Problem 1. Imagine that we want to use a bit array B of only m bits to implement a membership oracle for a set $S = \{s_1, \ldots, s_n\}$ of size n, in the case when the elements of S are coming from some (very) large universe U, i.e., $n << |U|$. To this end, we start with all the bits of the array B set to zero and, for each $s_i \in S$ and each $j = 1, \ldots, k$, we set $B[h_j(s_i)]$ to one. Here, h_1, \ldots, h_k are uniformly random (and independent) hash functions with $h_j : U \rightarrow [m]$, for each j. (That is, each h_j hashes elements of the universe U into the set of numbers between 1 and m.)

Now, to answer a membership query for a given element $s \in U$, we output “Yes” if $B[h_j(s)]$ is set to 1 for all $j = 1, \ldots, k$; and “No” otherwise.

(a) We cannot expect this membership oracle B to give always correct answers. (Why?)

Compute, for a given query $s \in U$ and fixed set S, what is the probability p_1 of having a “false negative”, i.e., of B answering “No” when actually $s \in S$? What is the probability p_2 of having a “false positive”, i.e., of B answering “Yes” when actually $s \notin S$. (Probability here is taken with respect to the randomness of the hash functions h_1, \ldots, h_k.)

(b) For a given ratio $\rho := \frac{m}{n}$ of the number of bits m to the size n of the represented set S, what is the value of k (as a function of ρ) that minimizes the sum $p_1 + p_2$?

Note: This approach is a very popular method for storing sparse sets, i.e., sets whose size is much smaller than the size of the universe.

Problem 2. We want to show that the Count-Min algorithm can be used to solve k-sparse ℓ_1-approximation problem. More precisely, we want to design a streaming algorithm that, for any $k \geq 1$, $\varepsilon > 0$ and $\delta > 0$, has $O(\frac{d}{\varepsilon} \log n \log \frac{m}{\delta})$ space complexity and, with probability at least $1 - \delta$, computes a k-sparse vector \hat{x} such that

$$|x - \hat{x}| \leq (1 + O(\varepsilon)) \text{Err}_1^k,$$

where x is the vector of true element frequencies and $\text{Err}_1^k = \min_{\hat{x}, \|\hat{x}\|_0 \leq k} |\hat{x} - x|$ is the error of the best k-sparse ℓ_1-approximation to x.

(a) Consider a variation of the Count-Min algorithm in which each of the $d = \Theta(\log \frac{m}{\delta})$ arrays A_i has length $r = \frac{4\varepsilon}{\delta}$ (instead of $\frac{\varepsilon}{\delta}$). Show that, as long as, the frequency vector x is non-negative (i.e., the stream is well-formed)\(^1\), with probability at least $1 - \delta$, the estimate vector \hat{x} returned by this algorithm is such that

$$|x_j - \hat{x}_j| \leq \frac{\varepsilon}{k} \text{Err}_1^k,$$

for each element $j \in [m]$.

Note: If you get stuck on this problem, email the lecturer to get a hint.

(b) For a given vector x', let x'_U, for some $U \subseteq [m]$, be the $|U|$-sparse vector resulting from zeroing out all the coordinates of x' except the ones in the set U. Show that if we run the variation of the Count-Min algorithm from (a) and take $\hat{x} := \hat{x}_U$, where U is the set of k largest coordinates of \hat{x}, then such \hat{x} satisfies condition (1).

Hint: Note that $|x - \hat{x}| = |x|_1 - |x'_U|_1 + |x'_U - \hat{x}_U|_1$ and that the best k-sparse approximation to x corresponds to taking $\hat{x} := x'_U$ for some (unknown to us) $U \subseteq [m]$ of size k.

\(^1\)Note that this assumption is required for the version of the Count-Min algorithm we analyzed in class to work.
Problem 3. Consider a scenario in which the data stream consists of \(m \) (distinct) edges of a graph over \(n \) vertices (think about edges being elements of \([n] \times [n]\)).

(a) Prove that any deterministic streaming algorithm that can determine whether the graph is bipartite or not has to have \(\Omega(n) \) space complexity.

(b) Design a deterministic streaming algorithm that solves this task using \(O(n \log n) \) space.

Note: The number of edges \(m \) can be \(\Omega(n^2) \), so a trivial algorithm that just stores all the edges will not have \(O(n \log n) \) space complexity.

Problem 4. Let us again consider the scenario when the data stream encodes an \(n \)-vertex graph with \(m \) edges. Let \(T \) be the number of triangles of this graph, i.e., \(T \) is the number of triples \(\{u, v, w\} \) such that all the three edges \((u, v), (v, w), \) and \((u, w)\) are present in the graph.

(a) Prove that any deterministic algorithm that computes \(T \) has to have \(\Omega(n^2) \) space complexity.

(b) (Extra credit) Design a randomized algorithm that, for any \(\varepsilon > 0 \) and \(P > 0 \), has \(O\left(\frac{1}{\varepsilon^2 P}\right) \) space complexity and approximates \(T \) up to an additive \(\varepsilon mn \) error.

Note: If you get stuck on this problem, email the lecturer to get a hint.