
Dis
riminative Reranking for NaturalLanguage ParsingMi
hael Collins and Terry KooMassa
husetts Institute of Te
hnology�This paper
onsiders approa
hes whi
h rerank the output of an existing probabilisti
parser. The base parser produ
es a set of
andidate parses for ea
h input senten
e, withasso
iated probabilities that de�ne an initial ranking of these parses. A se
ond modelthen attempts to improve upon this initial ranking, using additional features of the treeas eviden
e. The strength of our approa
h is that it allows a tree to be represented asan arbitrary set of features, without
on
erns about how these features intera
t or over-lap, and without the need to de�ne a derivation or a generative model whi
h takes thesefeatures into a

ount. We introdu
e a new method for the reranking task, based on theboosting approa
h to ranking problems des
ribed in (Freund et al. 1998). We applied theboosting method to parsing the Wall Street Journal treebank. The method
ombined thelog-likelihood under a baseline model (that of (Collins 1999)) with eviden
e from an ad-ditional 500,000 features over parse trees that were not in
luded in the original model.The new model a
hieved 89.75% F-measure, a 13% relative de
rease in F-measure errorover the baseline model's s
ore of 88.2%. The paper also introdu
es a new algorithm forthe boosting approa
h whi
h takes advantage of the sparsity of the feature spa
e in theparsing data. Experiments show signi�
ant eÆ
ien
y gains for the new algorithm overthe obvious implementation of the boosting approa
h. We argue that the method is anappealing alternative|both in terms of simpli
ity and eÆ
ien
y|to work on feature se-le
tion methods within log-linear (maximum entropy) models. Although the experimentsin this paper are on natural language parsing, the approa
h should be appli
able to manyother NLP problems whi
h are naturally framed as ranking tasks, for example spee
hre
ognition, ma
hine translation, or natural language generation.1 Introdu
tionMa
hine-learning approa
hes to natural language parsing have re
ently shown some su
-
ess in
omplex domains su
h as newswire text. Many of these methods fall into thegeneral
ategory of history-based models, where a parse tree is represented as a deriva-tion (sequen
e of de
isions) and the probability of the tree is then
al
ulated as a produ
tof de
ision probabilities. While these approa
hes have many advantages, it
an be awk-ward to en
ode some
onstraints within this framework. In the ideal
ase, the designerof a statisti
al parser would be able to easily add features to the model that are believedto be useful in dis
riminating between
andidate trees for a senten
e. In pra
ti
e, how-ever, adding new features to a generative or history-based model
an be awkward|thederivation in the model must be altered to take the new features into a

ount, and this� MIT Computer S
ien
e and Arti�
ial Intelligen
e Laboratory (CSAIL), the Stata Center, Building32, 32 Vassar Street, Cambridge, MA 02139, USA. Email: m
ollins�
sail.mit.edu,maestro�mit.edu

 2003 Asso
iation for Computational Linguisti
s

Computational Linguisti
s Volume ??, Number ?
an be an intri
ate task.This paper
onsiders approa
hes whi
h rerank the output of an existing probabilisti
parser. The base parser produ
es a set of
andidate parses for ea
h input senten
e, withasso
iated probabilities that de�ne an initial ranking of these parses. A se
ond modelthen attempts to improve upon this initial ranking, using additional features of the treeas eviden
e. The strength of our approa
h is that it allows a tree to be represented as anarbitrary set of features, without
on
erns about how these features intera
t or overlap,and without the need to de�ne a derivation whi
h takes these features into a

ount.We introdu
e a new method for the reranking task, based on the boosting approa
hto ranking problems des
ribed in (Freund et al. 1998). The algorithm
an be viewedas a feature sele
tion method, optimizing a parti
ular loss fun
tion (the exponentialloss fun
tion) that has been studied in the boosting literature. We applied the boostingmethod to parsing the Wall Street Journal treebank (Mar
us et al. 1993). The method
ombines the log-likelihood under a baseline model (that of (Collins 1999)) with eviden
efrom an additional 500,000 features over parse trees that were not in
luded in the originalmodel. The baseline model a
hieved 88.2% F-measure on this task. The new modela
hieves 89.75% F-measure, a 13% relative de
rease in F-measure error.Although the experiments in this paper are on natural language parsing, the ap-proa
h should be appli
able to many other NLP problems whi
h are naturally framed asranking tasks, for example spee
h re
ognition, ma
hine translation, or natural languagegeneration. See (Collins, 2002a) for an appli
ation of the boosting approa
h to namedentity re
ognition, and (Walker et al., 2001) for the appli
ation of boosting te
hniquesfor ranking in the
ontext of natural language generation.The paper also introdu
es a new, more eÆ
ient algorithm for the boosting approa
hwhi
h takes advantage of the sparse nature of the feature spa
e in the parsing data. OtherNLP tasks are likely to have similar
hara
teristi
s in terms of sparsity. Experimentsshow an eÆ
ien
y gain of a fa
tor of 2,600 for the new algorithm over the obviousimplementation of the boosting approa
h. EÆ
ien
y issues are important, be
ause theparsing task is a fairly large problem, involving around 1 million parse trees, and over500,000 features. The improved algorithm
an perform 100,000 rounds of feature sele
tionon our task in a few hours with
urrent pro
essing speeds. The 100,000 rounds of featuresele
tion take equivalent
omputation to around 40 passes over the entire training set (asopposed to 100,000 passes for the \naive" implementation).The problems with history-based models, and the desire to be able to spe
ify featuresas arbitrary predi
ates of the entire tree, have been noted before. In parti
ular, previouswork (Ratnaparkhi, Roukos and Ward 1994; Abney 1997; Della Pietra, Della Pietra andLa�erty 1997; Johnson et al. 1999; Riezler et. al 2002) has investigated the use of MarkovRandom Fields (MRFs), or log-linear models as probabilisti
 models with global featuresfor parsing and other NLP tasks. (Log-linear models are often referred to as maximum-entropy models in the NLP literature.) Similar methods have also been proposed forma
hine translation (O
h and Ney 2002) and language understanding in dialogue systems(Papineni, Roukos and Ward 1997; Papineni, Roukos and Ward 1998). Previous work(Friedman, Hastie and Tibshirani 1998) has drawn
onne
tions between log-linear modelsand boosting for
lassi�
ation problems. One
ontribution of our resear
h is to drawsimilar
onne
tions between the two approa
hes to ranking problems.We argue that the eÆ
ient boosting algorithm introdu
ed in this paper is an attra
-tive alternative to maximum-entropy models, in parti
ular feature sele
tion methods thathave been proposed in the literature on maximum-entropy models. The earlier methodsfor maximum-entropy feature sele
tion methods (Ratnaparkhi et al., 1994; Berger, DellaPietra and Della Pietra 1996; Della Pietra et al. 1997; Papineni, Roukos and Ward 1997;Papineni, Roukos and Ward 1998) require several full passes over the training set for2

Collins and Koo Dis
riminative Reranking for NL Parsingea
h round of feature sele
tion, suggesting that at least for the parsing data the im-proved boosting algorithm is several orders of magnitude more eÆ
ient.1 In se
tion 6.4of this paper we dis
uss our approa
h in
omparison to these earlier methods for featuresele
tion, as well as the more re
ent work of (M
Callum 2003; Zhou et al., 2003; Riezlerand Vasserman 2004).The remainder of this paper is stru
tured as follows. Se
tion 2 reviews history-basedmodels for NLP, and highlights the per
eived short
omings of history-based models whi
hmotivate the reranking approa
hes des
ribed in the remainder of the paper. Se
tion 3des
ribes previous work (Friedman et al. 2000; Du�y and Helmbold 1999; Mason et.al 1999; Lebanon and La�erty 2002; Collins, S
hapire and Singer, 2002) that derives
onne
tions between boosting and maximum-entropy models for the simpler
ase of
las-si�
ation problems|this work will form the basis for the reranking methods. Se
tion 4des
ribes how these approa
hes
an be generalized to ranking problems. We introdu
eloss fun
tions for boosting and MRF approa
hes, and dis
uss optimization methods. Wealso derive the eÆ
ient algorithm for boosting in this se
tion. Se
tion 5 gives experimen-tal results, investigating the performan
e improvements on parsing, eÆ
ien
y issues, andthe e�e
t of various parameters of the boosting algorithm. Se
tion 6 dis
usses relatedwork in more detail. Finally, se
tion 7 gives
on
lusions.The reranking models in this paper were originally introdu
ed in (Collins, 2000). Inthis paper we give
onsiderably more detail in terms of the algorithms involved, theirjusti�
ation, and their performan
e in experiments on natural language parsing.2 History-Based ModelsBefore dis
ussing the reranking approa
hes, we will des
ribe history-based models (Bla
ket al. 1992). They are important for a few reasons. First, several of the best performingparsers on the WSJ treebank (e.g., Ratnaparkhi 1997, Charniak 1997, 2000, Collins 1997,1999, Henderson 2003) are
ases of history-based models. Many systems applied to part-of-spee
h tagging, spee
h re
ognition and other language or spee
h tasks also fall intothis
lass of model. Se
ond, a parti
ular history-based model (that of (Collins 1999))will be used as the initial model for our approa
h. Finally, it is important to des
ribehistory-based models|and to understand their limitations|to motivate our departurefrom them.Parsing
an be framed as a supervised learning task, to indu
e a fun
tion f : X ! Ygiven training examples hxi; yii where xi 2 X ; yi 2 Y . We de�ne GEN(x) � Y to be theset of
andidates for a given input x. In the parsing problem x is a senten
e, and GEN(x)is a set of
andidate trees for that senten
e. A parti
ular
hara
teristi
 of the problemis the
omplexity of GEN(x): GEN(x)
an be very large, and ea
h member of GEN(x)has ri
h internal stru
ture. This
ontrasts with \typi
al"
lassi�
ation problems whereGEN(x) is a �xed, small set, for example f�1;+1g in binary
lassi�
ation problems.In probabilisti
 approa
hes, a model is de�ned whi
h assigns a probability P (x; y) toea
h (x; y) pair.2 The most likely parse for ea
h senten
e x is then argmaxy2GEN(x) P (x; y).1 Note, however, that log-linear models whi
h employ regularization methods instead of featuresele
tion|see for example (Johnson et al. 1999; La�erty et al., 2001)|are likely to be
omparablein terms of eÆ
ien
y to our feature sele
tion approa
h. See se
tion 6.3 for more dis
ussion.2 To be more pre
ise, generative probabilisti
 models assign joint probabilities P (x; y) to ea
h (x; y)pair. Similar arguments apply to
onditional history-based models, whi
h de�ne
onditionalprobabilities P (y j x) through a de�nitionP (y j x) = Yi=1:::nP (dij�(d1:::di�1; x)) 3

Computational Linguisti
s Volume ??, Number ?
VBD(saw)

VP(saw)

{ }VBD(saw) NP−C()

VP(saw)(1) (2)
NP−C() NP()VBD(saw)

VP(saw)

NP−C() NP()VBD(saw) todayher

VP(saw)(3) (4)Figure 1The sequen
e of de
isions involved in generating the right hand side of a lexi
al rule.This leaves the question of how to de�ne P (x; y). In history-based approa
hes, a one-to-one mapping is de�ned between ea
h pair (x; y) and a de
ision sequen
e hd1 : : : dni. Thesequen
e hd1 : : : dni
an be thought of as the sequen
e of moves that build (x; y) in some
anoni
al order. Given this mapping, the probability of a tree
an be written asP (x; y) = Yi=1:::nP (dij� (d1 : : : di�1))Here, (d1 : : : di�1) is the history for the i'th de
ision. � is a fun
tion whi
h groups historiesinto equivalen
e
lasses, thereby making independen
e assumptions in the model.Probabilisti
 Context-Free Grammars (PCFGs) are one example of a history-basedmodel. The de
ision sequen
e hd1 : : : dni is de�ned as the sequen
e of rule expansions ina top-down, left-most derivation of the tree. The history is equivalent to a partially builttree, and � pi
ks out the non-terminal being expanded (i.e., the left-most non-terminalin the fringe of this tree), making the assumption that P (dijd1 : : : di�1) depends onlyon the non-terminal being expanded. In the resulting model a tree with rule expansionshAi ! �ii is assigned a probability Qni=1 P (�ijAi).Our base model, that of (Collins 1999), is also a history based model. It
an be
onsidered to be a type of PCFG, where the rules are lexi
alized. An example rule wouldbe:VP(saw) -> VBD(saw) NP-C(her) NP(today)Lexi
alization leads to a very large number of rules; to make the number of parame-ters manageable the generation of the right hand side of a rule is broken down into anumber of de
isions, as follows:�First the head non-terminal (VBD in the above example) is
hosen.�Next, left and right sub
ategorization frames are
hosen (fg and fNP-Cg).�Non-terminal sequen
es to the left and right of the VBD are
hosen (an emptysequen
e to the left, hNP-C,NPi to the right).�Finally, the lexi
al heads of the modi�ers are
hosen (her and today).where d1 : : : dn are again the de
isions made in building a parse, and � is a fun
tion that groupshistories into equivalen
e
lasses. Note that x is added to the domain of � (the
ontext on whi
hde
isions are
onditioned). See (Ratnaparkhi 1997) for one example of a method using this approa
h.4

Collins and Koo Dis
riminative Reranking for NL ParsingFigure 1 illustrates this pro
ess. Ea
h of the above de
isions has an asso
iated prob-ability
onditioned on the left hand side of the rule (VP(saw)) and other information insome
ases.History-based approa
hes lead to models where the log probability of a parse-tree
an be written as a linear sum of parameters �k multiplied by features hk. Ea
h featurehk(x; y) is the
ount of a di�erent \event", or fragment within the tree. As an example,
onsider a PCFG with rules hAk ! �ki for 1 � k � m. If hk(x; y) is the number of timeshAk ! �ki is seen in the tree, and �k = logP (�kjAk) is the parameter asso
iated withthat rule, then logP (x; y) = mXk=1�khk(x; y)All models
onsidered in this paper take this form, although in the boosting models thes
ore for a parse is not a log probability. The features hk de�ne an m-dimensional ve
torof
ounts whi
h represent the tree. The parameters �k represent the in
uen
e of ea
hfeature on the s
ore of a tree.A drawba
k of history-based models is that the
hoi
e of derivation has a profoundin
uen
e on the parameterization of the model. (Similar observations have been made inthe related
ases of belief networks (Pearl 88), and language models for spee
h re
ognition(Rosenfeld 1997).) When designing a model, it would be desirable to have a frameworkwhere features
an be easily added to the model. Unfortunately, with history-based mod-els adding new features often requires a modi�
ation of the underlying derivations in themodel. Modifying the derivation to in
lude a new feature type
an be a laborious task.In an ideal situation we would be able to en
ode arbitrary features hk, without havingto worry about formulating a derivation that in
luded these features.To take a
on
rete example,
onsider part-of-spee
h tagging using a Hidden MarkovModel. We might have the intuition that almost every senten
e has at least one verb, andtherefore that sequen
es in
luding at least one verb should have in
reased s
ores underthe model. En
oding this
onstraint in a
ompa
t way in an HMM takes some ingenuity.The obvious approa
h|to add to ea
h state the information about whether or not averb has been generated in the history|doubles the number of states (and parameters)in the model. In
ontrast, it would be trivial to implement a feature hk(x; y) whi
h is 1if y
ontains a verb, 0 otherwise.3 Logisti
 Regression and BoostingWe now turn to ma
hine learning methods for the ranking task. In this se
tion we reviewtwo methods for binary
lassi�
ation problems: logisti
 regression (or maximum-entropy)models, and boosting. These methods will form the basis for the reranking approa
hesdes
ribed in later se
tions of the paper. Maximum-entropy models are a very popularmethod within the
omputational linguisti
s
ommunity, see for example (Berger, DellaPietra and Della Pietra 1996) for an early arti
le whi
h introdu
es the models and mo-tivates them. Boosting approa
hes to
lassi�
ation have re
eived
onsiderable attentionin the ma
hine learning
ommunity, sin
e the introdu
tion of AdaBoost by Freund andS
hapire (1997).Boosting algorithms, and in parti
ular the relationship between boosting algorithmsand maximum-entropy models, are perhaps not familiar topi
s in the NLP literature.However there has re
ently been mu
h work drawing
onne
tions between the two meth-ods (Friedman et al. 2000; La�erty 1999; Du�y and Helmbold 1999; Mason et. al 1999;Lebanon and La�erty 2002; Collins, S
hapire and Singer, 2002); in this se
tion we give5

Computational Linguisti
s Volume ??, Number ?a review of this work. Mu
h of this work has fo
used on binary
lassi�
ation problems,and this se
tion is also restri
ted to problems of this type. Later in the paper we showhow several of the ideas
an be
arried a
ross to reranking problems.3.1 Binary Classi�
ation ProblemsThe general set-up for binary
lassi�
ation problems is as follows:�The \input domain" (set of possible inputs) is X .�The \output domain" (set of possible labels) is simply a set of two labels,Y = f�1;+1g.3�The training set is an array of n labelled examples,h(x1; y1); (x2; y2); : : : ; (xn; yn)i where ea
h xi 2 X , yi 2 Y .� Input examples are represented through m \features", whi
h are fun
tionshk : X ! < for k = 1 : : :m. It is also sometimes
onvenient to think of anexample x as being represented by an m-dimensional \feature ve
tor"�(x) = hh1(x); h2(x); : : : ; hm(x)i.�Finally, there is a parameter ve
tor, �� = h�1 : : : �mi, where ea
h �k 2 <, hen
e�� is an m-dimensional real-valued ve
tor.We will see that both logisti
 regression and boosting implement a linear, or hyperplane,
lassi�er. This means that given an input example x, and parameter values ��, the outputfrom the
lassi�er is sign (F (x; ��)) (1)where F (x; ��) = mXk=1�khk(x) = �� � �(x) (2)Here �� ��(x) is the inner or dot produ
t between the ve
tors �� and �(x), and sign(z) = 1if z � 0, sign(z) = �1 otherwise. Geometri
ally, the examples x are represented as ve
-tors �(x) in some m-dimensional ve
tor spa
e, and the parameters �� de�ne a hyperplanewhi
h passes through the origin4 of the spa
e, and has �� as its normal. Points lying onone side of this hyperplane are
lassi�ed as +1, points on the other side are
lassi�ed as�1. The
entral question in learning is how to set the parameters ��, given the trainingexamples h(x1; y1); (x2; y2); : : : ; (xn; yn)i. Logisti
 regression and boosting involve di�er-ent algorithms and
riteria for training the parameters ��, but re
ent work (Friedman etal. 2000; La�erty 1999; Du�y and Helmbold 1999; Mason et. al 1999; Lebanon and Laf-ferty 2002; Collins, S
hapire and Singer, 2002) has shown that the methods have strongsimilarities. The next se
tion des
ribes parameter estimation methods.3.2 Loss Fun
tions for Logisti
 Regression and BoostingA
entral idea in both logisti
-regression and boosting is that of a loss fun
tion, whi
hdrives the parameter estimation methods of the two approa
hes. This se
tion des
ribes3 It turns out to be
onvenient to de�ne Y = f�1;+1g rather than Y = f0;+1g, for example.4 It might seem to be a restri
tion to have the hyperplane passing through the origin of the spa
e.However if a
onstant \bias" feature hm+1(x) = 1 for all x is added to the representation, ahyperplane passing through the origin in this new spa
e is equivalent to a hyperplane in generalposition in the original m-dimensional spa
e.6

Collins and Koo Dis
riminative Reranking for NL Parsingloss fun
tions for binary
lassi�
ation. Later in the paper, we introdu
e loss fun
tions forreranking tasks whi
h are
losely related to the loss fun
tions for
lassi�
ation tasks.First,
onsider a logisti
 regression model. The parameters of the model �� are usedto de�ne a
onditional probabilityP (y j x; ��) = eyF (x;��)1 + eyF (x;��) (3)where F (x; ��) is as de�ned in Equation (2). Some form of maximum-likelihood estimationis often used for parameter estimation. The parameters are
hosen to maximize the log-likelihood of the training set; equivalently, we will (to emphasize the similarities to theboosting approa
h) talk about minimizing the negative log-likelihood. The negative log-likelihood, LogLoss(��), is de�ned asLogLoss(��) = � nXi=1 logP (yi j xi; ��) = � nXi=1 log� eyiF (xi;��)1 + eyiF (xi;��)�= nXi=1 log�1 + e�yiF (xi;��)� (4)There are many methods in the literature for minimizing LogLoss(��) with respe
t to ��,for example Generalized or Improved Iterative S
aling (Berger, Della Pietra and DellaPietra 1996; Della Pietra et al. 1997), or
onjugate gradient methods (Malouf 2002). Inthe next se
tion we des
ribe feature sele
tion methods, as des
ribed in (Berger, DellaPietra and Della Pietra 1996; Della Pietra et al. 1997).On
e the parameters �� are estimated on training examples, the output for an examplex is the most likely label under the model,argmaxy2Y P (y j x; ��) = arg maxy2f�1;+1g yF (x; ��) = sign (F (x; ��)) (5)where as before, sign(z) = 1 if z � 0, sign(z) = �1 otherwise. Thus we see that thelogisti
 regression model implements a hyperplane
lassi�er.In boosting, a di�erent loss fun
tion is used, namely ExpLoss(��), whi
h is de�ned asExpLoss(��) = nXi=1 e�yiF (xi;��) (6)This loss fun
tion is minimized using a feature sele
tion method, whi
h we will des
ribein the next se
tion.There are strong similarities between LogLoss (equation 4) and ExpLoss (equation 6).In making
onne
tions between the two fun
tions, it is useful to
onsider a third fun
tionof the parameters and training examples,Error(��) = nXi=1 [[yiF (xi; ��) � 0℄℄ (7)where [[�℄℄ is 1 if � is true, 0 otherwise. Error(��) is the number of in
orre
tly
lassi�edtraining examples under parameter values ��.Finally, it will be useful to de�ne the margin on the i'th training example, givenparameter values ��, as Mi(��) = yiF (xi; ��) (8)7

Computational Linguisti
s Volume ??, Number ?With these de�nitions, the three loss fun
tions
an be written in the following form:LogLoss(��) = nXi=1 f(Mi(��)) where f(z) = log (1 + e�z)ExpLoss(��) = nXi=1 f(Mi(��)) where f(z) = e�zError(��) = nXi=1 f(Mi(��)) where f(z) = [[z � 0℄℄The three loss fun
tions di�er only in their
hoi
e of an underlying \potential fun
tion"of the margins, f(z). This fun
tion is f(z) = log (1 + e�z), f(z) = e�z, or f(z) = [[z � 0℄℄for LogLoss, ExpLoss and Error respe
tively. The f(z) fun
tions penalize non-positivemargins on training examples. The simplest fun
tion, f(z) = [[z � 0℄℄, gives a
ost of 1if a margin is negative (an error is made), 0 otherwise. ExpLoss and LogLoss involvede�nitions for f(z) whi
h qui
kly tend to 0 as z ! 1, but whi
h heavily penalizein
reasingly negative margins.Figure 2 shows plots for the three de�nitions of f(z). The fun
tions f(z) = e�zand f(z) = log (1 + e�z) are both upper bounds on the error fun
tion, so that mini-mizing either LogLoss or ExpLoss
an be seen as minimizing an upper bound on thenumber of training errors. (Note that minimizing Error(��) itself is known to be at leastNP-hard if no parameter settings
an a
hieve zero errors on the training set, see forexample (Ho�gen, van Horn, and Simon 1995).) As z ! 1, the fun
tions f(z) = e�zand f(z) = log (1 + e�z) be
ome in
reasingly similar, be
ause log (1 + e�z) ! e�z ase�z ! 0. For negative z, the two fun
tions behave quite di�erently. f(z) = e�z shows anexponentially growing
ost fun
tion as z ! �1. In
ontrast, as z ! �1 it
an be seenthat log (1 + e�z)! log (e�z) = �z, so this fun
tion shows asymptoti
ally linear growthfor negative z. As a �nal remark, note that both f(z) = e�z and f(z) = log (1 + e�z)are
onvex in z, with the result that LogLoss(��) and ExpLoss(��) are
onvex in the pa-rameters ��. This means that there are no problems with lo
al minima when optimizingthese two loss fun
tions.3.3 Feature Sele
tion MethodsIn this paper we
on
entrate on feature-sele
tion methods { algorithms whi
h aim tomake progress in minimizing the loss fun
tions LogLoss(��) and ExpLoss(��) while usinga small number of features (equivalently, ensuring that most parameter values in �� arezero). Roughly speaking, the motivation for using a small number of features is the hopethat this will prevent over�tting in the models.Feature sele
tion methods have been proposed in the maximum-entropy literatureby several authors (Ratnaparkhi et al., 1994; Berger, Della Pietra and Della Pietra 1996;Della Pietra et al. 1997; Papineni, Roukos and Ward 1997; Papineni, Roukos and Ward1998; M
Callum 2003; Zhou et al., 2003; Riezler and Vasserman 2004). The most basi
approa
h|for example see (Ratnaparkhi et al., 1994; Berger, Della Pietra and DellaPietra 1996)|involves sele
tion of a single feature at ea
h iteration, followed by anupdate to the entire model, as follows:Step 1 Throughout the algorithm, maintain a set of a
tive features. Initialize this setto be empty.Step 2 Choose a feature from outside of the set of a
tive features whi
h has largestestimated impa
t in terms of redu
ing the loss fun
tion LogLoss, and add thisto the a
tive feature set.8

Collins and Koo Dis
riminative Reranking for NL Parsing

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-1.5 -1 -0.5 0 0.5 1 1.5

Error

LogLoss

ExpLoss

Figure 2Potential fun
tions underlying ExpLoss, LogLoss, and Error. The graph labelled ExpLoss is aplot of f(z) = e�z for z = [�1:5 : : : 1:5℄; LogLoss shows a similar plot for f(z) = log �1 + e�z�;Error is a plot of f(z) = [[z � 0℄℄.Step 3 Minimize LogLoss(��) with respe
t to the set of a
tive features|that is, allowonly the a
tive features to take non-zero parameter values when minimizingLogLoss. Return to Step 2.Methods in the boosting literature (see for example (S
hapire and Singer 1999))
an be
onsidered to be feature sele
tion methods of the following form:Step 1 Start with all parameter values set to zero.Step 2 Choose a feature whi
h has largest estimated impa
t in terms of redu
ing theloss fun
tion ExpLoss.Step 3 Update the parameter for the feature
hosen at Step 2 in su
h a way as tominimize ExpLoss(��) with respe
t to this one parameter. All other parametervalues are left �xed. Return to Step 2.The di�eren
e with this latter \boosting" approa
h is that in Step 3, only one pa-rameter value is adjusted|namely, the parameter
orresponding to the newly
hosenfeature. Note that in this framework, the same feature may be
hosen at more thanone iteration.5 The maximum-entropy feature sele
tion method
an be quite ineÆ
ient,as the entire model is updated at ea
h step. For example, Ratnaparkhi (1998) quotes5 i.e., The feature may be repeatedly updated, although the same feature will never be
hosen in
onse
utive iterations, be
ause after an update the model is minimized with respe
t to the sele
tedfeature. 9

Computational Linguisti
s Volume ??, Number ?times of around 30 hours for 500 rounds of feature sele
tion on a prepositional phraseatta
hment task. These experiments were performed in 1998, when pro
essors were nodoubt
onsiderably slower than ma
hines today. However the PP atta
hment task is mu
hsmaller than the parsing task that we are addressing: our task involves around 1,000,000examples, with perhaps a few hundred features per example, and 100,000 rounds offeature sele
tion; this
ompares to 20,000 examples, 16 features per example, and 500rounds of feature sele
tion for the PP atta
hment task in (Ratnaparkhi 1998). As anestimate, assuming that
omputational
omplexity s
ales linearly in these fa
tors,6 ourtask is 1;000;00020;000 � 32016 � 100;000500 = 200; 000 as large as the PP atta
hment task. These�gures suggest that the maximum-entropy feature sele
tion approa
h may be infeasiblefor large-s
ale tasks su
h as the one in this paper.The fa
t that the boosting approa
h does not update the entire model at ea
h roundof feature sele
tion may be a disadvantage in terms of the number of features, or testdata a

ura
y, of the �nal model. There is reason for
on
ern that Step 2 will at someiterations mistakenly
hoose features whi
h are apparently useful in redu
ing the lossfun
tion, but whi
h would have little utility if the entire model had been optimized atthe previous iteration of Step 3. However, previous empiri
al results for boosting haveshown that it is a highly e�e
tive learning method, suggesting that this is not in fa
t aproblem for the approa
h. Given the previous strong results for the boosting approa
h,and for reasons of
omputational eÆ
ien
y, we pursue the boosting approa
h to featuresele
tion in this paper.3.4 Statisti
al Justi�
ation for the MethodsMinimization of LogLoss is most often justi�ed as a parametri
, maximum-likelihood(ML) approa
h to estimation. Thus this approa
h bene�ts from the usual guarantees forML estimation|if the distribution generating examples is within the
lass of distributionsspe
i�ed by the log-linear form, then in the limit as the sample size goes to in�nity themodel will be optimal in the sense of
onvergen
e to the true underlying distributiongenerating examples. As far as we are aware, behaviour of the models for �nite samplesizes is less well understood. In parti
ular, while feature sele
tion methods have oftenbeen proposed for maximum-entropy models, little theoreti
al justi�
ation (in termsof guarantees about generalization) has been given for them. It seems intuitive that amodel with a smaller number of parameters will require fewer samples for
onvergen
e,but this is not ne
essarily the
ase, and at present this intuition la
ks a theoreti
al basis.Feature sele
tion methods
an probably be motivated from either a Bayesian perspe
tive(through a prior favouring models with a smaller number of non-zero parameters), orfrom a frequentist/goodness-of-�t perspe
tive (models with fewer parameters are lesslikely to �t the data by
han
e), but this requires additional resear
h.The statisti
al justi�
ation for boosting approa
hes is quite di�erent. Boosting algo-rithms were originally developed within the PAC framework (Valiant, 1984) for ma
hinelearning, spe
i�
ally to address questions regarding the equivalen
e of weak and stronglearning. Freund and S
hapire (1997) originally introdu
ed AdaBoost, and gave a �rstset of statisti
al guarantees for the algorithm. S
hapire et. al (1998) give a se
ond set ofguarantees based on the analysis of margins on training examples. Both papers assumethat a �xed distribution D(x; y) is generating both training and test examples, and thatthe goal is to �nd a hypothesis with a small number of expe
ted errors with respe
tto this distribution. The form of the distribution is not assumed to be known, and in6 We believe this is a realisti
 assumption, as ea
h round of feature sele
tion takes O(nf) time wheren is the number of training examples, and f is the number of a
tive features on ea
h example.10

Collins and Koo Dis
riminative Reranking for NL Parsingthis sense the guarantees are non-parametri
, or \distribution free". Freund and S
hapire(1997) show that if the weak learning assumption holds (i.e., roughly speaking, a featurewith error rate better than
han
e
an be found for any distribution over the samplespa
e X � f�1;+1g), then the training error for the ExpLoss method de
reases rapidlyenough for there to be good generalization to test examples. S
hapire et. al (1998) showthat under the same assumption, minimization of ExpLoss using the feature sele
tionmethod ensures that the distribution of margins on training data develops in su
h a waythat good generalization performan
e on test examples is guaranteed.3.5 Boosting with Complex Feature Spa
esThus far in this paper we have presented boosting as a feature sele
tion approa
h. In thisse
tion, we note that there is an alternative view of boosting, where it is des
ribed asa method for
ombining multiple models, for example as a method for forming a linear
ombination of de
ision trees. We will only
onsider the simpler, feature sele
tion view ofboosting in this paper. This se
tion is in
luded for
ompleteness, and be
ause the moregeneral view of boosting may be relevant to future work on boosting approa
hes for parsereranking (note, however, that the dis
ussion in this se
tion is not essential to the restof the paper, so the reader may safely skip this se
tion if she or he wishes to do so).In feature sele
tion approa
hes, as des
ribed in this paper, the set of possible featureshk(x) for k = 1 : : :m is taken to be a �xed set of relatively simple fun
tions. In parti
ular,we have assumed that m is relatively small (for example, small enough for algorithmsthat require O(m) time or spa
e to be feasible). More generally, however, boosting
anbe applied in more
omplex settings. For example, a
ommon use of boosting is to forma linear
ombination of de
ision trees. In this
ase ea
h example x is represented as anumber of attribute-value pairs, and ea
h \feature" hk(x) is a
omplete de
ision treebuilt on predi
ates over the attribute values in x. In this
ase the number of \features"m is huge|there are as many features as there are de
ision trees over the given set ofattributes, thus m grows exponentially qui
kly with the number of attributes that areused to represent an example x. Boosting may even be applied in situations where thenumber of features is in�nite. For example, it may be used to form a linear
ombinationof neural networks. In this
ase ea
h \feature" hk(x)
orresponds to a di�erent parametersetting within the (in�nite) set of possible parameter settings for the neural network.In more
omplex settings su
h as boosting of de
ision trees or neural networks, it isgenerally not feasible to perform an exhaustive sear
h (with O(m) time
omplexity) forthe feature whi
h gives the greatest impa
t on the exponential7 loss fun
tion. Instead,an approximate sear
h is performed. In boosting approa
hes, this approximate sear
his a
hieved through a proto
ol where at ea
h round of boosting, a \distribution" overthe training examples is maintained. The distribution
an be interpreted as assigning animportan
e weight to ea
h training example, most importantly giving higher weight toexamples whi
h are in
orre
tly
lassi�ed. At ea
h round of boosting the distribution ispassed to an algorithm su
h as a de
ision tree or neural network learning method, whi
hattempts to return a feature (a de
ision tree, or a neural network parameter setting)whi
h has a relatively low error rate with respe
t to the distribution. The feature thatis returned is then in
orporated into the linear
ombination of features. The algorithmwhi
h generates a
lassi�er given a distribution over the examples|for example thede
ision tree indu
tion method|is usually referred to as \the weak learner". The weaklearner generally uses an approximate (for example greedy) method to �nd a fun
tion7 Note that it is also possible to apply these methods to the LogLoss fun
tion; see for example(Friedman et al. 2000; Du�y and Helmbold 1999). 11

Computational Linguisti
s Volume ??, Number ?with low error{rate with respe
t to the distribution. Freund and S
hapire (1997) showthat providing that at ea
h round of boosting the weak learner returns a feature withgreater than (50 + �)% a

ura
y for some �xed �, then the number of training errorsfalls exponentially qui
kly with the number of rounds of boosting. This fast drop intraining error translates to statisti
al bounds on generalization performan
e (Freundand S
hapire, 1997).Under this view of boosting, the feature sele
tion methods in this paper are a par-ti
ularly simple
ase, where the weak learner
an a�ord to exhaustively sear
h throughthe spa
e of possible features. Future work on reranking approa
hes might
onsider otherapproa
hes|su
h as boosting of de
ision trees|whi
h
an e�e
tively
onsider more
om-plex features.4 Reranking Approa
hesThis se
tion des
ribes how the ideas from
lassi�
ation problems
an be extended toreranking tasks. A baseline statisti
al parser is used to generate N -best output for bothits training set, and for test data senten
es. Ea
h
andidate parse for a senten
e is repre-sented as a feature ve
tor whi
h in
ludes the log-likelihood under the baseline model, aswell as a large number of additional features. The additional features
an in prin
iple beany predi
ates over senten
e/tree pairs. Eviden
e from the initial log-likelihood and theadditional features is
ombined using a linear model. Parameter estimation be
omes aproblem of learning how to
ombine these di�erent sour
es of information. The boostingalgorithm we use is related to the generalization of boosting methods to ranking prob-lems in (Freund et al. 1998); we also introdu
e an approa
h related to the
onditionallog-linear models of (Ratnaparkhi et al., 1994; Papineni, Roukos and Ward 1997; Pa-pineni, Roukos and Ward 1998; Johnson et al. 1999; Riezler et. al 2002; O
h and Ney2002).Se
tion 4.1 gives a formal de�nition of the reranking problem. Se
tion 4.2 introdu
esloss fun
tions for reranking that are analogous to the LogLoss and ExpLoss fun
tions inse
tion 3.2. Se
tion 4.3 des
ribes a general approa
h to feature sele
tion methods withthese loss fun
tions. Se
tion 4.4 des
ribes a �rst algorithm for the exponential (ExpLoss)loss fun
tion; se
tion 4.5 introdu
es a more eÆ
ient algorithm for the
ase of ExpLoss.Finally, se
tion 4.6 des
ribes issues in feature sele
tion algorithms for the LogLoss lossfun
tion.4.1 Problem De�nitionWe use the following notation in the rest of this paper:� si is the i'th senten
e in the training set. There are n senten
es in trainingdata, so that 1 � i � n.� xi;j is the j'th parse of the i'th senten
e.There are ni parses for the i'th senten
e, so that 1 � i � n and 1 � j � ni.Ea
h xi;j
ontains both the tree and the underlying senten
e (i.e. ea
h xi;j is apair hsi; ti;ji where si is the i'th senten
e in training data, and ti;j is the j'thtree for this senten
e). We assume that the parses are distin
t, i.e., thatxi;j 6= xi;j0 for j 6= j0.� S
ore(xi;j) is the \s
ore" for parse xi;j , a measure of the similarity of xi;j tothe gold-standard parse. For example S
ore(xi;j) might be the F-measurea

ura
y of parse xi;j
ompared to the gold-standard parse for si.12

Collins and Koo Dis
riminative Reranking for NL Parsing�Q(xi;j) is the probability that the base parsing model assigns to parse xi;j .L(xi;j) = logQ(xi;j) is the log probability.�Without loss of generality, we assume xi;1 to be the highest s
oring parse forthe i'th senten
e.8 More pre
isely, for all i; 2 � j � ni,S
ore(xi;1) > S
ore(xi;j). Note that xi;1 may not be identi
al to thegold-standard parse | in some
ases the parser may fail to propose the
orre
tparse anywhere in its list of
andidates.9Thus our training data
onsists of a set of parses, fxi;j : i = 1 : : : n; j = 1 : : : nig, togetherwith s
ores S
ore(xi;j) and log-probabilities L(xi;j).We will represent
andidate parse trees through m features, hk for k = 1 : : :m. Ea
hhk is an indi
ator fun
tion, for examplehk(x) = � 1 if x
ontains the rule hS ! NP V P i0 otherwise :We will see that the restri
tion to binary valued features is important for the simpli
ityand eÆ
ien
y of the algorithms.10 We also assume a ve
tor of m + 1 parameters, �� =f�0; �1; : : : ; �mg. Ea
h �i
an take any value in the reals. The ranking fun
tion for aparse tree x implied by a parameter ve
tor �� is de�ned asF (x; ��) = �0L(x) + mXk=1�khk(x)Given a new test senten
e s, with parses xj for j = 1 : : :N , the output of the model willbe the highest s
oring tree under the ranking fun
tionarg maxx2fx1:::xNgF (x; ��)Thus F (x; ��)
an be interpreted as a measure of how plausible a parse x is, higher s
oresmeaning that x is more plausible. Competing parses for the same senten
e are rankedin order of plausibility by this fun
tion. We
an re
over the base ranking fun
tion|thelog-likelihood L(x)|by setting �0 to a positive
onstant, and setting all other parametervalues to be 0. Our intention is to use the training examples to pi
k parameter valueswhi
h improve upon this initial ranking.We now dis
uss how to set these parameters. First we dis
uss loss fun
tions Loss(��)whi
h
an be used to drive the training pro
ess. We then go on to des
ribe featuresele
tion methods for the di�erent loss fun
tions.8 In the event that multiple parses get the same, highest s
ore the parse with the highest value oflog-likelihood L under the baseline model is taken as xi;1. In the event that two parses have thesame s
ore and the same log-likelihood|whi
h o

urred rarely if ever in our experiments|we makea random
hoi
e between the two parses.9 This is not ne
essarily a signi�
ant issue if an appli
ation using the output from the parser issensitive to improvements in evaluation measures su
h as pre
ision and re
all that give
redit forpartial mat
hes between the parser's output and the
orre
t parse. In this
ase, it is only importantthat the pre
ision/re
all for xi;1 is signi�
antly higher than that of the baseline parser, i.e., thatthere is some \headroom" for the reranking module in terms of pre
ision and re
all.10 In parti
ular, this restri
tion allows
losed{form parameter updates for the models based onExpLoss that we
onsider. Note that features tra
king the
ounts of di�erent rules
an be simulatedthrough several features whi
h take value 1 if a rule is seen � 1 time, � 2 times, � 3 times and so on.13

Computational Linguisti
s Volume ??, Number ?4.2 Loss Fun
tions for Ranking Problems4.2.1 Ranking Errors, and Margins The loss fun
tions we
onsider are all related tothe number of ranking errors a fun
tion F makes on the training set. The ranking errorrate is the number of times a lower s
oring parse is (in
orre
tly) ranked above the bestparse: Error(��) =Xi niXj=2[[F (xi;1; ��) � F (xi;j ; ��)℄℄=Xi niXj=2[[F (xi;1; ��)� F (xi;j ; ��) � 0℄℄where again, [[�℄℄ is 1 if � is true, 0 otherwise. In the ranking problem we de�ne themargin for ea
h example xi;j su
h that i = 1 : : : n, j = 2 : : : ni asMij(��) = F (xi;1; ��)� F (xi;j ; ��)Thus Mij(��) is the di�eren
e in ranking s
ore between the
orre
t parse of a senten
e,and a
ompeting parse xi;j . It follows thatError(��) =Xi niXj=2[[Mij(��) � 0℄℄The ranking error is 0 if all margins are positive. The loss fun
tions we dis
uss all turnout to be dire
t fun
tions of the margins on training examples.4.2.2 Log-Likelihood The �rst loss fun
tion is that suggested by Markov RandomFields. As suggested by Ratnaparkhi et. al (1994), and Johnson et. al (1999), the
ondi-tional probability of xi;q being the
orre
t parse for the i'th senten
e is de�ned asP (xi;q j si; ��) = eF (xi;q;��)Pnij=1 eF (xi;j ;��)Given a new test senten
e s, with parses xj for j = 1 : : :N , the most likely tree isargmaxxj eF (xj ;��)PNq=1 eF (xq ;��) = argmaxxj F (xj ; ��)Hen
e on
e the parameters are trained, the ranking fun
tion is used to order
andidatetrees for test examples.The log-likelihood of the training data isXi logP (xi;1 j si; ��) =Xi log eF (xi;1;��)Pnij=1 eF (xi;j ;��)Under maximum likelihood estimation, the parameters �� would be set to maximizethe log-likelihood. Equivalently, we will again talk about minimizing the negative log-likelihood. Some manipulation shows that the negative log-likelihood is a fun
tion of themargins on training data:LogLoss(��) = Xi � log eF (xi;1;��)Pnij=1 eF (xi;j ;��)14

Collins and Koo Dis
riminative Reranking for NL Parsing= Xi � log 1Pnij=1 e�(F (xi;1;��)�F (xi;j ;��))= Xi log0�1 + niXj=2 e�(F (xi;1;��)�F (xi;j;��))1A= Xi log0�1 + niXj=2 e�Mi;j(��)1A (9)Note the similarity of Equation (9) to the LogLoss fun
tion for
lassi�
ation in Equa-tion (4).4.2.3 Exponential Loss The next loss fun
tion is based on the boosting method de-s
ribed in (S
hapire and Singer 1999). It is a spe
ial
ase of the general ranking methodsdes
ribed in (Freund et al. 1998), with the ranking \feedba
k" being a simple binary dis-tin
tion between the highest s
oring parse and the other parses. Again, the loss fun
tionis a fun
tion of the margins on training data:ExpLoss(��) = Xi niXj=2 e�(F (xi;1;��)�F (xi;j ;��)) = Xi niXj=2 e�Mi;j(��) (10)Note the similarity of Equation (10) to the LogLoss fun
tion for
lassi�
ation in Equa-tion (6). It
an be shown that ExpLoss(��) � Error(��), so that minimizing ExpLoss(��) is
losely related to minimizing the number of ranking errors.11 This follows from the fa
tthat for any x, e�x � [[x < 0℄℄, and therefore thatXi niXj=2 e�Mi;j(��) �Xi niXj=2[[Mi;j(��) � 0℄℄We generalize the ExpLoss fun
tion slightly, by allowing a weight for ea
h example xi;j ,for i = 1 : : : n; j = 2 : : : ni. We will use Si;j to refer to this weight. In parti
ular, in someexperiments in this paper we will use the following de�nition:Si;j = S
ore(xi;1)� S
ore(xi;j) (11)where, as de�ned in se
tion 4.1, S
ore(xi;j) is some measure of the \goodness" of aparse, su
h as F-measure (see Se
tion 5 for the exa
t de�nition of S
ore used in ourexperiments). The de�nition for ExpLoss is modi�ed to beExpLoss(��) = Xi niXj=2 Si;je�Mi;j(��)This de�nition now takes into a

ount the importan
e, Si;j , of ea
h example. It is anupper bound on the following quantityXi niXj=2 Si;j [[Mi;j(��) � 0℄℄11 Note that LogLoss is not a dire
t upper bound on the number of ranking errors, although it
an beshown that it is a (relatively loose) upper bound on the number of times the
orre
t parse is not thehighest-ranked parse on the model. The latter observation follows from the property that that the
orre
t parse must be highest ranked if its probability is > 0:5. 15

Computational Linguisti
s Volume ??, Number ?whi
h is the number of errors weighted by the fa
tors Si;j . The original de�nition ofExpLoss in Equation (10)
an be re
overed by setting Si;j = 1 for all i; j (i.e., by givingequal weight to all examples). In our experiments we found that a de�nition of Si;j su
has that in Equation (11) gave improved performan
e on development data, presumablybe
ause it takes into a

ount the relative
ost of di�erent ranking errors in training dataexamples.4.3 A General Approa
h to Feature Sele
tionAt this point we have de�nitions for ExpLoss and LogLoss whi
h are analogous to thede�nitions in se
tion 3.2 for binary
lassi�
ation tasks. Se
tion 3.3 introdu
ed the ideaof feature sele
tion methods; the
urrent se
tion gives a more
on
rete des
ription of themethods used in our experiments.The goal of feature sele
tion methods is to �nd a small subset of the features that
ontribute most to redu
ing the loss fun
tion. The methods we
onsider are greedy, atea
h iteration pi
king the feature hk with additive weight Æ whi
h has the most impa
ton the loss fun
tion. In general, a separate set of instan
es will be used in
ross-validationto
hoose the stopping point, i.e., to de
ide on the number of features in the model.At this point we introdu
e some notation
on
erning feature sele
tion methods. Wede�ne Upd(��; k; Æ) to be an updated parameter ve
tor, with the same parameter valuesas �� with the ex
eption of �k, whi
h is in
remented by ÆUpd(��; k; Æ) = f�0; �1; : : : ; �k + Æ; : : : ; �mgThe Æ parameter
an potentially take any value in the reals. The loss for the updatedmodel is Loss (Upd(��; k; Æ)). Assuming we greedily pi
k a single feature with some weightto update the model, and given that the
urrent parameter settings are ��, the optimalfeature/weight pair (k�; Æ�) is(k�; Æ�) = argmink;Æ Loss (Upd(��; k; Æ))The feature sele
tion algorithms we
onsider take the following form (��t is the parameterve
tor at the t'th iteration):1 Initialize ��0 to some value. (This will generally involve values of zero for �1 : : : �m,and a non-zero value for �0, for example ��0 = f1; 0; 0; : : :g.)2 for t = 1 to N (The number of iterations N will be
hosen by
ross validation):a Find (k�; Æ�) = argmink;Æ Loss �Upd(��t�1; k; Æ)�b Set ��t = Upd(��t�1; k�; Æ�)Note that this is essentially the idea behind the \boosting" approa
h to featuresele
tion introdu
ed in se
tion 3.3. In
ontrast, the feature sele
tion method of (Berger,Della Pietra and Della Pietra 1996), also des
ribed in se
tion 3.3, would involve updatingparameter values for all sele
ted features at step 2(b).The main
omputation for both loss fun
tions involves sear
h for the optimal fea-ture/weight pair (k�; Æ�). In both
ases our approa
h to solving this problem is a two-stepapproa
h. In the �rst step the optimal update for ea
h feature hk is
al
ulated. We de�neBestWt(k; ��) as the optimal update for the k'th feature (it must be
al
ulated for allfeatures k = 1 : : :m):BestWt(k; ��) = argminÆ Loss (Upd(��; k; Æ))16

Collins and Koo Dis
riminative Reranking for NL ParsingThe next step is to
al
ulate the Loss for ea
h feature with its optimal update, whi
hwe will
allBestLoss(k; ��) = minÆ Loss (Upd(��; k; Æ)) = Loss (Upd(��; k;BestWt(k; ��)))Having
omputed BestWt and BestLoss for ea
h feature, the optimal feature/weightpair
an be found:k� = argmink BestLoss(k; ��); Æ� = BestWt(k�; ��)The next se
tions des
ribe how BestWt and BestLoss
an be
omputed for the two lossfun
tions.4.4 Feature Sele
tion for ExpLossAt the �rst iteration, �0 is set to optimize ExpLoss (re
all that L(xi;j) is the log-likelihoodfor parse xi;j under the base parsing model):�0 = argmin� Xi niXj=2 Si;je�(�[L(xi;1)�L(xi;j)℄) (12)In initial experiments we found that this step was
ru
ial to the performan
e of themethod (as opposed to simply setting �0 = 1, for example). It ensures that the
on-tribution of the log-likelihood feature is well-
alibrated with respe
t to the exponentialloss fun
tion. In our implementation �0 was optimized using simple brute-for
e sear
h.All values of �0 between 0:001 and 10 at in
rements of 0:001 were tested, and the valuewhi
h minimized the fun
tion in Equation (12) was
hosen.12Feature sele
tion then pro
eeds to sear
h for values of the remaining parameters,�1 : : : �m. (Note that it might be preferable to also allow �0 to be adjusted as features areadded; we leave this to future work.) This requires
al
ulation of the terms BestWt(k; ��)and BestLoss(k; ��) for ea
h feature. For binary-valued features these values have
losed-form solutions, whi
h is
omputationally very
onvenient. We now des
ribe the form ofthese updates. See Appendix A for how the updates
an be derived (the derivation isessentially the same as that in (S
hapire and Singer 1999)).First, we note that for any feature, [hk(xi;1)� hk(xi;j)℄
an take on three values: +1,�1, or 0 (this follows from our assumption of binary-valued feature values). For ea
h kwe de�ne the following sets:A+k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = 1gA�k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = �1gThus A+k is the set of training examples where the k'th feature is seen in the
orre
tparse but not in the
ompeting parse; A�k is the set where the k'th feature is seen in thein
orre
t but not the
orre
t parse.Based on these de�nitions, we next de�ne W+k and W�k as follows:W+k = X(i;j)2A+k Si;je�Mi;j(��) (13)W�k = X(i;j)2A�k Si;je�Mi;j (��) (14)12 A more pre
ise approa
h, for example binary sear
h,
ould also be used to solve this optimizationproblem. We used the methods that sear
hes through a set of �xed values for simpli
ity, impli
itlyassuming that a pre
ision of 0:001 was suÆ
ient for our problem. 17

Computational Linguisti
s Volume ??, Number ?Given these de�nitions, it
an be shown (see Appendix A) thatBestWt(k; ��) = 12 log W+kW�k (15)and BestLoss(k; ��) = Z ��qW+k �qW�k �2 (16)where Z =PiPnij=2 Si;je�Mi;j(��) = ExpLoss(��) is a
onstant (for �xed ��) whi
h appearsin the BestLoss for all features, and therefore does not a�e
t their ranking.As S
hapire and Singer (1999) point out, the updates in Equation (15)
an beproblemati
, as they are unde�ned (in�nite) when either W+k or W�k is zero. Follow-ing (S
hapire and Singer 1999), we introdu
e smoothing through a parameter � and thefollowing new de�nition of BestWt:BestWt(k; ��) = 12 log W+k + �ZW�k + �Z (17)The smoothing parameter � is
hosen through optimization on a development set.See �gure 3 for a dire
t implementation of the feature sele
tion method for ExpLoss.We use an array of values Gk = ����qW+k �qW�k ����to indi
ate the gain of ea
h feature (i.e. the impa
t that
hoosing this feature will haveon the ExpLoss fun
tion). The features are ranked by this quantity. It
an be seen thatalmost all of the
omputation involves the
al
ulation of Z, and W+k and W�k for ea
hfeature hk. On
e these values have been
omputed, the optimal feature and its update
an be
hosen.4.5 A New, More EÆ
ient, Algorithm for ExpLossThis se
tion presents a new algorithm, whi
h is equivalent to the ExpLoss algorithm in�gure 3, but
an be vastly more eÆ
ient for problems with sparse feature spa
es. In theexperimental se
tion of this paper we show that it is almost 2,700 times more eÆ
ientfor our task than the algorithm in �gure 3. The eÆ
ien
y of the di�erent algorithms isimportant in the parsing problem. The training data we eventually used
ontained around36,000 senten
es, with an average of 27 parses per senten
e, giving around 1,000,000 parsetrees in total. There were over 500,000 di�erent features.The new algorithm is also appli
able, with minor modi�
ations, to boosting ap-proa
hes for
lassi�
ation problems where the representation also involves sparse binaryfeatures (for example the text
lassi�
ation problems in (S
hapire and Singer 2000)).As far as we are aware, the new algorithm has not appeared elsewhere in the boostingliterature.Figure 4 shows the improved boosting algorithm. Inspe
tion of the algorithm in�gure 3 shows that only margins on examples in the sets A+k� and A�k� are modi�ed whena feature k� is sele
ted. The feature spa
e in many NLP problems is very sparse (mostfeatures only appear on relatively few training examples, or equivalently, most trainingexamples will only have a few non-zero features). It follows that in many
ases, the setsA+k� and A�k� will be mu
h smaller than the overall size of the training set. Thereforewhen updating the model from �� to Upd(��; k�; Æ�) the values W+k and W�k remainun
hanged for many features, and do not need to be re
al
ulated. In fa
t, only features18

Collins and Koo Dis
riminative Reranking for NL ParsingInput�Examples xi;j for i = 1 : : : n, j = 1 : : : ni drawn from some set X .�Weights Si;j representing importan
e of examples.� Initial model log-likelihoods L(xi;j), for all examples xi;j .�Feature fun
tions hk : X ! f0; 1g for k = 1 : : :m.� Smoothing parameter � (usually
hosen by optimization on developmentdata).�Number of rounds N (usually
hosen by optimization on developmentdata).Initialize� Set �0 = argmin�PiPnij=2 Si;je��[L(xi;1)�L(xi;j)℄.� Set �k = 0 for k = 1 : : :m.�For all i, 2 � j � ni set margins Mi;j = �0 [L(xi;1)� L(xi;j)℄.�For all k = 1 : : :m, setA+k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = 1gA�k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = �1gRepeat for t = 1 to N�Cal
ulate Z =PiPnij=2 Si;je�Mi;j� for k = 1 to m| Set W+k =W�k = 0| for (i; j) 2 A+k , W+k =W+k + Si;je�Mi;j| for (i; j) 2 A�k , W�k =W�k + Si;je�Mi;j| Gk = ����qW+k �qW�k �����Choose k� = argmaxkGk , and Æ� = 12 log W+k�+�ZW�k�+�Z� for (i; j) 2 A+k� , Mi;j =Mi;j + Æ�� for (i; j) 2 A�k� , Mi;j =Mi;j � Æ�� ��t = Upd(��t�1; k�; Æ�)Output Final parameter setting ��NFigure 3A naive algorithm for the boosting loss fun
tion. 19

Computational Linguisti
s Volume ??, Number ?whi
h
o-o

ur with k� on some example must be updated. The algorithm in �gure 4only re
al
ulates the values of W+k and W�k for those features whi
h
o-o

ur with thesele
ted feature k�.To a
hieve this, the algorithm relies on a se
ond pair of indi
es. For all i, 2 � j � niwe de�ne B+i;j = fk : [hk(xi;1)� hk(xi;j)℄ = 1gB�i;j = fk : [hk(xi;1)� hk(xi;j)℄ = �1g (18)So B+i;j and B�i;j are indi
es from training examples to features. With the algorithm in�gure 4, updating the values of W+k and W�k for the features whi
h
o-o

ur with k�involves the following number of steps:C = X(i;j)2A+k� �jB+i;j j+ jB�i;j j�+ X(i;j)2A�k� �jB+i;j j+ jB�i;j j� (19)In
ontrast, the naive algorithm requires a pass over the entire training set, whi
h requiresthe following number of steps:T = nXi=1 niXj=2 �jB+i;j j+ jB�i;j j� (20)The relative eÆ
ien
y of the two algorithms depends on the value of C=T at ea
h iter-ation. In the worst
ase, when every feature
hosen appears on every training example,then C=T = 1, and the two algorithms essentially have the same running time. How-ever in sparse feature spa
es there is reason to believe that C=T will be small for mostiterations. In se
tion 5.4.3 we show that this is the
ase for our experiments.4.6 Feature Sele
tion for LogLossWe now des
ribe an approa
h that was implemented for LogLoss. At the �rst iteration,�0 is set to 1. Feature sele
tion then sear
hes for values of the remaining parameters,�1 : : : �m. We now des
ribe how to
al
ulate the optimal update for a feature k withthe LogLoss loss fun
tion. First we re
ap the de�nition of the probability of a parti
ularparse xi;q given parameter settings ��:P (xi;q j si; ��) = eF (xi;q;��)Pnij=1 eF (xi;j ;��)Re
all that the log-loss isLogLoss(��) =Xi � logP (xi;1 j si; ��)Unfortunately, unlike the
ase of ExpLoss, in general an analyti
 solution for BestWtdoes not exist. However, we
an de�ne an iterative solution using te
hniques from iteratives
aling (Della Pietra et al. 1997). We �rst de�ne ~hk, the number of times that feature kis seen in the best parse, and ~pk(��), the expe
ted number of times under the model thatfeature k is seen:~hk =Xi hk(xi;1) ~pk(��) =Xi niXj=1 hk(xi;j)P (xi;j j si; ��)20

Collins and Koo Dis
riminative Reranking for NL ParsingInputExamples xi;j for i = 1 : : : n, j = 1 : : : ni drawn from some set X . Weights Si;jrepresenting importan
e of examples. Initial model log-likelihoods L(xi;j), for allexamples xi;j . Feature fun
tions hk : X ! f0; 1g for k = 1 : : :m. Smoothing param-eter � (usually
hosen by optimization on development data). Number of rounds N(usually
hosen by optimization on development data).Initialize� Set �0 = argmin�PiPnij=2 Si;je��[L(xi;1)�L(xi;j)℄.� Set �k = 0 for k = 1 : : :m.�For all i, 2 � j � ni set margins Mi;j = �0 [L(xi;1)� L(xi;j)℄.�For all k = 1 : : :m, setA+k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = 1g andA�k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = �1g�For all i, 2 � j � ni setB+i;j = fk : [hk(xi;1)� hk(xi;j)℄ = 1g andB�i;j = fk : [hk(xi;1)� hk(xi;j)℄ = �1g�Cal
ulate Z, and W+k , W�k , Gk = ����qW+k �qW�k ���� for k = 1 : : :m usingthe algorithm in �gure 3.Repeat for t = 1 to N�Choose k� = argmaxkGk , and Æ� = 12 log W+k�+�ZW�k�+�Z .� for (i; j) 2 A+k�| set � = Si;j �e�Mi;j�Æ� � e�Mi;j �, set Mi;j =Mi;j + Æ�, andZ = Z +�| for k 2 B+i;j , W+k =W+k +�| for k 2 B�i;j , W�k =W�k +�� for (i; j) 2 A�k�| set � = Si;j �e�Mi;j+Æ� � e�Mi;j �, set Mi;j =Mi;j � Æ�, andZ = Z +�| for k 2 B+i;j , W+k =W+k +�| for k 2 B�i;j , W�k =W�k +��For features k whose values of W+k and/or W�k have
hanged, update Gk.� ��t = Upd(��t�1; k�; Æ�)Output Final parameter setting ��NFigure 4An improved algorithm for the boosting loss fun
tion. 21

Computational Linguisti
s Volume ??, Number ?Iterative s
aling then de�nes the following update ~Æ~Æ = log ~hk~pk(��)While in general it is not true that ~Æ = BestWt(k; ��), it
an be shown that this updateleads to an improvement in the LogLoss (i.e., that LogLoss(Upd(��; k; ~Æ)) � LogLoss(��)),with equality holding only when �k is already at the optimal value, in other wordswhen argminÆ LogLoss(Upd(��; k; Æ)) = 0. This suggests the following iterative methodfor �nding BestWt(k; ��):1 Initialization: set Æ = 0, ��0 = ��,
al
ulate ~hk2 Repeat until
onvergen
e of Æ:a Cal
ulate ~pk(��0)b Æ Æ + log ~hk~pk(��0)
 ��0 Upd(��; k; Æ)3 Return BestWt(k; ��) = ÆGiven this method for
al
ulating BestWt(k; ��), BestLoss(k; ��)
an be
al
ulated asLoss(k;BestWt(k; ��)). Note that this is only one of a number of methods for �ndingBestWt(k; ��): given that this is a one parameter,
onvex optimization problem, it isfairly simple task and there are many methods whi
h
ould be used.Unfortunately there does not appear to be an eÆ
ient algorithm for LogLoss that isanalogous to the ExpLoss algorithm in �gure 4 (at least if the feature sele
tion method isrequired to pi
k the feature with highest impa
t on the loss fun
tion at ea
h iteration). Asimilar observation for LogLoss
an be made, in that when updating the model with a fea-ture/weight pair (k�; Æ�) many features will have their values for BestWt and BestLossun
hanged. Only those features whi
h
o-o

ur with k� on some example will need to havetheir values of BestWt and BestLoss updated. However this observation does not lead toan eÆ
ient algorithm|updating these values is mu
h more expensive than in the ExpLoss
ase. The pro
edure for �nding the optimal value BestWt(k; ��) must be applied for ea
hfeature whi
h
o-o

urs with the
hosen feature k�. For example, the iterative s
aling pro-
edure des
ribed above must be applied for a number of features. For ea
h feature, thiswill involve re
al
ulation of the distribution fP (xi;1 j si); P (xi;2 j si); : : : ; P (xi;ni j si)gfor ea
h example i on whi
h the feature o

urs.13 It only takes one feature to be seenon all training examples for the algorithm to involve re
al
ulation of P (xi;j j si) forthe entire training set. This
ontrasts with the simple updates in the improved boostingalgorithm (W+k =W+k +� and W�k =W�k +�). In fa
t in the parsing experiments wewere for
ed to give up on the LogLoss feature sele
tion methods due to their ineÆ
ien
y(see se
tion 6.4 for more dis
ussion about eÆ
ien
y).Note, however, that approximate methods for �nding the best feature and updatingits weight may lead to eÆ
ient algorithms. Appendix B gives a sket
h of one su
h ap-proa
h, whi
h is based on results from (Collins, S
hapire and Singer, 2002). We did nottest this method|we leave this to future work.13 This is not a failure of iterative s
aling alone: given that in the general
ase
losed form solutionsfor BestWt and BestLoss do not exist, it is hard to imagine a method that
omputes these valuesexa
tly without some kind of iterative method whi
h requires repeatedly visiting the examples onwhi
h a feature is seen.22

Collins and Koo Dis
riminative Reranking for NL Parsing5 Experimental Evaluation5.1 Generation of Parsing DatasetsWe used the Penn Wall Street Journal treebank (Mar
us et al. 1993) as training and testdata. Se
tions 2-21 in
lusive (around 40,000 senten
es) were used as training data, se
tion23 was used as the �nal test set. Of the 40,000 training senten
es, the �rst 36,000 wereused as the main training set. The remaining 4,000 senten
es were used as developmentdata, and to
ross-validate the number of rounds (features) in the model. Model 2 of(Collins 1999) was used to parse both the training and test data, produ
ing multiplehypotheses for ea
h senten
e. We a
hieved this by disabling dynami
 programming inthe parser, and
hoosing a relatively narrow beam width of 1000. The resulting parserreturns all parses that fall within the beam. The number of su
h parses varies senten
eby senten
e; on average, there were 30 parses per senten
e.In order to gain a representative set of training data, the 36,000 training senten
eswere parsed in 2,000 senten
e
hunks, ea
h
hunk being parsed with a model trained onthe remaining 34,000 senten
es (this prevented the initial model from being unrealisti
ally\good" on the training senten
es). The 4,000 development senten
es were parsed witha model trained on the 36,000 training senten
es. Se
tion 23 was parsed with a modeltrained on all 40,000 senten
es.In the experiments we used the following de�nition for the S
ore of the parse:S
ore(xi;j) = F-measure(xi;j)100 � Size(xi;j)where F-measure(xi;j) is the F1 s
ore14 of the parse when
ompared to the gold-standardparse (a value between 0 and 100), and Size(xi;j) is the number of
onstituents in thegold standard parse for the i'th senten
e. Hen
e the S
ore fun
tion is sensitive to boththe a

ura
y of the parse, and also the number of
onstituents in the gold-standard parse.5.2 FeaturesThe following types of features were in
luded in the model. We will use the rule VP ->PP VBD NP NP SBAR with head VBD as an example. Note that the output of our baselineparser produ
es synta
ti
 trees with headword annotations (see (Collins 1999) for ades
ription of the rules used to �nd headwords).Rules These in
lude all
ontext-free rules in thetree, for example VP -> PP VBD NP NP SBAR. VP

VBD NP NP SBARPPBigrams These are adja
ent pairs of non-terminals to the left and right of the head. Asshown, the example rule would
ontribute thebigrams (Right,VP,NP,NP), (Right,VP,NP,SBAR),(Right,VP,SBAR,STOP), to the right of the head,and (Left,VP,PP,STOP) to the left of the head.
VP

VBD NP NP SBARPP

14 Note that in the rare
ases that the baseline parser produ
es no
onstituents, the pre
ision isunde�ned|in these
ases we de�ned the F-measure to be 0. 23

Computational Linguisti
s Volume ??, Number ?Grandparent Rules Same as Rules, but alsoin
luding the non-terminal above the rule. VP

VBD NP NP SBARPP

S

Grandparent Bigrams Same as Bigrams, butalso in
luding the non-terminal above the bigrams. VP

VBD NP NP SBARPP

S

Lexi
al Bigrams Sameas Bigrams, but withthe lexi
al heads of thetwo non-terminals alsoin
luded. VP

NP(boy)VBD(gave)PP(in) NP(treat) SBAR(because)

Two-level Rules Same as Rules, but alsoin
luding the entire rule above the rule. VP

VBD NP NP SBARPP

NP

S

Two-level Bigrams Same as Bigrams, but alsoin
luding the entire rule above the rule. VP

VBD NP NP SBARPP

NP

S

Trigrams All trigrams within the rule. Theexample rule would
ontribute the trigrams(VP,STOP,PP,VBD!), (VP,PP,VBD!,NP), (VP,VBD!,NP,NP), (VP,NP,NP,SBAR) and (VP,NP,SBAR,STOP) (! is used to mark the head of therule).
VP

VBD! NP NP SBARPP

24

Collins and Koo Dis
riminative Reranking for NL Parsing
Head-Modi�ers All head-modi�er pairs, withthe grandparent non-terminal also in
luded.An adj
ag is also in
luded, whi
h is 1 if themodi�er is adja
ent to the head, 0 otherwise.As an example, say the non-terminal dominat-ing the example rule is S. The example rulewould
ontribute (Left,S,VP,VBD,PP,adj=1),(Right,S,VP,VBD,NP,adj=1), (Right,S,VP,VBD,NP,adj=0), and (Right,S,VP,VBD,SBAR,adj=0).

VP

VBD NP NP SBARPP
adj=1

adj=0

adj=0adj=1

S

PPs Lexi
al trigrams involving the heads of ar-guments of prepositional phrases. The exampleshown at right would
ontribute the trigram(NP,NP,PP,NP,president,of,U.S.), in additionto the relation (NP,NP,PP,NP,of,U.S.)whi
h ig-nores the headword of the
onstituent being modi-�ed by the PP. The three non-terminals (for exam-ple NP, NP, PP) identify the parent of the entirephrase, the non-terminal of the head of the phrase,and the non-terminal label for the PP.
presidentthe

NP(president) PP(of)

of NP(U.S.)

U.S.the

NP(president)

Distan
e Head-Modi�ers Features involving the distan
e between head words. Forexample, assume dist is the number of words between the head words of the VBD and SBARin the (VP,VBD,SBAR) head-modi�er relation in the above rule. This relation would thengenerate features (VP,VBD,SBAR,= dist), and (VP,VBD,SBAR,� x) for all dist � x � 9and (VP,VBD,SBAR,� x) for all 1 � x � dist.Further Lexi
alization In order to generate more features, a se
ond pass was madewhere all non-terminals were augmented with their lexi
al heads when these headwordswere
losed-
lass words. All features apart from Head-Modi�ers, PPs and Distan
eHead-Modi�ers were then generated with these augmented non-terminals.All of these features were initially generated, but only features seen on at least oneparse for at least 5 di�erent senten
es were in
luded in the �nal model (this
ount
ut-o�was implemented to keep the number of features down to a tra
table number).5.3 Applying the Reranking MethodsThe ExpLoss method was trained with several values for the smoothing parameter�: f0:0001; 0:00025; 0:0005; 0:00075; 0:001; 0:0025; 0:005; 0:0075g. For ea
h value of � themethod was run for 100; 000 rounds on the training data. The implementation was su
h25

Computational Linguisti
s Volume ??, Number ?that the feature updates for all 100; 000 rounds for ea
h training run were re
orded ina �le. This made it simple to test the model on development data for all values of Nbetween 0 and 100; 000.The di�erent values of � and N were
ompared on development data through thefollowing
riterion: Xi S
ore(zi) (21)where S
ore is as de�ned above, and zi is the output of the model on the i'th developmentset example. The �;N values whi
h maximized this quantity were used to de�ne the �nalmodel applied to the test data (se
tion 23 of the treebank). The optimal values were� = 0:0025 and N = 90; 386, at whi
h point 11,673 features had non-zero values (notethat the feature sele
tion te
hniques may result in a given feature being updated morethan on
e). The
omputation took roughly 3-4 hours on a 1.6 GHz pentium pro
essorma
hine, and around 2 Gigabytes of memory.Table 1 shows results for the method. (Collins 1999) was the base model; the ExpLossmodel gave a 1.5% absolute improvement over this method. The method gives very similara

ura
y to the model of (Charniak 2000), whi
h also uses a ri
h set of initial featuresin addition to Charniak's original model (Charniak 1997).The LogLoss method was too ineÆ
ient to run on the full data set. Instead we madesome tests on a smaller subset of the data (5934 senten
es, giving 200,000 parse trees), and52,294 features.15 On an older ma
hine (an order of magnitude or more slower than thema
hine used for the �nal tests) the boosting method took 40 minutes for 10,000 roundson this data set. The LogLoss method took 20 hours to
omplete 3500 rounds (a fa
torof about 85 times slower). This was in spite of various heuristi
s that were implementedin an attempt to speed up LogLoss|for example, sele
ting multiple features at ea
hround, or re
al
ulating the statisti
s for only the best K features for some small K atthe previous round of feature sele
tion. In initial experiments we found ExpLoss to givesimilar, perhaps slightly better, a

ura
y than LogLoss.5.4 Further ExperimentsThis se
tion des
ribes further experiments investigating various aspe
ts of the boostingalgorithm: the e�e
t of the � and N parameters, learning
urves, the
hoi
e of the Si;jweights, and eÆ
ien
y issues.5.4.1 The E�e
t of the � and N Parameters Figure 5 shows the learning
urve ondevelopment data for the optimal value of � (i.e., � = 0:0025). The a

ura
y shown is therelative performan
e to the baseline method of using the probability from the generativemodel alone in ranking parses, where the measure in Equation (21) is used to measureperforman
e. For example, a s
ore of 101:5 indi
ates a 1:5% in
rease in this s
ore. Thelearning
urve is initially steep, eventually
attening o�, but rea
hing its peak value aftera large number (90,386) of rounds of feature sele
tion.Table 2 indi
ates how the peak performan
e varies with the smoothing parameter �.Figure 6 shows learning
urves for various values of �. It
an be seen that values otherthan � = 0:0025
an lead to undertraining or overtraining of the model.5.4.2 The E�e
t of the Si;j Weights on Examples In se
tion 4.2.3 we introdu
ed theidea of weights Si;j representing the importan
e of examples. Thus far, in the experiments15 All features des
ribed above ex
ept Distan
e Head-Modi�ers and Further Lexi
alizationwere in
luded.26

Collins and Koo Dis
riminative Reranking for NL ParsingMODEL � 40 Words (2245 senten
es)LR LP CBs 0 CBs 2 CBsCH97 87.5% 87.4% 1.00 62.1% 86.1%CO99 88.5% 88.7% 0.92 66.7% 87.1%CH00 90.1% 90.1% 0.74 70.1% 89.6%ExpLoss 90.2% 90.4% 0.73 71.2% 90.2%MODEL � 100 Words (2416 senten
es)LR LP CBs 0 CBs 2 CBsCH97 86.7% 86.6% 1.20 59.5% 83.2%RA98 86.3% 87.5% 1.21 60.2% |CO99 88.1% 88.3% 1.06 64.0% 85.1%CH00 89.6% 89.5% 0.88 67.6% 87.7%ExpLoss 89.6% 89.9% 0.86 68.7% 88.3%Table 1Results on Se
tion 23 of the WSJ Treebank. LR/LP = labelled re
all/pre
ision. CBs is theaverage number of
rossing bra
kets per senten
e. 0 CBs, 2 CBs are the per
entage ofsenten
es with 0 or � 2
rossing bra
kets respe
tively. All the results in this table are formodels trained and tested on the same data, using the same evaluation metri
. CH97 =Charniak 1997, RA98 = Ratnaparkhi 1998, CH00 = Charniak 2000, CO99 = Collins 1999.Note that the ExpLoss results are very slightly di�erent from the original results published in(Collins, 2000). We re
ently reimplemented the boosting
ode, and re-ran the experiments, andminor di�eren
es in the
ode and � values tested on development data lead to minorimprovements in the results.

 99.8

 100

 100.2

 100.4

 100.6

 100.8

 101

 101.2

 101.4

 101.6

 101.8

 102

 0 20000 40000 60000 80000 100000

e=0.0025

Figure 5Graphs showing the learning
urve on development data for the optimal value for �, i.e.,� = 0:0025. The y-axis is the level of a

ura
y (100 is the baseline s
ore), and the x-axis is thenumber of rounds of boosting.in this paper we have used the de�nitionSi;j = S
ore(xi;1)� S
ore(xi;j) (22)thereby weighting examples in proportion to their di�eren
e in s
ore from the
orre
tparse for the senten
e in question. In this se
tion we
ompare this approa
h to a defaultde�nition of Si;j , namely Si;j = 1 (23)Using this de�nition, we trained the ExpLoss method on the same training set for27

Computational Linguisti
s Volume ??, Number ?

 99.8

 100

 100.2

 100.4

 100.6

 100.8

 101

 101.2

 101.4

 101.6

 101.8

 102

 0 20000 40000 60000 80000 100000

e=0.0025

e=0.0001

 99.8

 100

 100.2

 100.4

 100.6

 100.8

 101

 101.2

 101.4

 101.6

 101.8

 102

 0 20000 40000 60000 80000 100000

e=0.0075

e=0.0025

 99.8

 100

 100.2

 100.4

 100.6

 100.8

 101

 101.2

 101.4

 101.6

 101.8

 102

 0 20000 40000 60000 80000 100000

e=0.0025

e=0.001

Figure 6Graphs showing learning
urves on development data for various values of �. In ea
h
ase they-axis is the level of a

ura
y (100 is the baseline s
ore), and the x-axis is the number ofrounds of boosting. The three graphs
ompare the
urve for � = 0:0025 (the optimal value) to� = 0:0001, � = 0:0075, and � = 0:001 respe
tively. The �rst graph shows that � = 0:0001 leadsto under-smoothing (overtraining). Initially the graph is higher than that for � = 0:0025, buton later rounds the performan
e starts to de
rease. The se
ond graph shows that � = 0:0075leads to over-smoothing (undertraining). The graph shows
onsistently lower performan
e thanthat for � = 0:0025. The third graph shows that there is little di�eren
e in performan
e for� = 0:001 vs. � = 0:0025.28

Collins and Koo Dis
riminative Reranking for NL Parsing� Best N Best S
ore0.0001 29,471 101.7430.00025 22,468 101.8490.0005 48,795 101.8450.00075 43,386 101.8090.001 43,975 101.8490.0025 90,386 101.8640.005 66,378 101.8240.0075 80,746 101.722Table 2Table showing peak performan
e a
hieved for various values of �. \Best N" refers to thenumber of rounds at whi
h peak development set a

ura
y was rea
hed. \Best S
ore" indi
atesthe relative performan
e
ompared to the baseline method, at the optimal value for N .� Best S
ore Best S
ore(weighted) (unweighted)0.0001 101.743 101.7440.00025 101.849 101.7540.0005 101.845 101.7780.00075 101.809 101.7620.001 101.849 101.7780.0025 101.864 101.6990.005 101.824 101.610.0075 101.722 101.604Table 3Table showing peak performan
e a
hieved for various values of � forSi;j = S
ore(xi;1)� S
ore(xi;j) (
olumn labelled \weighted") and Si;j = 1 (
olumn labelled\unweighted").several values of the smoothing parameter �, and evaluated the performan
e on develop-ment data. Table 3
ompares the peak performan
e a
hieved under the two de�nitionsof Si;j on the development set. It
an be seen that the de�nition in Equation (22) out-performs the simpler method in Equation (23). Figure 7 shows the learning
urves forthe optimal values of � for the two methods. It
an be seen that the learning
urve forthe de�nition of Si;j in Equation (22)
onsistently dominates the
urve for the simplerde�nition.5.4.3 EÆ
ien
y Gains Se
tion 4.5 introdu
ed an eÆ
ient algorithm for optimizingExpLoss. In this se
tion we explore the empiri
al gains in eÆ
ien
y seen on the parsingdatasets in this paper.We �rst de�ne the quantity T as follows:T =Xi niXj=2 �jB+i;j j+ jB�i;j j�This is a measure of the number of updates to the W+k and W�k variables required inmaking a pass over the entire training set. Thus this is a measure of the amount of
omputation that the naive algorithm for ExpLoss, in �gure 3, requires for ea
h roundof feature sele
tion. 29

Computational Linguisti
s Volume ??, Number ?

 99.8

 100

 100.2

 100.4

 100.6

 100.8

 101

 101.2

 101.4

 101.6

 101.8

 102

 0 20000 40000 60000 80000 100000 120000

Weighted

not Weighted

Figure 7Figure showing performan
e vs. number of rounds of boosting forSi;j = S
ore(xi;1)� S
ore(xi;j) (
urve labelled \weighted") and Si;j = 1 (
urve labelled \notweighted").Next, say the improved algorithm in �gure 4 sele
ts feature k� on the t'th round offeature sele
tion. Then we de�ne the following quantity:Ct = X(i;j)2A+k� �jB+i;j j+ jB�i;j j�+ X(i;j)2A�k� �jB+i;j j+ jB�i;j j�This is a measure of the number of summations required by the improved algorithm in�gure 4 at the t'th round of feature sele
tion.We are now in a position to
ompare the running times of the two algorithms. Wede�ne the following quantities: Work(n) = nXt=1 CtT (24)Savings(n) = nTPnt=1 Ct (25)Savings(a; b) = (1 + b� a)TPbt=a Ct (26)Here, Work(n) is the
omputation required for n rounds of feature sele
tion, where asingle unit of
omputation
orresponds to a pass over the entire training set. Savings(n)tra
ks the relative eÆ
ien
y of the two algorithms as a fun
tion of the number of features,n. For example, if Savings(100) = 1; 200 this signi�es that for the �rst 100 rounds offeature sele
tion the improved algorithm is 1; 200 times as eÆ
ient as the naive algorithm.Finally, Savings(a; b) indi
ates the relative eÆ
ien
y between rounds a and b of featuresele
tion in
lusive. For example, Savings(11; 100) = 83 signi�es that between rounds 11and 100 in
lusive of the algorithm, the improved algorithm was 83 times as eÆ
ient.Figures 8 and 9 show graphs ofWork(n) and Savings(n) vs. n. The savings from theimproved algorithm are dramati
. In 100; 000 rounds of feature sele
tion the improvedalgorithm requires total
omputation that is equivalent to a mere 37:1 passes over thetraining set. This is a saving of a fa
tor of 2692 over the naive algorithm.Table 4 shows the value of Savings(a; b) for various values of (a; b). It
an be seenthat the performan
e gains are signi�
antly larger in later rounds of feature sele
tion,30

Collins and Koo Dis
riminative Reranking for NL Parsing

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000Figure 8A graph of Work(n) (y-axis) vs. n (x-axis).

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000Figure 9A graph of Savings(n) (y-axis) vs. n (x-axis).a-b Savings(a; b)1-100,000 2692.71-10 48.611-100 83.5101-1,000 280.01001-10,000 1263.910001-50,000 2920.250001-100,000 4229.8Table 4Values of Savings(a; b) for various values of a, b.
presumably be
ause in later stages relatively infrequent features are being sele
ted. Evenso, there are still savings of a fa
tor of almost 50 in the early stages of the method. 31

Computational Linguisti
s Volume ??, Number ?6 Related Work6.1 History-Based Models with Complex FeaturesCharniak (2000) des
ribes a parser whi
h in
orporates additional features to a previouslydeveloped parser, that of (Charniak 1997). The method gives substantial improvementsover the original parser, and results whi
h are very
lose to the results of the boostingmethod we have des
ribed in this paper (see se
tion 5 for experimental results
omparingthe two methods). Our features are in many ways similar to those of (Charniak 2000).The model in (Charniak 2000) is quite di�erent, however. The additional features arein
orporated using a method inspired by maximum-entropy models (e.g., the model of(Ratnaparkhi 1997)).Ratnaparkhi (1997) des
ribes the use of maximum entropy te
hniques applied toparsing. Log-linear models are used to estimate the
onditional probabilities P (dij� (d1 : : : di�1))in a history-based parser. As a result the model
an take into a

ount a quite ri
h set offeatures in the history.Both approa
hes still rely on de
omposing a parse tree into a sequen
e of de
isions,and we would argue that the te
hniques des
ribed in this paper have more
exibility interms of the features that
an be in
luded in the model.6.2 Joint Log-Linear ModelsAbney (1997) des
ribes the appli
ation of log-linear models to sto
hasti
 HPSG gram-mars. Della Pietra et. al (1997) des
ribe feature sele
tion methods for log-linear models,and Rosenfeld (1997) des
ribes appli
ation of these methods to language modeling forspee
h re
ognition. These methods all emphasize models whi
h de�ne a joint probabilityover the spa
e of all parse trees (or stru
tures in question): for this reason we des
ribethese approa
hes as \Joint Log-Linear Models". The probability of a tree xi;j isP (xi;j) = eF (xi;j)Px2Z eF (x) (27)Here Z is the (in�nite) set of possible trees, and the denominator
annot be
al
ulatedexpli
itly. This is a problem for parameter estimation, where an estimate of the denom-inator is required, and Monte-Carlo methods have been proposed (Della Pietra et al.1997; Abney 1997; Rosenfeld 1997) as a te
hnique for estimation of this value. Our senseis that these methods
an be
omputationally expensive. Noti
e that the joint likelihoodin Equation (27) is not a dire
t fun
tion of the margins on training examples, and its re-lation to error rate is therefore not so
lear as in the dis
riminative approa
hes des
ribedin this paper.6.3 Conditional Log-Linear ModelsRatnapakhi et. al (1994), Johnson et. al (1999), and Riezler et. al (2002) suggest train-ing log-linear models|i.e., the LogLoss fun
tion in Equation (9)|for parsing problems.Ratnaparkhi et. al (1994) use feature sele
tion te
hniques for the task. Johnson et. al(1999), and Riezler et. al (2002) do not use a feature sele
tion te
hnique, instead usingan obje
tive fun
tion whi
h in
ludes a gaussian prior on the parameter values, therebypenalizing parameter values whi
h be
ome too large:��� = argmin�� LogLoss(��) + Xk=0:::m �2k�2k! (28)Closed-form updates under iterative s
aling are not possible with this obje
tive fun
tion,instead optimization algorithms su
h as gradient des
ent or
onjugate gradient methods32

Collins and Koo Dis
riminative Reranking for NL Parsingare used to estimate parameter values.In more re
ent work, La�erty et. al (2001) des
ribe the use of
onditional MarkovRandom Fields (CRFs) for tagging tasks su
h as named entity re
ognition or part-of-spee
h tagging (Hidden Markov Models are a
ommon method applied to these tasks).CRFs employ the obje
tive fun
tion in Eq. 28. A key insight of (La�erty et al., 2001) isthat when features are of a signi�
antly lo
al nature, the gradient of the fun
tion in Equa-tion (28)
an be
al
ulated eÆ
iently using dynami
 programming, even in
ases wherethe set of
andidates involves all possible tagged sequen
es, and is therefore exponentialin size. See also (Sha and Pereira 2003) for more re
ent work on CRFs.Optimizing a log-linear model with a gaussian prior|i.e.,
hoosing parameter valueswhi
h a
hieve the global minimum of the obje
tive fun
tion in Eq. 28|is a plausiblealternative to the feature sele
tion approa
hes des
ribed in the
urrent paper, or to thefeature sele
tion methods previously applied to log-linear models. The Gaussian prior(i.e., thePk �2k=�2k penalty) has been found in pra
ti
e to be very e�e
tive in
ombattingover�tting of the parameters to the training data (Chen and Rosenfeld 1999; Johnson etal. 1999; La�erty et al., 2001; Riezler et. al 2002). Optimizing the fun
tion in Eq. 28
an bea

omplished using variants of gradient des
ent, whi
h in pra
ti
e require 10's or at most100's of passes over the training data (e.g., see (Sha and Pereira 2003)). Thus they arelikely to be
omparable in terms of eÆ
ien
y to the feature sele
tion approa
h des
ribedin this paper (in the experimental se
tion, we showed that for the parse reranking taskthe eÆ
ient boosting algorithm requires
omputation that is equivalent to around 40passes over the training data).Note, however, that the two methods will di�er
onsiderably in terms of the sparsityof the resulting reranker. While the feature sele
tion approa
h leads to around 11; 000(2%) of the features in our model having non-zero parameter values, log-linear modelswith gaussian priors typi
ally have very few non-zero parameters (e.g., see (Riezler andVasserman 2004)). This may be important in some domains, for example where thereare a very large number of features, and where this large number leads to diÆ
ulties interms of memory requirements or
omputation time.6.4 Feature Sele
tion MethodsA number of previous papers (Berger, Della Pietra and Della Pietra 1996; Ratnaparkhi1998; Della Pietra et al. 1997; M
Callum 2003; Zhou et al., 2003; Riezler and Vasserman2004) des
ribe feature sele
tion approa
hes for log-linear models applied to NLP prob-lems. Earlier work (Berger, Della Pietra and Della Pietra 1996; Ratnaparkhi 1998; DellaPietra et al. 1997) suggested methods that added a feature at a time to the model, andupdated all parameters in the
urrent model at ea
h step (for more detail, see se
tion 3.3).Assuming that sele
tion of a feature takes one pass over the training set, and �tting amodel takes p passes over the training set, these methods require f � (p + 1) passesover the training set where f is the number of features sele
ted. In our experiments,f � 10; 000. It is diÆ
ult to estimate the value for p, but assuming (very
onservatively)that p = 2, sele
ting 10; 000 features would require 30; 000 passes over the training set.This is around 1; 000 times as mu
h
omputation as that required for the eÆ
ient boostingalgorithm applied to our data, suggesting that the feature sele
tion methods in (Berger,Della Pietra and Della Pietra 1996; Ratnaparkhi 1998; Della Pietra et al. 1997) are notsuÆ
iently eÆ
ient for the parsing task.More re
ent work (M
Callum 2003; Zhou et al., 2003; Riezler and Vasserman 2004),has
onsidered methods for speeding up the feature sele
tion methods des
ribed in(Berger, Della Pietra and Della Pietra 1996; Ratnaparkhi 1998; Della Pietra et al. 1997).M
Callum (2003), and Riezler and Vasserman (2004), des
ribe approa
hes that add kfeatures at ea
h step, where k is some
onstant greater than 1. The running time for33

Computational Linguisti
s Volume ??, Number ?these methods is therefore O(f � (p+1)=k). Riezler and Vasserman (2004) test a varietyof values for k, �nding that k = 100 gives optimal performan
e. M
Callum (2003) usesa value of k = 1000. Zhou et. al (2003) uses a di�erent heuristi
, whi
h avoids having tore
ompute the gain for every feature at every iteration.We would argue that the alternative feature sele
tion methods in the
urrent papermay be preferable on the grounds of both eÆ
ien
y and simpli
ity. Even with large valuesof k in the approa
h of (M
Callum 2003; Riezler and Vasserman 2004) (e.g., k = 1000),the approa
h we des
ribe is likely to be at least as eÆ
ient as these alternative approa
hes.In terms of simpli
ity, the methods in (M
Callum 2003; Riezler and Vasserman 2004)require sele
tion of a number of free parameters governing the behavior of the algorithm:the value for k, the value for a regularizer
onstant (used in both (M
Callum 2003;Riezler and Vasserman 2004)), and the pre
ision with whi
h the model is optimizedat ea
h stage of feature sele
tion (M
Callum (2003) des
ribes using \just a few BFGSiterations" at ea
h stage). In
ontrast, our method requires a single parameter to be
hosen (the value for the � smoothing parameter), and makes a single approximation(that only a single feature is updated at ea
h round of feature sele
tion). The latterapproximation is parti
ularly important, as it leads to the eÆ
ient algorithm in �gure 4that avoids a pass over the training set at ea
h iteration of feature sele
tion|note that insparse feature spa
es f rounds of feature sele
tion in our approa
h
an take
onsiderablyless than f passes over the training set, in
ontrast to other work on feature sele
tionwithin log-linear models.Note that there are other important di�eren
es between the approa
hes. Both DellaPietra et. al (1997) and M
Callum (2003) des
ribe methods that indu
e
onjun
tionsof \base" features, in a similar way to de
ision tree learners. Thus a relatively smallnumber of base features
an lead to a very large number of possible
onjoined features.In future work it may be interesting to
onsider these kinds of approa
hes for the parsingproblem. Another di�eren
e is that both M
Callum, and Riezler and Vasserman, des
ribeapproa
hes that use a regularizer in addition to feature sele
tion: M
Callum uses a 2-norm regularizer, Riezler and Vasserman use a 1-norm regularizer.Finally, note that other feature-sele
tion methods have been proposed within thema
hine learning
ommunity: for example \�lter" methods, where feature sele
tion isperformed as a prepro
essing step before applying a learning method; and ba
kwardsele
tion methods (Koller and Sahami, 1996), where initially all features are added tothe model, and features are then in
rementally removed from the model.6.5 Boosting, Per
eptron and Support Ve
tor Ma
hine Approa
hes for Rank-ing ProblemsFreund et. al (1998) introdu
ed a formulation of boosting for ranking problems. Theproblem we have
onsidered is a spe
ial
ase of the problem in (Freund et al. 1998),in that we have
onsidered a binary distin
tion between
andidates (i.e., the best parsevs. other parses), whereas Freund et. al
onsider learning full or partial orderings over
andidates. The improved algorithm that we have introdu
ed in �gure 4 is however, anew algorithm, whi
h
ould perhaps be generalized to the full problem of (Freund et al.1998)|we leave this to future resear
h.Altun, Hofmann and Johnson (2003) and Altun, Johnson and Hofmann (2003) de-s
ribe experiments on tagging tasks using the ExpLoss fun
tion, in
ontrast to theLogLoss fun
tion used in (La�erty et al., 2001). Altun, Hofmann and Johnson (2003)des
ribe how dynami
 programming methods
an be used to
al
ulate gradients of theExpLoss fun
tion even in
ases where the set of
andidates again in
ludes all possibletagged sequen
es, a set whi
h grows exponentially in size with the length of the senten
ebeing tagged. Results in (Altun, Johnson, and Hofmann 2003) suggest that the
hoi
e of34

Collins and Koo Dis
riminative Reranking for NL ParsingExpLoss vs. LogLoss does not have a major impa
t on a

ura
y for the tagging task inquestion.Per
eptron-based algorithms, or the voted per
eptron approa
h of (Freund and S
hapire,1999), are another alternative to boosting and LogLoss methods. See (Collins, 2002a;Collins, 2002b; Collins and Du�y, 2002; Collins and Du�y, 2001) for appli
ations of theper
eptron algorithm. Collins (2002b) gives
onvergen
e proofs for the methods; Collins(2002a) dire
tly
ompares the boosting and per
eptron approa
hes on a named entitytask; and Collins and Du�y (2001, 2002) use a reranking approa
h with kernels, whi
hallow representations of parse trees or labelled sequen
es in very high dimensional spa
es.Shen, Sarkar and Joshi (2003) des
ribe support ve
tor ma
hine approa
hes to rankingproblems, and apply Support Ve
tor Ma
hines (SVMs) using Tree Adjoining Grammar(Joshi, Levy and Takahashi 1975) features to the parsing datasets we have des
ribed inthis paper, with good empiri
al results.See (Collins 2004) for a dis
ussion of many of these methods, in
luding an overview ofstatisti
al bounds for the boosting, per
eptron and SVM methods, as well as a dis
ussionof the
omputational issues of the di�erent algorithms.7 Con
lusionsThis paper has introdu
ed a new algorithm, based on boosting approa
hes in ma
hinelearning, to ranking problems in natural language pro
essing. The approa
h gives a 13%relative redu
tion in error on parsing Wall Street Journal data. While in this paper theexperimental fo
us has been on parsing, many other problems in natural language pro-
essing or spee
h re
ognition
an also be framed as reranking problems, so the methodsdes
ribed should be quite broadly appli
able. The boosting approa
h to ranking has beenapplied to named-entity segmentation (Collins, 2002a) and natural language generation(Walker et al., 2001). The key
hara
teristi
s of the approa
h are the use of global fea-tures, and the use of a training
riterion (optimization problem) that is dis
riminative,and
losely related to the task in hand|i.e., parse a

ura
y.In addition, the paper introdu
ed a new algorithm for the boosting approa
h whi
htakes advantage of the sparse nature of the feature spa
e in the parsing data that we use.Other NLP tasks are likely to have similar
hara
teristi
s in terms of sparsity. Experi-ments show an eÆ
ien
y gain of a fa
tor of over 2,600 on the parsing data for the newalgorithm over the obvious implementation of the boosting approa
h. We would arguethat the improved boosting algorithm is a natural alternative to maximum-entropy or(
onditional) log-linear models. The paper has drawn
onne
tions between boosting andmaximum-entropy models in terms of the optimization problems that they involve, thealgorithms used, their relative eÆ
ien
y, and their performan
e in empiri
al tests.A
knowledgmentsThanks to Rob S
hapire and Yoram Singer for useful dis
ussions on boosting algorithms, andto Mark Johnson for useful dis
ussions about linear models for parse ranking. Steve Abneyand Fernando Pereira gave useful feedba
k on earlier drafts of this work. Finally, thanks to theanonymous reviewers for several useful
omments.Referen
esAbney, Steven. (1997). Sto
hasti
 Attribute-Value Grammars. Computational Linguisti
s,23(4):597-618.Altun, Yasemin, Thomas Hofmann and Mark Johnson. (2003). Dis
riminative Learning for 35

Computational Linguisti
s Volume ??, Number ?Label Sequen
es via Boosting. In Advan
es in Neural Information Pro
essing Systems (NIPS15).Altun, Yasemin, Mark Johnson and Thomas Hofmann. (2003). Loss Fun
tions andOptimization Methods for Dis
riminative Learning of Label Sequen
es. In Pro
eedings ofEmpiri
al Methods in Natural Language Pro
essing (EMNLP 2003).Berger, Adam L. and Stephen A. Della Pietra,and Vin
ent J. Della Pietra. (1996). A MaximumEntropy Approa
h to Natural Language Pro
essing. Computational Linguisti
s, 22(1):39-71.Bla
k, Ezra, Frederi
k Jelinek, John La�erty, David Magerman, Robert Mer
er and SalimRoukos. (1992). Towards History-Based Grammars: Using Ri
her Models for Probabilisti
Parsing. In Pro
eedings of the 5th DARPA Spee
h and Natural Language Workshop,Harriman, NY.Charniak, Eugene. (1997). Statisti
al parsing with a
ontext-free grammar and word statisti
s.Pro
eedings of the Fourteenth National Conferen
e on Arti�
ial Intelligen
e, AAAIPress/MIT Press, Menlo Park (1997).Charniak, Eugene. (2000). A Maximum-Entropy-Inspired Parser. In Pro
eedings ofNAACL-2000.Chen, Stanley F., and Ronald Rosenfeld. (1999). A Gaussian Prior for Smoothing MaximumEntropy Models. Te
hni
al Report CMU-CS-99-108, Computer S
ien
e Department,Carnegie Mellon University, 1999.Collins, Mi
hael. (1997). Three Generative, Lexi
alised Models for Statisti
al Parsing. InPro
eedings of the 35th Annual Meeting of the Asso
iation for Computational Linguisti
sand 8th Conferen
e of the European Chapter of the Asso
iation for ComputationalLinguisti
s, pages 16-23.Collins, Mi
hael. (1999). Head-Driven Statisti
al Models for Natural Language Parsing. PhDDissertation, University of Pennsylvania.Collins, Mi
hael. (2000). Dis
riminative Reranking for Natural Language Parsing. InPro
eedings of the Seventeenth International Conferen
e on Ma
hine Learning (ICML 2000).San Fran
is
o: Morgan Kaufmann.Collins, Mi
hael, and Nigel Du�y. (2001). Convolution Kernels for Natural Language. InAdvan
es in Neural Information Pro
essing Systems (NIPS 14).Collins, Mi
hael, Robert E. S
hapire, and Yoram Singer. (2002). Logisti
 regression, AdaBoostand Bregman distan
es. Ma
hine Learning, 48(1/2/3).Collins, Mi
hael, and Nigel Du�y. (2002). New Ranking Algorithms for Parsing and Tagging:Kernels over Dis
rete Stru
tures, and the Voted Per
eptron. In Pro
eedings of ACL 2002.Collins, Mi
hael. (2002a). Ranking Algorithms for Named{Entity Extra
tion: Boosting and theVoted Per
eptron. In Pro
eedings of ACL 2002.Collins, Mi
hael. (2002b). Dis
riminative Training Methods for Hidden Markov Models:Theory and Experiments with the Per
eptron Algorithm. In Pro
eedings of EMNLP 2002.Collins, Mi
hael. (2004). Parameter Estimation for Statisti
al Parsing Models: Theory andPra
ti
e of Distribution-Free Methods. In Harry Bunt, John Carroll, and Giorgio Satta,editors, New Developments in Parsing Te
hnology. Kluwer, 2004.Della Pietra, Stephen, Vin
ent Della Pietra and John La�erty. (1997). Indu
ing Features ofRandom Fields. IEEE Transa
tions on Pattern Analysis and Ma
hine Intelligen
e, 19(4),April 1997, pp. 380-393.Du�y, Nigel and David Helmbold. (1999). Potential Boosters? In Advan
es in NeuralInformation Pro
essing Systems (NIPS 12).Freund, Yoav and Robert E. S
hapire. (1997). A de
ision-theoreti
 generalization of on-linelearning and an appli
ation to boosting. Journal of Computer and System S
ien
es,55(1):119{139, August 1997.Freund, Yoav, Raj Iyer, Robert E. S
hapire and Yoram Singer. (1998). An eÆ
ient boostingalgorithm for
ombining preferen
es. In Ma
hine Learning: Pro
eedings of the FifteenthInternational Conferen
e, 1998.Freund, Yoav and Robert E. S
hapire. (1999). Large Margin Classi�
ation using thePer
eptron Algorithm. In Ma
hine Learning, 37(3):277{296.Friedman, Jerome H., Trevor Hastie, and Robert Tibshirani. (2000). Additive Logisti
Regression: a Statisti
al View of Boosting. The Annals of Statisti
s, 38(2), 337-374.36

Collins and Koo Dis
riminative Reranking for NL ParsingHenderson, James. (2003). Indu
ing History Representations for Broad Coverage Statisti
alParsing. In Pro
eedings of the joint meeting of the North Ameri
an Chapter of theAsso
iation for Computational Linguisti
s and the Human Language Te
hnology Conferen
e(HLT-NAACL 2003), pages 103-110, Edmonton, Canada, 2003.Ho�gen, Klauss U., Kevin S. van Horn, and Hans U. Simon. (1995). Robust trainability ofsingle neurons. Journal of Computer and System S
ien
es, 50:114{125, 1995.Johnson, Mark, Stuart Geman, S. Canon, Z. Chi and S. Riezler (1999). Estimators forSto
hasti
 \Uni�
ation-based" Grammars. In Pro
eedings of the ACL, 1999.Joshi, Aravind K., L. Levy and M. Takahashi. (1975). Tree adjun
t grammar. In Journal ofComputer and System S
ien
e, vol. 21, no. 2, 1975.Koller, D., and M. Sahami. (1996). Toward optimal feature sele
tion, In Pro
eedings of the13th International Conferen
e on Ma
hine Learning (ICML), Bari, Italy, July 1996, pages284{292.La�erty, John. (1999). Additive models, boosting, and inferen
e for generalized divergen
es. InPro
eedings of the Twelfth Annual Conferen
e on Computational Learning Theory(COLT'99), 1999.La�erty, John, Andrew M
Callum, and Fernando Pereira. (2001). Conditional random �elds:Probabilisti
 models for segmenting and labeling sequen
e data. In Pro
eedings of ICML2001.Lebanon, Guy and John La�erty. (2002). Boosting and maximum likelihood for exponentialmodels. In Advan
es in Neural Information Pro
essing Systems (NIPS 14).Malouf, Robert. (2002). A
omparison of algorithms for maximum entropy parameterestimation. In Pro
eedings of the Sixth Conferen
e on Natural Language Learning(CoNNL-2002).Mar
us, Mit
hell, Beatri
e Santorini and M. Mar
inkiewi
z. (1993). Building a LargeAnnotated Corpus of English: the Penn Treebank. Computational Linguisti
s, 19(2):313-330.Mason, Llew, Peter L. Bartlett and Jonathan Baxter. (1999). Dire
t Optimization of MarginsImproves Generalization in Combined Classi�ers. In Advan
es in Neural InformationPro
essing Systems (NIPS 12).M
Callum, Andrew. (2003). EÆ
iently Indu
ing Features of Conditional Random Fields. InPro
eedings of the Conferen
e on Un
ertainty in Arti
i�
al Intelligen
e (UAI 2003).O
h, Franz Josef, and Hermann Ney. (2002). Dis
riminative Training and Maximum EntropyModels for Statisti
al Ma
hine Translation. In ACL 2002: Pro
. of the 40th Annual Meetingof the Asso
iation for Computational Linguisti
s pp. 295-302, Philadelphia, PA.Papineni, Kishore A., Salim Roukos, and R. T. Ward. (1997). Feature-based languageunderstanding. In Pro
eedings of EuroSpee
h'97, Rhodes, Gree
e, vol 3, pp. 1435-1438.Papineni, Kishore A., Salim Roukos, and R. T. Ward. (1998). Maximum likelihood anddis
riminative training of dire
t translation models. In Pro
eedings of the 1998 IEEEInternational Conferen
e on A
ousti
s, Spee
h and Signal Pro
essing, Seattle, vol 1, pp.189-192.Pearl, Judea. (1988). Probabilisti
 Reasoning in Intelligent Systems, Morgan Kaufman, SanMateo, Ca.Ratnaparkhi, Adwait, Salim Roukos, and R. T. Ward. (1994). A Maximum Entropy Model forParsing. In Pro
eedings of the International Conferen
e on Spoken Language Pro
essing,pages 803-806. Yokohama, Japan.Ratnaparkhi, Adwait. (1997). A Linear Observed Time Statisti
al Parser Based on MaximumEntropy Models. In Pro
eedings of the Se
ond Conferen
e on Empiri
al Methods in NaturalLanguage Pro
essing, Brown University, Providen
e, Rhode Island.Ratnaparkhi, Adwait. (1998). Maximum Entropy Models for Natural Language AmbiguityResolution. Ph.D thesis, University of Pennsylvania.Riezler, Stefan, Tra
y H. King,Ronald M. Kaplan, Ri
hard Crou
h, John T. Maxwell, III, andMark Johnson. 2002. Parsing the Wall Street Journal using a Lexi
al-Fun
tional Grammarand Dis
riminative Estimation Te
hniques. In ACL 2002: Pro
. of the 40th Annual Meetingof the Asso
iation for Computational Linguisti
s, Philadelphia, PA.Riezler, Stefan and Alexander Vasserman. (2004). In
remental Feature Sele
tion and l1Regularization for Relaxed Maximum-Entropy Modeling. In Pro
eedings of the 2004Conferen
e on Empiri
al Methods in Natural Language Pro
essing (EMNLP'04)), Bar
elona,Spain. 37

Computational Linguisti
s Volume ??, Number ?R. Rosenfeld. (1997). A Whole Senten
e Maximum Entropy Language Model, In Pro
eedingsof the IEEE workshop on Spee
h Re
ognition and Understanding, Santa Barbara, California,De
ember 1997.S
hapire Robert E., Yoav Freund, Peter Bartlett and W. S. Lee. (1998). Boosting the margin:A new explanation for the e�e
tiveness of voting methods. The Annals of Statisti
s,26(5):1651-1686.S
hapire, Robert E. and Yoram Singer. (1999). Improved boosting algorithms using
on�den
e-rated predi
tions. Ma
hine Learning, 37(3):297-336, 1999S
hapire, Robert E. and Yoram Singer. (2000). BoosTexter: A boosting-based system for text
ategorization. Ma
hine Learning, 39(2/3):135-168, 2000.Sha, Fei and Fernando Pereira. (2003). Shallow parsing with
onditional random �elds. InPro
eedings of HLT-NAACL 2003.Shen, Libin, Anoop Sarkar and Aravind K. Joshi. (2003). Using LTAG Based Features in ParseReranking. In Pro
eedings of the 2003
onferen
e on Empiri
al Methods in Natural LanguagePro
essing (EMNLP 2003).Valiant, Leslie G. (1984). A theory of the learnable. In Communi
ations of the ACM,27(11):1134{1142.Walker, Marilyn, Owen Rambow, and Moni
a Rogati. (2001). SPoT: a trainable senten
eplanner. In Pro
eedings of the 2nd Meeting of the North Ameri
an Chapter of theAsso
iation for Computational Linguisti
s (NAACL 2001).Yaqian Zhou, Yaqian, Fuliang Weng, Lide Wu, and Hauke S
hmidt. (2003). A Fast Algorithmfor Feature Sele
tion in Conditional Maximum Entropy Modeling. In Pro
eedings of the2003
onferen
e on Empiri
al Methods in Natural Language Pro
essing (EMNLP 2003).

38

Collins and Koo Dis
riminative Reranking for NL ParsingAppendixAppendix A: Derivation of Updates for ExpLossThis appendix gives a derivation of the optimal updates for ExpLoss. The derivation isvery
lose to that in (S
hapire and Singer 1999). Re
all that for parameter values ��, weneed to
ompute BestWt(k; ��) and BestLoss(k; ��) for k = 1 : : :m, whereBestWt(k; ��) = argminÆ ExpLoss (Upd(��; k; Æ))and BestLoss(k; ��) = ExpLoss (Upd(��; k;BestWt(k; ��)))The �rst thing to note is that an update in parameters from �� to Upd(��; k; Æ)) resultsin a simple additive update to the ranking fun
tion F :F (xi;j ;Upd(��; k; Æ)) = F (xi;j ; �) + Æhk(xi;j)It follows that the margin on example (i; j) also has a simple update:Mi;j(Upd(��; k; Æ)) = F (xi;1;Upd(��; k; Æ))� F (xi;j ;Upd(��; k; Æ))= F (xi;1; ��)� F (xi;j ; ��) + Æ [hk(xi;1)� hk(xi;j)℄= Mi;j(��) + Æ [hk(xi;1)� hk(xi;j)℄The updated ExpLoss fun
tion
an then be written asExpLoss(Upd(��; k; Æ)) = Xi niXj=2 Si;je�Mi;j(Upd(��;k;Æ))= Xi niXj=2 Si;je�Mi;j(��)�Æ[hk(xi;1)�hk(xi;j)℄Next, we note that [hk(xi;1)� hk(xi;j)℄
an take on three values: +1, �1, or 0. We splitthe training sample into three sets depending on this valueA+k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = 1gA�k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = �1gA0k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = 0gGiven these de�nitions, we de�ne W+k , W�k and W 0k asW+k = X(i;j)2A+k Si;je�Mi;j(��)W�k = X(i;j)2A�k Si;je�Mi;j (��)W 0k = X(i;j)2A0k Si;je�Mi;j(��)
39

Computational Linguisti
s Volume ??, Number ?ExpLoss is now rewritten in terms of these quantities:ExpLoss(Upd(��; k; Æ)) = X(i;j)2A+kSi;je�Mi;j(��)�Æ +X(i;j)2A�kSi;je�Mi;j(��)+Æ +X(i;j)2A0kSi;je�Mi;j(��)= e�ÆW+k + eÆW�k +W 0k (A-1)To �nd the value of Æ that minimizes this loss, we set the derivative of (A-1) w.r.t. Æ to0, giving the following solution:BestWt(k; ��) = 12 log W+kW�kPlugging this value of Æ ba
k into (A-1) gives the best loss:BestLoss(k; ��) = 2qW+k W�k +W 0k= 2qW+k W�k + Z �W+k �W�k= Z ��qW+k �qW�k �2 (A-2)where Z = ExpLoss(��) = PiPnij=2 Si;je�Mi;j(��) is a
onstant (for
onstant ��) whi
happears in the BestLoss for all features, and therefore does not a�e
t their ranking.Appendix B: An Alternative Method for LogLossIn this se
tion we sket
h an alternative approa
h for feature sele
tion in LogLoss, whi
his potentially an eÆ
ient method, at the
ost of introdu
ing an approximation in thefeature sele
tion method. Until now, we have de�ned BestLoss(k; ��) to be the minimumof the loss given that the k'th feature is updated an optimal amount:BestLoss(k; ��) = minÆ LogLoss (Upd(��; k; Æ))In this se
tion we sket
h a di�erent approa
h, based on results from (Collins, S
hapireand Singer, 2002), whi
h leads to a very similar algorithm to that for ExpLoss in �g-ures 3 or 4. Take the following de�nitions (note the similarity to the de�nitions in Equa-tions 13, 14, 15, 16, with only the de�nitions for W+k and W�k being altered):W+k = X(i;j)2A+k qi;j W�k = X(i;j)2A�k qi;j where qi;j = e�Mi;j(��)1 +Pniq=2 e�Mi;q(��) (B-3)BestWt(k; ��) = 12 log W+kW�k (B-4)BestLoss(k; ��) = LogLoss(��)��qW+k �qW�k �2 (B-5)Note that the ExpLoss
omputations
an be re
overed by repla
ing qi;j in Equation (B-3)by qi;j = e�Mi;j(��). This is essentially the only di�eren
e between the new algorithm andthe ExpLoss method.40

Collins and Koo Dis
riminative Reranking for NL ParsingResults from (Collins, S
hapire and Singer, 2002) show that under these de�nitionsthe following guarantee holds:LogLoss (Upd(��; k;BestWt(k; ��))) � BestLoss(k; ��)So it
an be seen that the update from �� to Upd(��; k;BestWt(k; ��)) is guaranteed tode
rease LogLoss by at least �qW+k �qW�k �2. From these results, the algorithmsin �gures 3 and 4
ould be altered to take the revised de�nitions of W+k and W�k intoa

ount. Sele
ting the feature with the minimum value of BestLoss(k; ��) at ea
h iterationleads to largest guaranteed de
rease in LogLoss. Note that this is now an approximation,in that BestLoss(k; ��) is an upper bound on the log-likelihood whi
h may or may not betight. There are
onvergen
e guarantees for the method, however, in that as the numberof rounds of feature sele
tion goes to in�nity, the LogLoss approa
hes its minimum value.The algorithms in �gures 3 and 4
ould be modi�ed to take the alternative de�nitionsof W+k and W�k into a

ount, thereby being modi�ed to optimize LogLoss instead ofExpLoss. The denominator terms in the qi;j de�nitions in Equation (B-3) may
ompli
atethe algorithms somewhat, but it should still be possible to derive relatively eÆ
ientalgorithms using the te
hnique.For a full derivation of the modi�ed updates, and quite te
hni
al
onvergen
e proofs,see (Collins, S
hapire and Singer, 2002). We give a sket
h of the argument here. First,we show thatLogLoss (Upd(��; k; Æ)) � LogLoss (��)�W+k �W�k +W+k e�Æ +W�k eÆ (B-6)This
an be derived as follows (in this derivation we use gk(xi;j) = hk(xi;1)� hk(xi;j)):LogLoss (Upd(��; k; Æ)) = LogLoss (��) + LogLoss (Upd(��; k; Æ))� LogLoss (��)= LogLoss (��) +Xi log 1 +Pnij=2 e�Mi;j (��)�Ægk(xi;j)1 +Pnij=2 e�Mi;j(��) != LogLoss (��) +Xi log 11 +Pnij=2 e�Mi;j(��) + Pnij=2 e�Mi;j(��)�Ægk(xi;j)1 +Pnij=2 e�Mi;j(��) != LogLoss (��) +Xi log0�1� niXj=2 qi;j + niXj=2 qi;je�Ægk(xi;j)1A(B-7)� LogLoss (��)�Xi niXj=2 qi;j +Xi niXj=2 qi;je�Ægk(xi;j) (B-8)= LogLoss (��)� (W 0k +W+k +W�k) +W 0k +W+k e�Æ +W�k eÆ= LogLoss (��)�W+k �W�k +W+k e�Æ +W�k eÆEquation (B-8)
an be derived from Equation (B-7) through the bound log(1 + x) � xfor all x.The se
ond step is to minimize the right hand side of the bound in Equation (B-6)with respe
t to Æ. It
an be veri�ed that the minimum is found atÆ = 12 log W+kW�k 41

Computational Linguisti
s Volume ??, Number ?at whi
h value the right-hand-side of Equation (B-6) is equal toLogLoss(��)��qW+k �qW�k �2

42

