done only when k⇢k⌫,3  c⇢ ·m1/2�⌘

(therefore �  1

8·c⇢·m1/2�⌘ ), we have that the demand �t routed by the averaged flow satisfies:

���t � �
��
1


���t�1 � �

��
1

+

���t�1 � �t
��

=

���t�1 � �
��
1

+

���t�1 �
�
(1� �)�t�1

+ ��̂t
���

1

=

���t�1 � �
��
1

+ �
���t�1 � �̂t

��
1

 t� 1 + � · 5m1/2�⌘

 t� 1 +

1

8 · c⇢m1/2�⌘
· 5m1/2�⌘

 t� 1 + 1

= t

Centering the solution does not change the demand, so the newly obtained flow f t has the same demand
�t, which satisfies the bound above. Therefore, after T = cT ·m1/2�⌘ iterations, we have that

���T � �
��
1


cT ·m1/2�⌘.
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6.2 Proving Invariant 2

We can finally proceed with proving that, for this version of the algorithm, Invariant 2 holds. We do so by
upper bounding the `

3

norm of the congestions of unperturbable arcs k⇢
¯Sk⌫,3. Showing that this quantity is

significantly smaller than ˜O
⇣�

cT c
2

⇢

�
1/6 ·m1/2�⌘

⌘
whenever we perform a perturbation automatically implies

our result; this is because this lower bounds the `
3

norm of congestions of perturbable arcs, and therefore
also their energy.

Proposition 27. Let ¯S be the set of unperturbable arcs. If, whenever we perform a perturbation, k⇢
¯Sk⌫,3 

10(cT c
2

⇢)
1/6 ·m1/2�⌘, then Invariant 2 holds.

Proof. Recall that when we perform a perturbation, we have k⇢k⌫,3 � c⇢ ·m1/2�⌘. If k⇢
¯Sk⌫,3  10(cT c

2

⇢)
1/6 ·

m1/2�⌘, then

k⇢Sk⌫,3 � c⇢ ·m1/2�⌘ � 10(cT c
2

⇢)
1/6 ·m1/2�⌘

= c⇢ ·m1/2�⌘ � 10

⇣
3 log

˜W · c3⇢
⌘
1/6

·m1/2�⌘

= c⇢ ·m1/2�⌘ � 10

⇣
3 log

˜W
⌘
1/6

· c1/2⇢ ·m1/2�⌘

= (400

p
3 log

1/3
˜W )m1/2�⌘ � 10 · 31/6 · log1/6 ˜W · (400

p
3 log

1/3
˜W )

1/2 ·m1/2�⌘

= 200

p
3 log

1/3
˜W ·m1/2�⌘

=

1

2

c⇢ ·m1/2�⌘

Hence k⇢Sk2⌫,2 � k⇢Sk
2

⌫,3 �
1

2

c⇢ ·m1�2⌘.

Upper bounding the `
3

norm of ⇢ on unperturbable edges is done by partitioning them into sets, and
separately bounding their `3

3

norms. As a matter of fact, all the work we have to do concerns arcs with
congestions within the range [c3⇢ ·m1/2�3⌘,

p
3 ·m1/2

], since the energy upper bound enforced by Invariant
2 controls the maximum congestion, while those with lower congestion immediately satisfy the required `

3

norm bound.

Lemma 28. k⇢
¯Sk⌫,3  10(cT c

2

⇢)
1/6 ·m1/2�⌘.

Proving Lemma 28 needs a careful analysis based on bounding the contributions from edges at different
scales. Doing so requires extending the analysis from [24] in a slightly more complicated fashion. That
analysis looks at the line embedding of graph vertices given by their potentials, and separately upper bounds
the energy contributed by sets of arcs according to how stretched each of them is in the embedding. One
particular obstacle posed by our setup is that, while the analysis crucially relies on the existence of auxiliary
arcs, in our case there are no auxiliary arcs connected to vertices in Q. This makes it difficult to prove
statements about the amount of energy on partner arcs (u, v) and (ū, v) (connected to the same vertex v in
Q), since the auxiliary edges only control how far apart in the embedding u and ū are. Unfortunately, they
do not immediately say anything about v, which could potentially be very far from both u and ū, and thus
the two partner arcs could contribute a lot of energy.
We will see that our desired bound still holds. Our proof technique relies on decomposing the electrical flow
into a sum of two electrical flows ˆf (P ) and ˆf (Q), one of which can be bounded directly and the other of which
has no net flow through any arc in Q.
We additionally express f = f (P )

+

ˆf (Q), where we define

f (P )

= f � ˆf (Q) (6.4)
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The following lemma, whose proof can be found in Appendix B, states the existence and properties of such
electrical flows.

Lemma 29. Let ˆf be an electrical flow in the graph with auxiliary edges. There exist electrical flows ˆf (P )

and ˆf (Q) such that:

1. ˆf (P ) has no demand on vertices in Q [ {v
0

}.

2. For any pair of partner edges e and ē, and writing f (P )

= f � ˆf (Q), we have re

⇣
f
(P )

e

⌘
2

+ rē

⇣
f
(P )

e

⌘
2



⌫e + ⌫ē and re

⇣
ˆf
(Q)

e

⌘
2

+ rē

⇣
ˆf (Q)

⌘
2

 ⌫e + ⌫ē.

Now, we additionally define ⇢
(P )

e =

| ˆf(P )
e |
fe

and ⇢
(Q)

e =

| ˆf(Q)
e |
fe

. We split ¯S into two subsets:

A
1

=

⇢
e 2 ¯S|⇢(P )

e � 1

2

⇢e

�

and
A

2

=

⇢
e 2 ¯S|⇢(P )

e <
1

2

⇢e

�

2

for which we bound the contributions to the `
3

norm separately. Note that for any edge e in A
2

, ⇢(Q)

e � 1

2

⇢e.
This implies that

k⇢
¯Sk

3

⌫,3  k⇢A1k
3

⌫,3 + 8

���⇢(Q)

A2

���
3

⌫,3

 k⇢A1k
3

⌫,3 + 8

���⇢(Q)

���
3

⌫,3

First, we want to bound
��⇢(Q)

��3
⌫,3

:

Lemma 30. Suppose that for all pairs of partner edges e and ē, max(⌫e,⌫ē)

min(⌫e,⌫ē)
 x. Then

��⇢(Q)

��3
⌫,3


(3

p
1 + x)m.

Proof. We look at the contribution of a single pair of partner arcs, e and ē, to
��⇢(Q)

��3
⌫,3

. This is equal to

⌫e

���⇢(Q)

e

���
3

+ ⌫ē

���⇢(Q)

ē

���
3

= re

⇣
ˆf (Q)

e

⌘
2

⇢(Q)

e + rē

⇣
ˆf (Q)

⌘
2

⇢
(Q)

ē

= re

⇣
ˆf (Q)

e

⌘
2

vuutre

⇣
ˆf
(Q)

e

⌘
2

⌫e
+ rē

⇣
ˆf
(Q)

ē

⌘
2

vuutrē

⇣
ˆf
(Q)

ē

⌘
2

⌫ē



vuuutmax

✓
re

⇣
ˆf
(Q)

e

⌘
2

, rē

⇣
ˆf
(Q)

ē

⌘
2

◆

min(⌫e, ⌫ē)

✓
re

⇣
ˆf (Q)

e

⌘
2

+ rē

⇣
ˆf
(Q)

ē

⌘
2

◆


r

⌫e + ⌫ē
min(⌫e, ⌫ē)

(⌫e + ⌫ē)


p
1 + x(⌫e + ⌫ē).

Here, we applied property 2 from Lemma 29. Summing over all pairs of partner arcs and using Invariant 1,
we get

��⇢(Q)

��3
⌫,3
 (3

p
1 + x)m, as desired.
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Corollary 31.

��⇢(Q)

��3
⌫,3
 5m5/4�(3/2)⌘

Proof. We can apply Lemma 30 with x = m1/2�3⌘, since by definition we never perturb arcs with 1

fe
>

m1/2�3⌘. So
��⇢(Q)

��3
⌫,3

p
1 +m1/2�3⌘ · 3m  5m5/4�(3/2)⌘.

It remains to bound k⇢A1k
3

⌫,3. First, note that for every edge e in A
1

, if ⇢e >
q

40cT c2⇢ ·m1/2�3⌘, we have
re =

⌫e
f2
e
, implying that

re

��� ˆfe
��� =

⌫e
fe

⇢e

� 1

fe
⇢e

� m1/2�3⌘⇢e.

By the definition of A
1

, re

��� ˆf (P )

��� is at least half of 1

2

m1/2�3⌘⇢e. Similarly, re
⇣
ˆf
(P )

e

⌘
2

� 1

4

ref
2

e . Thus for any

choice of a threshold T >
q
40cT c2⇢ ·m1/2�3⌘ on the ⇢, we have

X

e2A1,⇢e�T

ref
2

e  4

X

re

��� ˆf(P )
e

���� 1
2m

1/2�3⌘T

re

⇣
ˆf (P )

e

⌘
2

.

Next, we consider a “quotient” or “Schur complement” electrical network N on the vertices of P [ {v
0

} only,
replacing the pair of arcs (u, v) and (ū, v) with one edge (u, ¯u) with resistance ruv + rūv. We consider this
edge to have measure ⌫uv + ⌫ūv. Note that this is in some sense undoing the b-matching reduction from
Lemma 2.
Because they have 0 net flow on all vertices in Q, we can map flows f (P ) and ˆf (P ) to flows in N , f (N)

and ˆf (N), by setting the flow from u to ū in the new flow to that from u to v (or equivalently, by flow
conservation, v to ū) in the original flow. This mapping preserves the demands on the vertices in Q, so
f (N) still satisfies the same demands as ˆf (N). It also preserves the electrical nature of ˆf (N), since f (N) can
be induced by the same voltages. Finally, since the resistance on e = (u, ū) is set to ruv + rūv, we have

re

⇣
f
(N)

e

⌘
2

= ruv

⇣
f
(P )

uv

⌘
2

+ rūv

⇣
f
(P )

ūv

⌘
2

, and in particular for any edge e in N we have re

⇣
f
(N)

e

⌘
2

 ⌫e.

Now we may apply our general preconditioning result, which bounds the total energy of edges with high
voltage in terms of the resistance of the preconditioning edges:

Lemma 32. Let N be an electrical network, on a set of vertices P plus a special vertex v
0

, with each edge e
not incident to v

0

assigned a measure ⌫e. Let ⌫0 be another assignment of measures such that ⌫0  ⌫, with the
total “missing measure”

P
e ⌫e� ⌫0e = M , and let each vertex v be connected to v

0

by an edge with resistance
R

a(v) , where a(v) is the sum of ⌫0e over edges e incident to v. Let f (N) be a flow on N , with no flow on any

edge incident to v
0

and with re
�
f (N)

�
2  ⌫e for every edge not incident to v

0

, and let ˆf (N) be the electrical
flow on N satisfying the same demands as f (N). Then

X

re

��� ˆf(N)
e

����V

re

⇣
ˆf (N)

e

⌘
2


32R

P
e ⌫e

V 2

+ 2M.

This is proved in Appendix D. Here, we set ⌫0 to the measures from the beginning of the preconditioning
phase; by Lemma 23 the missing measure M  2

cT
·m1/2+3⌘. The preconditioning edges were weighted with
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R = m1+2⌘. This implies that for T >
q
40cT c2⇢ ·m1/2�3⌘,

X

e2A1,⇢e�T

ref
2

e  4 ·
 
32 ·m1+2⌘ ·

P
e ⌫e�

1

2

m1/2�3⌘ · T
�
2

+

2

cT
·m1/2+3⌘

!
 512 ·m8⌘ · 3m

T 2

+

8

cT
·m1/2+3⌘.

On the other hand, for all T we trivially have
P

e2A1,⇢e�T ref
2

e  3m, by Invariant 1 combined with Lemma
8. Now, we can write

k⇢A1k
3

⌫,3 = 3

ˆ p
3·m1/2

0

0

@
X

e2A3,⇢e�T

ref
2

e

1

A dT

 3

 ˆ p
40cT c2⇢·m

1/2�3⌘

0

3m dT

!
+ 3

 ˆ p
3·m1/2

m1/2�3⌘

✓
1536 · m

1+8⌘

T 2

+

8

cT
·m1/2+3⌘

◆
dT

!

 9

q
40cT c2⇢ ·m3/2�3⌘

+ 42m1+3⌘
+ 3

ˆ 1

m1/2�3⌘

✓
1536

m1+8⌘

T 2

◆
dT

 9

q
40cT c2⇢ ·m3/2�3⌘

+ 42m1+3⌘
+ 4608m1/2+11⌘

 9

q
40cT c2⇢ ·m3/2�3⌘

+ 42m1+3⌘
+ 4608m1/2+11⌘.

This determines our choice of ⌘ =

1

14

–it ensures that m1/2+11⌘
= m3/2�3⌘ in the last term, which is essentially

the bound we need. Plugging that in it also ensures that m1+3⌘ in the second term is less than m3/2�3⌘.
Finally, we had k⇢

¯Sk
3

⌫,3  k⇢A1k
3

⌫,3 + 8

��⇢(Q)

��3
⌫,3

, with
��⇢(Q)

��  5m5/4�(3/2)⌘; with ⌘ =

1

14

we also have

m5/4�(3/2)⌘  m3/2�3⌘. Thus we have k⇢
¯Sk

3

⌫,3  1000

q
cT c2⇢m

3/2�3⌘, or k⇢
¯Sk⌫,3  10(cT c

2

⇢)
1/6 · m1/2�⌘,

proving Lemma 28.

7 Repairing the Matching

In this section we assume the b-matching view on �-flows. Hence, summarizing Theorem 20, Lemma 26 and
the proof of Invariant 2 in Section 6 we obtain the following result.

Theorem 33. Consider a ternary instance G = (V,E, c) of the weighted perfect bipartite b-matching problem
when kbk

1

= O(m). In ˜O(m10/7
log

4/3 W ) time we can either conclude that G does not have a perfect b-
matching or return a primal-dual pair with duality gap at most m�2 to the perfect b+-matching problem,
where kb+ � bk

1

 cTm
3/7.

In this section we will be “repairing” the feasible primal-dual solution given by the above theorem. Our
repair procedure will consists out of four steps. In the first step – Lemma 35, we will reduce the duality
gap to 0. Next, in Lemma 37 we will round the solution to be integral. In the third step, we will repair
the perturbations done to demands in Theorem 40. Finally, we will use scaling to reduce the dependence on
logW .
The main tool we are going to use is the directed version of the graph bipartite graph that encodes alternating
paths with respect to the current b-matching. Let G = (V

1

[V
2

, E, c) be a bipartite weighted graph in which
we want to find a minimum weight perfect b-matching. Given some fractional b-matching x we define�!
Gx = (V

1

[ V
2

,
�!
E x,
�!c x) to be a directed version of the graph G where all edges are directed from V

1

to
V
2

and additionally we add edges of x that are directed from V
2

to V
1

(edges of x have two copies in both

30



directions). Moreover, the weights of edges in x are negated. Formally,

�!
E x = {(u, v)|uv 2 E, u 2 V

1

, v 2 V
2

} [ {(u, v)|xuv 6= 0, u 2 V
2

, v 2 V
1

} ,
�!c x(u, v) =

⇢
cuv if u 2 V

1

, v 2 V
2

,
�cuv if u 2 V

2

, v 2 V
1

.

We observe a path in
�!
Gx correspond to alternating paths in G with respect to x. Let Fx denote the set of

vertices whose demand is not fully satisfied, i.e., Fx = {v 2 V |x(v) < bv}. We now observe that if a path ⇡
starts in V

1

\ Fx and ends in V
2

\ Fx that it is an augmenting path with respect to x and can be used to
enlarge the b-matching x. When the b-matching x is integral we can interpret it as a multiset of edges which
we denote by M . In such case we will use

�!
GM to denote

�!
Gx. The important property of

�!
Gx is that given

an optimal primal solution x it allows to find optimal dual solution. Let D�!
GM

(V
1

, u) denote the distance

from V
1

to u in
�!
GM . The following property was first observed by Iri [13].

Lemma 34. Consider a ternary instance G = (V,E, c) of the weighted perfect bipartite b-matching problem
if x is an optimal b-matching then optimal dual solution y is given as:

yv =

(
�D�!

GM
(V

1

, v) if v 2 V
1

,

D�!
GM

(V
1

, v) if v 2 V
2

.

Proof. First, observe that
�!
Gx does not contain negative length cycles by optimality of x, so the above

distances are well defined. Second, observe that y is feasible as for each uv 2 E, where u 2 V
1

and v 2 V
2

we
have D�!

GM
(V

1

, v)  D�!
GM

(V
1

, u)+cuv, so yv+yu  cuv. Third, when xuv 6= 0 both edges (u, v) and (v, u) are

present in
�!
GM . One edge implies feasibility yv + yu  cuv, whereas in the second one all signs are reversed

�yv � yu  �cuv. Hence, the equality yv + yu = cuv and y is optimal.

The above observation will be useful in the following lemma where we will construct optimal primal-dual
pair. We will first find an optimal primal solution to the slightly perturbed instance and then compute the
corresponding optimal dual.

Lemma 35. Consider a ternary instance G = (V,E, c) of the weighted perfect bipartite b-matching problem.
Given a feasible primal-dual pair (x, y) with duality gap at most m�2 in O(m+n log n) time we can compute
an optimal primal-dual pair (x+, y+) to the perfect b+-matching problem, where kb+ � bk

1

 m�2.

Proof. First, we obtain x+ from x by rounding to 0 all edges that have value of x smaller than m�2, i.e.,

x+

uv =

(
0 if xuv  m�2,

xuv otherwise.

Moreover, we define b+(u) =

P
uv x(v). Observe that all uv 2 E such that x+

uv 6= 0 we need to have
cuv � yu � yv  m�2, as otherwise the duality gap would be bigger then m�2. Consider reduced weights (or
the slack) of edges that are defined as c̃uv = cuv � yu � yv. Now define

c̃+uv =

(
0 if c̃uv  m�2,

c̃uv otherwise.

We denote by ˜D+

�!
GM

(V
1

, v) the distances in
�!
Gx with respect to c̃+uv, whereas by ˜D�!

GM
(V

1

, v) the distances

with respect to c̃uv. Observe that
�!
Gx with weights given by c̃+uv does not contain negative weight edges, so
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distances with respect to c̃+uv can be computed in O(m+n log n) time using Dijkstra’s algorithm. Moreover,
we observe that

D�!
GM

(V
1

, v) =

(
˜D�!
GM

(V
1

, v) + yv if v 2 V

1

,

˜D�!
GM

(V
1

, v)� yv if v 2 V

2

.

We have that ˜|D�!
GM

(V
1

, v)� ˜D+

�!
GM

(V
1

, v)|  m�1 and we know that D�!
GM

(V
1

, v) is integral, so for

D+

�!
GM

(V
1

, v) =

8
<

:

˜D+

�!
GM

(V
1

, v) + yv if v 2 V

1

,

˜D+

�!
GM

(V
1

, v)� yv if v 2 V

2

.

we have D�!
GM

(V
1

, v) = [D+

�!
GM

(V
1

, v)], where [.] is the nearest integer function.

Now we are ready to round the above solution – for the rounding step it is essential that primal solution is
optimal. The following result that was proven recently in [15] will become handy for us.

Theorem 36. [15] Let N be a flow network with integral capacities and edge costs. Let f be a flow in N
with integral total value then in O(m log n) one can compute integral flow f 0 with the same flow value and
no worse cost. Moreover, the support of f 0 is a subset of the support of f .

The above result is obtained by performing fractional cycle cancelation using dynamic link-cut trees [31].

Lemma 37. Let x be the optimal primal and y be the optimal dual solution to the b+-matching problem,
where kb+ � bk

1

 cT ·m3/7. In O(m log n) time we can compute an integral (2cT ·m3/7
+1)-near b-matching

M ✓ E such that M is included in the support of x, i.e., M ✓ {e 2 E|xe 6= 0}.

Proof. For graph G let V
1

and V
2

be the bipartition of V . For notational convenience in the remainder of
this section we use V

1

= P and V
2

= Q. First, for each vertex v 2 V we define b to be bv = min(bv, b
+

v ).
Moreover, we round down b(V

1

) and b(V
2

) to the nearest integer. Observe that kb+ � bk
1

 2cT ·m3/7
+1.

Now, for each x(E(v)) > bv we round down x(E(v)) to bv , i.e., we decrease x on arbitrary edges incident
to v, so that the fraction of edges incident to v becomes bv . Let us denote the resulting vector by x. Now,
let us view the b-matching problem as a flow problem by:

• directing edge in e 2 E from V
1

to V
2

– the flow on arc e is equal x
e ,

• adding source s and sink t,

• connecting s to all vertices in v 2 V
1

– the flow on arc sv is equal to x
(E(v)),

• connecting all vertices in v 2 V
2

to t – the flow on arc vt is equal to x
(E(v)).

By applying Theorem 36 to the above fractional flow we obtain integral flow f 0 with value � kbk
1

/2� 2cT ·
m3/7 � 1. This flow induces (2cT ·m3/7

+ 1)-near b-matching M in G.

We observe that complementary slackness conditions still hold between M and y (i.e., for each uv 2 M we
have cuv = yu + yv) because M is contained in the support of x. We will exploit this fact in the following.
In this moment we have executed two steps of our repair procedure – we have reduced the duality gap to 0
and rounded the solution to be integral. Now, we are ready to repair the perturbations done to demands.
Our repair procedure is presented in Algorithm 3. It finds a minimum weight perfect b-matching in G. In
the procedure we first apply Theorem 33 then we round the primal solution using Theorem 36. Next, we
repeatedly find shortest path in

�!
GM from V

1

\ FM to V
2

\ FM with respect to reduced weights c̃. Reduced
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Algorithm 3 Algorithm for computing minimum weight perfect b-matching.

1. Apply Theorem 33 to G and let x and y be the resulting primal and dual solution to the perturbed b+.

2. Apply Theorem 36 to x to obtain (2cT ·m3/7
+ 1)-near b-matching M .

3. while M is not a perfect b-matching repeat

4. (Invariant: for all edges e 2 �!GM [RM ] we have c̃e � 0.)

5. Construct
�!
GM using G,M, c̃.

6. Find a shortest path ⇡ from V
1

\ FM to V
2

\ FM in
�!
GM .

7. for all u 2 V
1

[ V
2

do

8. if u is reachable from V
1

in
�!
GM then

9. if u 2 V
1

then yu := yu �D�!
GM

(V
1

, u)

10. else yu := yu +D�!
GM

(V
1

, u)

11. Enlarge M using augmenting path ⇡.

12. Return M

weights (or the slack) are defined as c̃uv = cuv � yu � yv. These paths are used to augment the matching.
Augmentation of the matching using shortest paths guarantees that M is extremal, i.e., M is the minimum
weight perfect degM -matching. In degM -matching the demand for vertex v is equal to degM (v), i.e., number
of edges incident to v in M .7 The following corollary states that this is true at the beginning of the algorithm.

Corollary 38. The matching M constructed by Theorem 36 is extremal.

Proof. Observe that edges of M are tight in G with respect to the corresponding dual solution y, soP
v2V (M)

yvbv = c(M) and this proves that M is optimal degM -matching.

In order to be able to efficiently find these shortest paths in
�!
GM we need to make sure that during the

execution of the algorithm reduced weights are nonnegative. At the beginning, by the definition of b-vertex
packing, the reduced weights are nonnegative. However, when augmenting the matching using some path ⇡

we change direction of some edges on ⇡ in
�!
GM and flip the sign of their weights. The crucial part is to first

reweigh the dual to make sure that all edges on ⇡ have reduced cost equal to 0. If this is the case reversing
edges does not introduce negative weights. Let us denote by RM the set of vertices reachable from V

1

\ FM

in
�!
GM and by D�!

GM
(V

1

, u) the distance from V
1

to u in
�!
GM .

First, we need to prove that the invariant in the while loop of the algorithm holds.

Lemma 39. During the execution of the wile loop in Algorithm 3 for all edges e 2 �!GM [RM ] we have c̃e � 0.

Proof. First, we observe that set of reachable vertices RM decreases during the execution of the algorithm.
The only step that alters set RM is the matching augmentation that changes the direction of some edges on
⇡. Hence, RM would increase when there would be an edge of ⇡ entering RM , but this is impossible as ⇡
needs to be contained in RM by definition.

7Similar definition is used in Edmonds-Karp algorithm. However, there extremal matching is defined to be maximum weight
matching of given size.
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Now, we need to consider the reweighing done in the algorithm. We will prove that when it is done we have
that c̃e = 0 for all e 2 ⇡ and c̃e � 0 for all e 2 �!GM [RM ]. In such case augmenting M using ⇡ will not
introduce negative weights to

�!
GM as all weights on ⇡ will be zero.

As for the fact that c̃e = 0 for all e 2 ⇡ we need to consider two cases. Let uv 2 ⇡ where u 2 V
1

and v 2 V
2

.

• uv 2M – Observe that in
�!
GM arc vu enters u and lies on the shortest path ⇡, so we have D�!

GM
(V

1

, u) =

D�!
GM

(V
1

, v)� c̃uv, by definition of �!c M . By our reweighing rule the new reduced weight of uv is equal
to c̃(uv) +D�!

GM
(V

1

, u)�D�!
GM

(V
1

, v) = 0.

• uv 62 M – As ⇡ is the shortest path, for arc uv we have that D�!
GM

(V
1

, v) = D�!
GM

(V
1

, u) + c̃uv by
definition of �!c M . This in turn means that the new reduced weight of uv is c̃uv + D�!

GM
(V

1

, u) �
D�!

GM
(V

1

, v) = 0.

Let us now consider edges e 62 E(⇡) but e 2 �!G [RM ]. We have two cases here as well. Let uv 2 E(⇡) where
u 2 V

1

and v 2 V
2

.

• uv 2 M – We have D�!
GM

(V
1

, u)  D�!
GM

(V
1

, v) � c̃uv as well as D�!
GM

(V
1

, v)  D�!
GM

(V
1

, u) + c̃uv,
because edges of M are bidirected. Hence, D�!

GM
(V

1

, v) = D�!
GM

(V
1

, u) + c̃uv and the new weight of uv
is c̃uv +D�!

GM
(V

1

, u)�D�!
GM

(V
1

, v) = 0.

• uv 62M – By the properties of the distance function we have that D�!
GM

(V
1

, v)  D�!
GM

(V
1

, u)+ c̃uv, so
the new reduced weight of uv is c̃uv(+D�!

GM
(V

1

, u)�D�!
GM

(V
1

, v) � 0.

We are now ready to prove the correctness of the algorithm and bound its running time.

Theorem 40. Assuming kbk
1

= O(m), we can find a minimum weight perfect b-matching in ˜O(m10/7
log

4/3 W )

time.

Proof. We apply Algorithm 3.The correctness of the algorithm follows by the fact that after each augmen-
tation M is extremal. Hence, when M is perfect it needs to be minimum cost perfect b-matching.
The execution of Theorem 33 requires ˜O(m10/7

log

4/3 W ) time. In order to round x to M using Theorem 36 we
need O(m log n) time. Finally, as M is a ˜O(m3/7

)-near b-matching we will find at most ˜O(m3/7
) augmenting

paths with respect to it. Finding each augmenting path takes O(m+n log n) time using Dijkstra’s algorithm,
so this part takes ˜O(m10/7

) time. Therefore the total running time is ˜O
⇣
m10/7

log

4/3 W
⌘
.

Theorem 41. Assuming kbk
1

= O(m), we can find a maximum weight vertex b-packing in ˜O(m10/7
log

4/3 W )

time.

Proof. One would like to apply Theorem 33 to G0 to produce the dual, but Algorithm 3 does not compute
a dual solution. The problem is that y in the algorithm is defined only on the set RM , i.e., nodes reachable
in
�!
GM from free vertices in V

1

. There is, however, an easy fix to this. Let v 2 V
1

\ V (M) be arbitrary free
vertex in V

1

. We define
�!
G 0

M to be a graph obtained from
�!
GM by connecting v with all vertices in V

2

with an
edge of cost n kwk1. Such heavy edges will never be used by a minimum cost perfect 1-matching, but now
we always have RM = V

1

[ V
2

. Hence, by the invariant, y computed during the execution of Algorithm 3
needs to form a maximum vertex b-packing.
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Algorithm 4 Scaling algorithm for computing maximum weight b-packing in G = (V
1

[ V
2

, E, c).

1. If cuv = 0 for all uv 2 E then return yv = 0 for all v 2 V
1

[ V
2

.

2. Recursively find the optimal dual solution y for a graph G = (V
1

[ V
2

, E, c) where cuv = b cuv
2

c for all
uv 2 E.

3. Set yv = 2yv for all v 2 V
1

[ V
2

.

4. Set c̃uv = cuv � yu � yv for all uv 2 E.

5. Set c̃nuv = min(c̃uv, kbk
1

).

6. Find the optimal dual solution ỹn for the graph ˜Gn
= (V

1

[ V
2

, E, c̃n).

7. Return y + ỹn as the optimal dual solution for G.

In order to reduce the dependency on logW in the running time, we apply the scaling technique of Gabow (see
[9]). This enables us to reduce our problem in a black-box manner to solving O(logW ) instances where the
weights are polynomially bounded, i.e., W  kbk

1

. So the running time will be reduced to ˜O(m10/7
logW ).

This is described in the following theorem that shows how to execute scaling on the dual problem.

Theorem 42. Assuming kbk
1

= O(m), we can find a maximum weight vertex b-packing in ˜O(m10/7
logW )

time.

Proof. Consider Algorithm 4 that executes cost scaling for the dual solution. It first recursively computes
the dual problem for a graph with costs that are smaller by a factor of 2. Then it uses the obtained solution
as a starting point for the computation of the dual solution in the original graph.
The only step of the algorithm that requires some explanation is step 5 – if we would have removed this
step the algorithm would compute the dual solution as it only works with reduced weights. When this step
is present we just need to argue that ỹn is the optimal dual solution for ˜G = (V

1

[ V
2

, E, c̃). This can
be shown by arguing that the optimal primal solution in ˜G never uses edges of weight higher than kbk

1

.
Take an optimal primal solution ˜M for ˜G and take an optimal primal solution M for G. By the scaling
procedure edges in M have weights either 0 or 1, as they were tight for y. By optimality of ˜M we know
thatc̃( ˜M)  c̃(M)  kbk

1

, so no single edge of ˜M can have weight higher than kbk
1

.

The above theorem can be easily extended to computing the minimum weight perfect b-matching. We only
need to take the optimal dual solution and restrict our attention to edges which are tight with respect to
it. By finding any perfect b-matching in this unweighted tight graph we obtain the minimum weight perfect
b-matching in the original graph.

Corollary 43. Assuming kbk
1

= O(m), we can find a minimum weight perfect b-matching in ˜O(m10/7
logW )

time.

8 Shortest Paths with Negative Weights

We are given a directed graph G(V,E, c) together with the edge weight function c : E ! {�W, . . . , 0, . . . ,W}
and a source vertex s. Our goal is to compute shortest paths from s to all vertices in V . We will start by
reducing this shortest paths problem to the weighted perfect 1-matching problem using the reduction that
was given by Gabow [9]. The main step of this reduction is a construction of a bipartite graph G

12

=
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(V
1

[ V
2

, E
12

, c
12

) such that the vertex packing problem in G
12

induces a valid potential function on G.
Using this potential function we can reweigh w to remove negative weights.
We define a bipartite graph G

12

= (V
1

[ V
2

, E
12

, c
12

) in the following way

V
1

= {v
1

|v 2 V } ,
V
2

= {v
2

|v 2 V } ,
E

12

= {u
2

v
1

|uv 2 E} [ {v
1

v
2

|v 2 V } .

The weight function w
12

is defined as follows

c
12

(uivj) =

⇢
cuv if uv 2 E,
0 otherwise

Let us observe that a perfect 1-matching in G
12

corresponds to a set of cycles in the graph G. This leads to
the following observation.

Lemma 44. The graph G contains a negative length cycle if and only if the weight of minimum cost perfect
1-matching in G

12

is negative.

Hence, if the weight of minimum cost perfect 1-matching in G
12

is negative we conclude that there is a
negative weight cycle in the graph G. Hence, we assume that the weight of minimum cost 1-matching is
equal to 0. Moreover, the dual solution to 1-matchings, i.e., 1-vertex packing in G

12

induces a potential
function on G. Let y : V

1

[ V
2

! R be the maximum weight vertex 1-packing.

Lemma 45. Let y be maximum vertex 1-packing in G
12

. If y(V
1

[ V
2

) = 0 then pv := y(v
1

) is a potential
function on G, i.e., cuv + pu � pv � 0.

Proof. As y(V
1

[ V
2

) = c(M) = 0, i.e., the minimum weight perfect matching in G
12

has weight zero. This
means that all edges v

1

v
2

for v 2 V are tight as they form a perfect 1-matching of weight 0. This in turn
implies that y(v

1

) = �y(v
2

). Thus for an edge uv 2 E we have

y(u
2

) + y(v
1

)  c
12

(u
2

v
1

)

�y(u
1

) + y(v
1

)  c
12

(u
2

v
1

)

�pu + pv  cuv.

By combining Theorem41 with the above lemma we obtain the following, i.e., we use the potential function
to obtain a reweighed non-negative instance that can be solved using Dijkstra’s algorithm.

Corollary 46. Single source shortest paths in a graph with negative weights can be computed in ˜O(m10/7
logW )

time.

A Proof of Lemma 23

Proof. We require a simple refinement of the proof of Lemma 18. The crucial aspect of this proof is that
it does not require any control over how the energy changes between two iterations belonging to different
phases. Just as we did in (5.7), let us bound the energy increase during a phase that starts at iteration
t
0

+ 1. Let ˆT = m2⌘ represent the length of a phase.
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t0+ ˆTX

t=t0+1

�

t 
t0+ ˆTX

t=t0+1

�
Et � Et�1

+ 5c2⇢ ·m1�2⌘
�

 Et0+ ˆT
+

ˆT · 5c2⇢ ·m1�2⌘


���⌫t0+ ˆT

���
1

+

ˆT · 5c2⇢ ·m1�2⌘



0

@��⌫t0
��
1

+

t0+ ˆTX

t=t0+1

2C ·�t

1

A
+

ˆT · 5c2⇢ ·m1�2⌘

=

��⌫t0
��
1

+ 2C ·
t0+ ˆTX

t=t0+1

�

t
+

ˆT · 5c2⇢ ·m1�2⌘

Therefore
t0+ ˆTX

t=t0+1

�

t  1

1� 2C

⇣��⌫t0
��
1

+

ˆT · 5m1�2⌘
⌘
= 2 ·

���⌫t0
��
1

+ 5c2⇢ ·m
�

(A.1)

Also, the increase in measure during this phase satisfies

���⌫t0+ ˆT
���
1

�
��⌫t0

��
1

 2C ·

0

@
t0+ ˆTX

t=t0+1

�

t

1

A  4C
���⌫t0

��
1

+ 5c2⇢ ·m
�
= 4C

��⌫t0
��
1

+m1/2+3⌘/cT (A.2)

Using the fact that initially
��⌫0
��
= m, and applying (A.2) we obtain by induction that, for the first K =

cT ·m1/2�3⌘ phases, the total measure increase during a phase satisfies

���⌫t0+ ˆT
���
1

�
��⌫t0

��
1

 2

cT
·m1/2+3⌘

This can be easily verified for the base case: 4Cm+m1/2+3⌘/cT = 4·m
�1/2+3⌘

20cT c2⇢
·m+

m1/2+3⌘

cT
 2

cT
·m1/2+3⌘. For

the induction step, we have by the induction hypothesis that after K phases k⌫t0k
1

 m+K · 2

cT
·m1/2+3⌘.

Therefore the measure increase in the new phase is at most 4C
⇣
m+K · 2

cT
·m1/2+3⌘

⌘
+ m1/2+3⌘/cT 

4 · m�1/2+3⌘

20cT c2⇢
· (m+ 2m) +

m1/2+3⌘

cT
 2

cT
·m1/2+3⌘.

Therefore, when the phases are over, we have

k⌫k
1

 m+ cT ·m1/2�3⌘ · 2

cT
·m1/2+3⌘  3m (A.3)

which shows that Invariant 1 holds.
Also, plugging in (A.1) we obtain that during a phase the total energy increase is at most

2 ·
�
3m+ 5c2⇢ ·m

�
 16c2⇢ ·m
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B Proof of Lemma 29

Proof. Let ˆf be an electrical flow in the graph with auxiliary arcs, and let ˆ� be the corresponding vertex
potentials. Let ˆ�(P ) be a different set of vertex potentials satisfying

ˆ�(P )

v =

8
><

>:

ˆ�v v 2 P
rūv

ˆ�u+ruv
ˆ�ū

ruv+rūv
v 2 Q, (u, v), (ū, v) 2 E

ˆ�v0 v = v
0

Let ˆ�(Q)

=

ˆ� � ˆ�(P ). Also let ˆf (P ) and ˆf (Q) be the electrical flows corresponding to potentials ˆ�(P ),
respectively ˆ�(Q)with the same set of resistances r. So these flows can be constructed directly from the
vertex potentials ˆ�.
Now let us verify that ˆf (P ) satisfies flow conservation on all vertices in Q [ {v

0

}. Given any vertex v 2 Q,
let u and ū be the vertices corresponding to partner arcs (u, v) and (ū, v). By Ohm’s law, we have

ˆf (P )

uv =

ˆ�
(P )

v � ˆ�
(P )

u

ruv
=

rūv
ˆ�u+ruv

ˆ�ū

ruv+rūv
� ˆ�u

ruv
=

ruv

⇣
ˆ�ū � ˆ�u

⌘

ruv (ruv + rūv)
=

ˆ�ū � ˆ�u

ruv + rūv

and similarly

ˆf
(P )

ūv =

ˆ�
(P )

v � ˆ�
(P )

ū

rūv
=

rūv
ˆ�u+ruv

ˆ�ū

ruv+rūv
� ˆ�ū

ruv
=

rūv

⇣
ˆ�u � ˆ�ū

⌘

rūv (ruv + rūv)
=

ˆ�u � ˆ�ū

ruv + rūv

Hence ˆf
(P )

uv +

ˆf
(P )

ūv = 0, so flow is conserved at v. The fact that flow is also conserved at v
0

is immediate,
since potentials on P [ {v

0

} are identical to those in ˆ�, and the flow ˆf corresponding to these is always
conserved at v

0

.
Furthermore, since f satisfies the same demands as ˆf , f (P ) also obeys flow conservation on Q [ {v

0

}. Now,
consider restricting the flows f (P ) and ˆf (Q) to a pair of partner edges, e = (u, v) and ē = (ū, v) (i.e. zeroing
out the flows on all other edges). This restriction of ˆf (Q) is an electrical flow induced by a voltage vector
nonzero only at v, so the R-inner product with it simply measures net flow to v. As f (P ) obeys flow
conservation at v, this implies that the restrictions of f (P ) and ˆf (Q) are R-orthogonal. That in turn implies
that the energy of each of these restricted flows is at most the energy of the same restriction of f , which is
equal to ⌫e + ⌫ē.

C Proof of Theorem 6

Proving this theorem is done in two parts. In the first one we analyze the predictor step, which produces a
new iterate that is close to the central path `

2

norm, and track the change in resistance. In the second part
we analyze the centering steps, which - starting with a solution that is close to the central path - produce a
centered solution. In both cases, we will also show that the iterates stay feasible at all times.
We start with analyzing the predictor step, described in Section 4.2:

f 0
e := (1� �)fe + � ˆfe,

s0e := se �
�

1� �

⇣
b�v � b�u

⌘
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for all arcs e = (u, v).
We verify feasibility of f 0 and s0, and bound the change in resistance.

Proposition 47. Both f 0 and s0 are feasible, i.e. f 0, s0 > 0. Furthermore, re
r0e

=

se
fe

· f 0
e

s0e
 1 + 4�⇢e.

Proof. We obtain

fe0 = (1� �)fe + � ˆfe � (1� �)fe � �
��� ˆfe
��� = (1� � � �⇢e) fe �

 
1� � � 1

8 k⇢k⌫,4
⇢e

!
fe

�
✓
1� 1

8

� 1

8 k⇢k1
⇢e

◆
fe �

✓
1� 1

8

� 1

8

◆
fe > 0

se0 = se �
�

1� �

⇣
b�v � b�u

⌘
= se �

�

1� �
· se
fe

· ˆfe = se

 
1� �

1� �
·
ˆfe
fe

!

� se

✓
1� �

1� �
· ⇢e
◆
� se (1� � · ⇢e) � se

 
1� 1

8 k⇢k⌫,4
⇢e

!

� se

✓
1� 1

8 k⇢k1
⇢e

◆
� se

✓
1� 1

8

◆
> 0

Next, we analyze the change in resistance:

re
r0e

=

se
fe

· f
0
e

s0e
=

se
fe

· (1� �)fe + � ˆfe

se

⇣
1� �

1�� · ˆfe
fe

⌘
=

1� � + �
ˆfe
fe

1� �
1�� · ˆfe

fe

 (1� �)
1� � + �⇢e
1� � � �⇢e

 1� � + �⇢e
1� � � �⇢e

= 1 +

2�⇢e
1� � � �⇢e

 1 +

2�⇢e

1� 1

8

� 1

8k⇢k⌫,4
· ⇢e

 1 +

2�⇢e

1� 1

8

� 1

8k⇢k1
· ⇢e
 1 +

2�⇢e

1� 1

8

� 1

8

 1 + 4�⇢e

As we saw in Section 4.2, taking the predictor step produces a solution that is close to the central path in
`
2

norm. We will now show that once this happens, only a few centering steps are required.
For simplicity, we will overload notation for the rest of the section, in order to measure centrality with respect
to the following quantity:

Definition 48.

��� fs
µ � 1

���
⌫,2

:=

r
P

e ⌫e

⇣
fese
µe
� 1

⌘
2

Now let us describe a centering step. Given an instance (f, s, ⌫) such that
��� fs

µ � 1

���
2

⌫,2
=

P
e ⌫e

⇣
fese
µe
� 1

⌘
2


1

256

, we show how to produce a new instance with better centrality. In order to do so, consider a flow f# such
that f ]

e =

µe

se
. This is clearly central, but it routes a different demand. In order to produce a flow that routes

the correct demand, we take the demand of f � f ] and route it electrically with resistances r̃e =

se
f]
e
=

s2e
µe

producing an electrical flow ˜f . Then we set the new flow

f 0
e = f ]

e +
˜fe

s0e = se �
se

f ]
e

· ˜fe
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We first verify that these flows stay feasible. In order to do so, we will require a proposition that we will use
in upper bounding the ratio

��� ˜fe
f]
e

���.

Proposition 49.

��� ˜fe
f]
e

���
⌫,2

��� fs

µ � 1

���
⌫,2

Proof. This is a straightforward energy minimization argument. We first express
��� ˜f
f]

���
2

⌫,2
in terms of the

energy of the electrical flow ˜f . Then, using the fact that f � f ] routes the same demand as the electrical
flow ˜f , the energy of f � f ] can only be larger than that of ˜f . This yields:

�����
˜f

f ]

�����

2

⌫,2

=

X

e

⌫e

 
˜fe

f ]
e

!
2

=

X

e

⌫e

sef
]
e

· r̃e ˜f2

e =

X

e

⌫e
µe

· r̃e ˜f2

e =

1

µ̂
·
X

e

r̃e ˜f
2

e

 1

µ̂

X

e

r̃e
�
fe � f ]

e

�
2

=

X

e

⌫e⇣
f ]
e

⌘
2

· (fe � f ]
e)

2

=

X

e

⌫e

✓
fe

f ]
e

� 1

◆
2

=

X

e

⌫e

✓
fese
µe
� 1

◆
2

=

����
fs

µ
� 1

����
2

⌫.2

Now we can prove the following proposition:

Proposition 50. After taking a centering step, f 0 and s0 stay feasible, i.e. f 0,s0 > 0. Furthermore��� f 0s0

µ � 1

���
⌫,2

��� fs

µ � 1

���
2

⌫,2
. Also, re

re0
=

se
fe

· f 0
e

s0e

⇣
1 + 2

��� sefeµ � 1

���
⌘ ⇣

1 + 4

��� ˜fe
f]
e

���
⌘
.

Proof. To lower bound f 0
e, we can simply use Proposition 49 to upper bound

��� ˜fe
f]
e

��� 
��� fs

µ � 1

���
⌫,2
 1

16

. This

yields
��� ˜fe
���  f ]

e · 1

16

. Plugging in, we obtain:

f 0
e = f ]

e +
˜fe � f ]

e � f ]
e ·
����
fs

µ
� 1

����
⌫,2

� f ]
e � f ]

e ·
1

16

> 0

In order to prove feasibility for the new slack iterate, we observe that

s0e = se

 
1�

˜fe

f ]
e

!
� se

✓
1� 1

16

◆
> 0

Then we verify that this step improves centrality.
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X

e

⌫e

✓
f 0
es

0
e

µe
� 1

◆
2

=

X

e

⌫e

0

@

⇣
f ]
e +

˜fe

⌘⇣
se � se

f]
e
· ˜fe
⌘

µe
� 1

1

A

2

=

X

e

⌫e

0

@
f ]
ese � se

f]
e
· ˜f2

e

µe
� 1

1

A
2

=

X

e

⌫e

0

B@
µe � µe

⇣
˜fe
f]
e

⌘
2

µe
� 1

1

CA

2

=

X

e

⌫e

 
˜fe

f ]
e

!
4

Applying Cauchy-Schwarz, we see that this is upper bounded by
0

@
X

e

⌫e ·
 

˜fe

f ]
e

!
2

1

A
2

=

0

@
X

e

⌫e · r̃e
f ]
e

se
·
 

˜fe

f ]
e

!
2

1

A
2

=

 
X

e

⌫e ·
r̃e
µe

· ˜f2

e

!
2

=

 
X

e

⌫e ·
r̃e

µ̂ · ⌫e
· ˜f2

e

!
2

=

 
1

µ̂
·
X

e

r̃e ˜f
2

e

!
2

Now note that the last term contains the energy of the electrical flow ˜f with respect to resistances r̃. Since
˜f and f � f ] route the same demand, but ˜f is an electrical flow, so it minimizes energy, we know that this
is upper bounded by
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This shows that during every such step, centrality improves at a quadratic rate.
Next we bound how much resistances get changed by a single centering step:
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We used the inequalities 1

1+x  1 + 2 |x|, and 1+x
1�x  1 + 4 |x|, for |x|  1/2.

Now we can track how resistances change after restoring to near-perfect centrality. This is highlighted by
the following proposition.

Proposition 51. After a predictor step, followed by any number of centering steps, the new set of resistances
r(k) satisfy re

r
(k)
e
 1 + 4�⇢e + e, for some  such that kk⌫,2  1.
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Proof. Let f (i) and s(i) be the flow and slack iterates obtained after applying a predictor step to (f, s, ⌫),
followed by i centering steps. Let ˜f (i) and f ](i) be defined similarly. Combining Proposition 47 with
Proposition 50 we can upper bound the resistance r(k) = s(k)

f(k) :
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 1, and exp(x) 
1 + 2 |x| for |x|  1.
Now to bound the norm kk⌫,2, we use triangle inequality and bound the contribution of each centering step
separately:
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Remark 52. In Proposition 50 we saw that centrality decreases at a quadratic rate each iteration. Therefore
centrality decreases to machine precision in ˜O(log logU) iterations. For this reason, we perform centering
steps until we restore centrality to machine precision O(✏

mach

) (the number of such iterations will be absorbed
by the ˜O in the running time). Although throughout the paper we work with exact centrality, rather than
having it set to O(✏

mach

), fixing this can easily be done by perturbing the measures at the end of the progress
step in order to guarantee exact centrality. This changes all measures by O(✏

mach

); all the analysis we do is
still valid, but this extra change needs to be carried over throughout the computations. We chose to ignore
it in order to simplify the presentation.
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D Preconditioning proofs.

The purpose of this section is to prove the core result, Lemma 32, on the guarantees of preconditioning.
However, we begin with a simpler, more general statement:

Lemma 53. Let N be an electrical network, let f (N) be a flow on N , and let ˆf (N) be the electrical flow on N
satisfying the same demands as f (N), induced by voltages ˆ�(N). Let �

0

be any fixed real number (representing
an absolute voltage). Then
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Proof. Given a set of vertex potentials ˆ�(N), a flow f and an absolute voltage �, we define
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That is, F (

ˆ�(N), f,�) is the sum of the absolute values of the flows of edges crossing the cut induced by
the voltage �. Notably,

´1
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ˆ�(N), ˆf (N),�) d� is equal to the energy of the electrical flow ˆf (N), since
the contribution of each edge e = (u, v) is | ˆf (N)
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e |2. Furthermore, for all � we have
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ˆ�(N), f (N),�). This is because ˆf (N) satisfies the same demands as f (N), and thus they
have the same net flow across each cut, including the cuts induced by the voltage �. In the electrical flow,
all of the flow is in the direction of increasing ˆ�(N) by definition; thus the sum of the absolute values of the
edge flows, F (

ˆ�(N), ˆf (N),�), is equal to that net flow value. In f (N), on the other hand, that net flow value
is a lower bound for F (
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Because the inequality holds for the integrands everywhere, we have that X  Y . Alternatively, we may
define te for an edge (u, v) to be the fraction of the interval [min(
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Then by Cauchy-Schwarz on the sum expressions, we have Y 
p
XZ; on the other hand, since X  Y this

means that we have X 
p
XZ and so Z � X. Finally,
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We can now prove Lemma 32:
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We therefore have
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This completes the proof.
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