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This paper considers approaches which rerank the output of an existing probabilistic
parser. The base parser produces a set of candidate parses for each input sentence, with
associated probabilities that define an initial ranking of these parses. A second model
then attempts to improve upon this initial ranking, using additional features of the tree
as evidence. The strength of our approach is that it allows a tree to be represented as
an arbitrary set of features, without concerns about how these features interact or over-
lap, and without the need to define a derivation or a generative model which takes these
features into account. We introduce a new method for the reranking task, based on the
boosting approach to ranking problems described in (Freund et al. 1998). We applied the
boosting method to parsing the Wall Street Journal treebank. The method combined the
log-likelihood under a baseline model (that of (Collins 1999)) with evidence from an ad-
ditional 500,000 features over parse trees that were not included in the original model.
The new model achieved 89.75% F-measure, a 13% relative decrease in F-measure error
over the baseline model’s score of 88.2%. The paper also introduces a new algorithm for
the boosting approach which takes advantage of the sparsity of the feature space in the
parsing data. Ezperiments show significant efficiency gains for the new algorithm over
the obvious implementation of the boosting approach. We argue that the method is an
appealing alternative—both in terms of simplicity and efficiency—to work on feature se-
lection methods within log-linear (mazimum entropy) models. Although the experiments
in this paper are on natural language parsing, the approach should be applicable to many
other NLP problems which are naturally framed as ranking tasks, for example speech
recognition, machine translation, or natural language generation.

1 Introduction

Machine-learning approaches to natural language parsing have recently shown some suc-
cess in complex domains such as newswire text. Many of these methods fall into the
general category of history-based models, where a parse tree is represented as a deriva-
tion (sequence of decisions) and the probability of the tree is then calculated as a product
of decision probabilities. While these approaches have many advantages, it can be awk-
ward to encode some constraints within this framework. In the ideal case, the designer
of a statistical parser would be able to easily add features to the model that are believed
to be useful in discriminating between candidate trees for a sentence. In practice, how-
ever, adding new features to a generative or history-based model can be awkward—the
derivation in the model must be altered to take the new features into account, and this
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can be an intricate task.

This paper considers approaches which rerank the output of an existing probabilistic
parser. The base parser produces a set of candidate parses for each input sentence, with
associated probabilities that define an initial ranking of these parses. A second model
then attempts to improve upon this initial ranking, using additional features of the tree
as evidence. The strength of our approach is that it allows a tree to be represented as an
arbitrary set of features, without concerns about how these features interact or overlap,
and without the need to define a derivation which takes these features into account.

We introduce a new method for the reranking task, based on the boosting approach
to ranking problems described in (Freund et al. 1998). The algorithm can be viewed
as a feature selection method, optimizing a particular loss function (the exponential
loss function) that has been studied in the boosting literature. We applied the boosting
method to parsing the Wall Street Journal treebank (Marcus et al. 1993). The method
combines the log-likelihood under a baseline model (that of (Collins 1999)) with evidence
from an additional 500,000 features over parse trees that were not included in the original
model. The baseline model achieved 88.2% F-measure on this task. The new model
achieves 89.75% F-measure, a 13% relative decrease in F-measure error.

Although the experiments in this paper are on natural language parsing, the ap-
proach should be applicable to many other NLP problems which are naturally framed as
ranking tasks, for example speech recognition, machine translation, or natural language
generation. See (Collins, 2002a) for an application of the boosting approach to named
entity recognition, and (Walker et al., 2001) for the application of boosting techniques
for ranking in the context of natural language generation.

The paper also introduces a new, more efficient algorithm for the boosting approach
which takes advantage of the sparse nature of the feature space in the parsing data. Other
NLP tasks are likely to have similar characteristics in terms of sparsity. Experiments
show an efficiency gain of a factor of 2,600 for the new algorithm over the obvious
implementation of the boosting approach. Efficiency issues are important, because the
parsing task is a fairly large problem, involving around 1 million parse trees, and over
500,000 features. The improved algorithm can perform 100,000 rounds of feature selection
on our task in a few hours with current processing speeds. The 100,000 rounds of feature
selection take equivalent computation to around 40 passes over the entire training set (as
opposed to 100,000 passes for the “naive” implementation).

The problems with history-based models, and the desire to be able to specify features
as arbitrary predicates of the entire tree, have been noted before. In particular, previous
work (Ratnaparkhi, Roukos and Ward 1994; Abney 1997; Della Pietra, Della Pietra and
Lafferty 1997; Johnson et al. 1999; Riezler et. al 2002) has investigated the use of Markov
Random Fields (MRFs), or log-linear models as probabilistic models with global features
for parsing and other NLP tasks. (Log-linear models are often referred to as maximum-
entropy models in the NLP literature.) Similar methods have also been proposed for
machine translation (Och and Ney 2002) and language understanding in dialogue systems
(Papineni, Roukos and Ward 1997; Papineni, Roukos and Ward 1998). Previous work
(Friedman, Hastie and Tibshirani 1998) has drawn connections between log-linear models
and boosting for classification problems. One contribution of our research is to draw
similar connections between the two approaches to ranking problems.

We argue that the efficient boosting algorithm introduced in this paper is an attrac-
tive alternative to maximum-entropy models, in particular feature selection methods that
have been proposed in the literature on maximum-entropy models. The earlier methods
for maximum-entropy feature selection methods (Ratnaparkhi et al., 1994; Berger, Della
Pietra and Della Pietra 1996; Della Pietra et al. 1997; Papineni, Roukos and Ward 1997;
Papineni, Roukos and Ward 1998) require several full passes over the training set for
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each round of feature selection, suggesting that at least for the parsing data the im-
proved boosting algorithm is several orders of magnitude more efficient.! In section 6.4
of this paper we discuss our approach in comparison to these earlier methods for feature
selection, as well as the more recent work of (McCallum 2003; Zhou et al., 2003; Riezler
and Vasserman 2004).

The remainder of this paper is structured as follows. Section 2 reviews history-based
models for NLP, and highlights the perceived shortcomings of history-based models which
motivate the reranking approaches described in the remainder of the paper. Section 3
describes previous work (Friedman et al. 2000; Duffy and Helmbold 1999; Mason et.
al 1999; Lebanon and Lafferty 2002; Collins, Schapire and Singer, 2002) that derives
connections between boosting and maximum-entropy models for the simpler case of clas-
sification problems—this work will form the basis for the reranking methods. Section 4
describes how these approaches can be generalized to ranking problems. We introduce
loss functions for boosting and MRF approaches, and discuss optimization methods. We
also derive the efficient algorithm for boosting in this section. Section 5 gives experimen-
tal results, investigating the performance improvements on parsing, efficiency issues, and
the effect of various parameters of the boosting algorithm. Section 6 discusses related
work in more detail. Finally, section 7 gives conclusions.

The reranking models in this paper were originally introduced in (Collins, 2000). In
this paper we give considerably more detail in terms of the algorithms involved, their
justification, and their performance in experiments on natural language parsing.

2 History-Based Models

Before discussing the reranking approaches, we will describe history-based models (Black
et al. 1992). They are important for a few reasons. First, several of the best performing
parsers on the WSJ treebank (e.g., Ratnaparkhi 1997, Charniak 1997, 2000, Collins 1997,
1999, Henderson 2003) are cases of history-based models. Many systems applied to part-
of-speech tagging, speech recognition and other language or speech tasks also fall into
this class of model. Second, a particular history-based model (that of (Collins 1999))
will be used as the initial model for our approach. Finally, it is important to describe
history-based models—and to understand their limitations—to motivate our departure
from them.

Parsing can be framed as a supervised learning task, to induce a function f : X — Y
given training examples (z;,y;) where z; € X, y; € V. We define GEN(z) C Y to be the
set of candidates for a given input z. In the parsing problem z is a sentence, and GEN(z)
is a set of candidate trees for that sentence. A particular characteristic of the problem
is the complexity of GEN(x): GEN(x) can be very large, and each member of GEN(x)
has rich internal structure. This contrasts with “typical” classification problems where
GEN(z) is a fixed, small set, for example {—1,+1} in binary classification problems.

In probabilistic approaches, a model is defined which assigns a probability P(z,y) to
each (z,y) pair.? The most likely parse for each sentence = is then arg max, . GEN(x) P(z,y).

1 Note, however, that log-linear models which employ regularization methods instead of feature
selection—see for example (Johnson et al. 1999; Lafferty et al., 2001)—are likely to be comparable
in terms of efficiency to our feature selection approach. See section 6.3 for more discussion.

2 To be more precise, generative probabilistic models assign joint probabilities P(z,y) to each (z,y)
pair. Similar arguments apply to conditional history-based models, which define conditional
probabilities P(y | ) through a definition

Plylz) = ] Pdle(d. diya)
i=1l...n
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VP(saw) VP (saw)
VBD(saw) VBD(saw) {NnP-c() }
(1) (2)
VP(saw) VP(saw)
VBD(saw) NP-C( ) NP( ) VBD(saw) NP-C(heér NP( tdday

(3) (4)

Figure 1
The sequence of decisions involved in generating the right hand side of a lexical rule.

This leaves the question of how to define P(z,y). In history-based approaches, a one-to-
one mapping is defined between each pair (z,y) and a decision sequence (d; ...d,). The
sequence (d; ...d,) can be thought of as the sequence of moves that build (x,y) in some
canonical order. Given this mapping, the probability of a tree can be written as

P(z,y) = [ PWil@(di...diy))

i=1l...n

Here, (d; . ..d;—1) is the history for the i’th decision. ® is a function which groups histories
into equivalence classes, thereby making independence assumptions in the model.

Probabilistic Context-Free Grammars (PCFGs) are one example of a history-based
model. The decision sequence (d; ...d,) is defined as the sequence of rule expansions in
a top-down, left-most derivation of the tree. The history is equivalent to a partially built
tree, and ® picks out the non-terminal being expanded (i.e., the left-most non-terminal
in the fringe of this tree), making the assumption that P(d;|d; ...d;—1) depends only
on the non-terminal being expanded. In the resulting model a tree with rule expansions
(A; — B;) is assigned a probability [T, P(8;|A;).

Our base model, that of (Collins 1999), is also a history based model. It can be
considered to be a type of PCFG, where the rules are lexicalized. An example rule would
be:

VP(saw) -> VBD(saw) NP-C(her) NP(today)

Lexicalization leads to a very large number of rules; to make the number of parame-
ters manageable the generation of the right hand side of a rule is broken down into a
number of decisions, as follows:

e First the head non-terminal (VBD in the above example) is chosen.
e Next, left and right subcategorization frames are chosen ({} and {NP-C}).

e Non-terminal sequences to the left and right of the VBD are chosen (an empty
sequence to the left, (NP-C,NP) to the right).

e Finally, the lexical heads of the modifiers are chosen (her and today).

where dj ...d, are again the decisions made in building a parse, and @ is a function that groups
histories into equivalence classes. Note that z is added to the domain of ® (the context on which
decisions are conditioned). See (Ratnaparkhi 1997) for one example of a method using this approach.
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Figure 1 illustrates this process. Each of the above decisions has an associated prob-
ability conditioned on the left hand side of the rule (VP (saw)) and other information in
some cases.

History-based approaches lead to models where the log probability of a parse-tree
can be written as a linear sum of parameters «j multiplied by features hy. Each feature
hi(z,y) is the count of a different “event”, or fragment within the tree. As an example,
consider a PCFG with rules (A — f) for 1 <k < m. If hg(x,y) is the number of times
(Ar — Bi) is seen in the tree, and ay = log P(fk|Ak) is the parameter associated with
that rule, then

log P(z,y) = Z aphi(z,y)
k=1

All models considered in this paper take this form, although in the boosting models the
score for a parse is not a log probability. The features hj, define an m-dimensional vector
of counts which represent the tree. The parameters «a; represent the influence of each
feature on the score of a tree.

A drawback of history-based models is that the choice of derivation has a profound
influence on the parameterization of the model. (Similar observations have been made in
the related cases of belief networks (Pearl 88), and language models for speech recognition
(Rosenfeld 1997).) When designing a model, it would be desirable to have a framework
where features can be easily added to the model. Unfortunately, with history-based mod-
els adding new features often requires a modification of the underlying derivations in the
model. Modifying the derivation to include a new feature type can be a laborious task.
In an ideal situation we would be able to encode arbitrary features hy, without having
to worry about formulating a derivation that included these features.

To take a concrete example, consider part-of-speech tagging using a Hidden Markov
Model. We might have the intuition that almost every sentence has at least one verb, and
therefore that sequences including at least one verb should have increased scores under
the model. Encoding this constraint in a compact way in an HMM takes some ingenuity.
The obvious approach—to add to each state the information about whether or not a
verb has been generated in the history—doubles the number of states (and parameters)
in the model. In contrast, it would be trivial to implement a feature hy(z,y) which is 1
if y contains a verb, 0 otherwise.

3 Logistic Regression and Boosting

We now turn to machine learning methods for the ranking task. In this section we review
two methods for binary classification problems: logistic regression (or maximum-entropy)
models, and boosting. These methods will form the basis for the reranking approaches
described in later sections of the paper. Maximum-entropy models are a very popular
method within the computational linguistics community, see for example (Berger, Della
Pietra and Della Pietra 1996) for an early article which introduces the models and mo-
tivates them. Boosting approaches to classification have received considerable attention
in the machine learning community, since the introduction of AdaBoost by Freund and
Schapire (1997).

Boosting algorithms, and in particular the relationship between boosting algorithms
and maximum-entropy models, are perhaps not familiar topics in the NLP literature.
However there has recently been much work drawing connections between the two meth-
ods (Friedman et al. 2000; Lafferty 1999; Duffy and Helmbold 1999; Mason et. al 1999;
Lebanon and Lafferty 2002; Collins, Schapire and Singer, 2002); in this section we give
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a review of this work. Much of this work has focused on binary classification problems,
and this section is also restricted to problems of this type. Later in the paper we show
how several of the ideas can be carried across to reranking problems.

3.1 Binary Classification Problems
The general set-up for binary classification problems is as follows:

e The “input domain” (set of possible inputs) is X

e The “output domain” (set of possible labels) is simply a set of two labels,

Y ={-1,+1}2

e The training set is an array of n labelled examples,
((mlayl)a ($27y2)7 (KRR (mnayn» where each T; € X: Yi € y

e Input examples are represented through m “features”, which are functions
hp : X - Rifor k=1...m. It is also sometimes convenient to think of an
example x as being represented by an m-dimensional “feature vector”

o(x) = (h1(z), ha (@), ..., hm(x)).

e Finally, there is a parameter vector, @ = {ay ...a,,), where each ay € R, hence
@ is an m-dimensional real-valued vector.

We will see that both logistic regression and boosting implement a linear, or hyperplane,
classifier. This means that given an input example z, and parameter values &, the output
from the classifier is

sign (F(z, &@)) (1)

where .
F(z,a) =Y aphi(z) = a- ¢(x) (2)

k=1

Here a- ¢(z) is the inner or dot product between the vectors @ and ¢(z), and sign(z) =1
if z > 0, sign(z) = —1 otherwise. Geometrically, the examples = are represented as vec-
tors ¢(x) in some m-dimensional vector space, and the parameters @ define a hyperplane
which passes through the origin® of the space, and has & as its normal. Points lying on
one side of this hyperplane are classified as +1, points on the other side are classified as
—1. The central question in learning is how to set the parameters @, given the training
examples ((z1,y1), (z2,Y2),- .., (Tn,yn)). Logistic regression and boosting involve differ-
ent algorithms and criteria for training the parameters @, but recent work (Friedman et
al. 2000; Lafferty 1999; Duffy and Helmbold 1999; Mason et. al 1999; Lebanon and Laf-
ferty 2002; Collins, Schapire and Singer, 2002) has shown that the methods have strong
similarities. The next section describes parameter estimation methods.

3.2 Loss Functions for Logistic Regression and Boosting
A central idea in both logistic-regression and boosting is that of a loss function, which
drives the parameter estimation methods of the two approaches. This section describes

3 It turns out to be convenient to define Y = {—1,+1} rather than Y = {0,+1}, for example.

4 It might seem to be a restriction to have the hyperplane passing through the origin of the space.
However if a constant “bias” feature hy,+1(z) = 1 for all z is added to the representation, a
hyperplane passing through the origin in this new space is equivalent to a hyperplane in general
position in the original m-dimensional space.
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loss functions for binary classification. Later in the paper, we introduce loss functions for
reranking tasks which are closely related to the loss functions for classification tasks.

First, consider a logistic regression model. The parameters of the model & are used
to define a conditional probability

ey ¥ (z,@)

(3)

Plulea) = rarea
where F'(z, @) is as defined in Equation (2). Some form of maximum-likelihood estimation
is often used for parameter estimation. The parameters are chosen to maximize the log-
likelihood of the training set; equivalently, we will (to emphasize the similarities to the
boosting approach) talk about minimizing the negative log-likelihood. The negative log-
likelihood, LogLoss(@), is defined as

ey,F(w“a)
LogLoss(a ZlogP (yi | zi,a) = —Zlog <1 + e¥iF (zz,a)>

Z log (14 ¢ #:4'(r) (4)

i=1

There are many methods in the literature for minimizing LogLoss(&) with respect to &,
for example Generalized or Improved Iterative Scaling (Berger, Della Pietra and Della
Pietra 1996; Della Pietra et al. 1997), or conjugate gradient methods (Malouf 2002). In
the next section we describe feature selection methods, as described in (Berger, Della
Pietra and Della Pietra 1996; Della Pietra et al. 1997).

Once the parameters @ are estimated on training examples, the output for an example
x is the most likely label under the model,

argmaxP(y | z,&) = arg max yF(z,&) =sign (F(x,@)) (5)
yeY ye{-1,+1}
where as before, sign(z) = 1 if z > 0, sign(z) = —1 otherwise. Thus we see that the

logistic regression model implements a hyperplane classifier.
In boosting, a different loss function is used, namely ExpLoss(&), which is defined as

ExpLoss(@ Ze vil'(es,a) (6)

This loss function is minimized using a feature selection method, which we will describe
in the next section.

There are strong similarities between LogLoss (equation 4) and ExpLoss (equation 6).
In making connections between the two functions, it is useful to consider a third function
of the parameters and training examples,

Error(a Z[[yz (zi,a) < 0] (7

where [7] is 1 if 7 is true, O otherwise. Error(@) is the number of incorrectly classified
training examples under parameter values &.
Finally, it will be useful to define the margin on the i’th training example, given
parameter values &, as
M;(a) = yiF (i, ) (8)
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With these definitions, the three loss functions can be written in the following form:

LogLoss(a) = Z f(M;(a)) where f(z) =log (1l + e~ %)
ExpLoss(a) = Z f(M;(a)) where f(z) =e™*
Error(@) = Y f(Mi(@)) where f(z)=[z <0]

1

-
I

The three loss functions differ only in their choice of an underlying “potential function”
of the margins, f(z). This function is f(z) =log (1 +e %), f(z) =e %, or f(z) = [z < 0]
for LogLoss, ExpLoss and Error respectively. The f(z) functions penalize non-positive
margins on training examples. The simplest function, f(z) = [z < 0], gives a cost of 1
if a margin is negative (an error is made), 0 otherwise. ExpLoss and LogLoss involve
definitions for f(z) which quickly tend to 0 as z — oo, but which heavily penalize
increasingly negative margins.

Figure 2 shows plots for the three definitions of f(z). The functions f(z) = e~ *
and f(z) = log(l+ e #) are both upper bounds on the error function, so that mini-
mizing either LogLoss or ExpLoss can be seen as minimizing an upper bound on the
number of training errors. (Note that minimizing Error(@) itself is known to be at least
NP-hard if no parameter settings can achieve zero errors on the training set, see for
example (Hoffgen, van Horn, and Simon 1995).) As z — oo, the functions f(z) = e *
and f(z) = log(1+ e *) become increasingly similar, because log (1 +e %) — e % as
e~% — 0. For negative z, the two functions behave quite differently. f(z) = e~ shows an
exponentially growing cost function as z - —oo. In contrast, as z — —oo it can be seen
that log (1 + e™%) — log (e7%) = —z, so this function shows asymptotically linear growth
for negative z. As a final remark, note that both f(z) = e * and f(z) = log (1 + e~ *)
are convex in z, with the result that LogLoss(@) and ExpLoss(&) are convex in the pa-
rameters &. This means that there are no problems with local minima when optimizing
these two loss functions.

3.3 Feature Selection Methods
In this paper we concentrate on feature-selection methods — algorithms which aim to
make progress in minimizing the loss functions LogLoss(a@) and ExpLoss(a) while using
a small number of features (equivalently, ensuring that most parameter values in & are
zero). Roughly speaking, the motivation for using a small number of features is the hope
that this will prevent overfitting in the models.

Feature selection methods have been proposed in the maximum-entropy literature
by several authors (Ratnaparkhi et al., 1994; Berger, Della Pietra and Della Pietra 1996;
Della Pietra et al. 1997; Papineni, Roukos and Ward 1997; Papineni, Roukos and Ward
1998; McCallum 2003; Zhou et al., 2003; Riezler and Vasserman 2004). The most basic
approach—for example see (Ratnaparkhi et al., 1994; Berger, Della Pietra and Della
Pietra 1996)—involves selection of a single feature at each iteration, followed by an
update to the entire model, as follows:

Step 1 Throughout the algorithm, maintain a set of active features. Initialize this set
to be empty.

Step 2 Choose a feature from outside of the set of active features which has largest
estimated impact in terms of reducing the loss function LogLoss, and add this
to the active feature set.
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Figure 2

Potential functions underlying ExpLoss, LogLoss, and Error. The graph labelled ExpLoss is a
plot of f(z) =e * for z =[—1.5...1.5]; LogLoss shows a similar plot for f(z) = log (1 + efz);
Error is a plot of f(z) = [z <0].

Step 3 Minimize LogLoss(@) with respect to the set of active features—that is, allow
only the active features to take non-zero parameter values when minimizing
LogLoss. Return to Step 2.

Methods in the boosting literature (see for example (Schapire and Singer 1999)) can be
considered to be feature selection methods of the following form:

Step 1 Start with all parameter values set to zero.

Step 2 Choose a feature which has largest estimated impact in terms of reducing the
loss function ExpLoss.

Step 3 Update the parameter for the feature chosen at Step 2 in such a way as to
minimize ExpLoss(@) with respect to this one parameter. All other parameter
values are left fixed. Return to Step 2.

The difference with this latter “boosting” approach is that in Step 3, only one pa-
rameter value is adjusted—namely, the parameter corresponding to the newly chosen
feature. Note that in this framework, the same feature may be chosen at more than
one iteration.® The maximum-entropy feature selection method can be quite inefficient,
as the entire model is updated at each step. For example, Ratnaparkhi (1998) quotes

5 i.e., The feature may be repeatedly updated, although the same feature will never be chosen in
consecutive iterations, because after an update the model is minimized with respect to the selected
feature.
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times of around 30 hours for 500 rounds of feature selection on a prepositional phrase
attachment task. These experiments were performed in 1998, when processors were no
doubt considerably slower than machines today. However the PP attachment task is much
smaller than the parsing task that we are addressing: our task involves around 1,000,000
examples, with perhaps a few hundred features per example, and 100,000 rounds of
feature selection; this compares to 20,000 examples, 16 features per example, and 500
rounds of feature selection for the PP attachment task in (Ratnaparkhi 1998). As an
estimate, assuming that computational complexity scales linearly in these factors,® our
task is % X % X 10506%00 = 200,000 as large as the PP attachment task. These
figures sugé;est that the maximum-entropy feature selection approach may be infeasible
for large-scale tasks such as the one in this paper.

The fact that the boosting approach does not update the entire model at each round
of feature selection may be a disadvantage in terms of the number of features, or test
data accuracy, of the final model. There is reason for concern that Step 2 will at some
iterations mistakenly choose features which are apparently useful in reducing the loss
function, but which would have little utility if the entire model had been optimized at
the previous iteration of Step 3. However, previous empirical results for boosting have
shown that it is a highly effective learning method, suggesting that this is not in fact a
problem for the approach. Given the previous strong results for the boosting approach,
and for reasons of computational efficiency, we pursue the boosting approach to feature
selection in this paper.

3.4 Statistical Justification for the Methods

Minimization of LogLoss is most often justified as a parametric, maximum-likelihood
(ML) approach to estimation. Thus this approach benefits from the usual guarantees for
ML estimation—if the distribution generating examples is within the class of distributions
specified by the log-linear form, then in the limit as the sample size goes to infinity the
model will be optimal in the sense of convergence to the true underlying distribution
generating examples. As far as we are aware, behaviour of the models for finite sample
sizes is less well understood. In particular, while feature selection methods have often
been proposed for maximum-entropy models, little theoretical justification (in terms
of guarantees about generalization) has been given for them. It seems intuitive that a
model with a smaller number of parameters will require fewer samples for convergence,
but this is not necessarily the case, and at present this intuition lacks a theoretical basis.
Feature selection methods can probably be motivated from either a Bayesian perspective
(through a prior favouring models with a smaller number of non-zero parameters), or
from a frequentist/goodness-of-fit perspective (models with fewer parameters are less
likely to fit the data by chance), but this requires additional research.

The statistical justification for boosting approaches is quite different. Boosting algo-
rithms were originally developed within the PAC framework (Valiant, 1984) for machine
learning, specifically to address questions regarding the equivalence of weak and strong
learning. Freund and Schapire (1997) originally introduced AdaBoost, and gave a first
set of statistical guarantees for the algorithm. Schapire et. al (1998) give a second set of
guarantees based on the analysis of margins on training examples. Both papers assume
that a fixed distribution D(z,y) is generating both training and test examples, and that
the goal is to find a hypothesis with a small number of expected errors with respect
to this distribution. The form of the distribution is not assumed to be known, and in

6 We believe this is a realistic assumption, as each round of feature selection takes O(nf) time where
n is the number of training examples, and f is the number of active features on each example.

10
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this sense the guarantees are non-parametric, or “distribution free”. Freund and Schapire
(1997) show that if the weak learning assumption holds (i.e., roughly speaking, a feature
with error rate better than chance can be found for any distribution over the sample
space X x {—1,+41}), then the training error for the ExpLoss method decreases rapidly
enough for there to be good generalization to test examples. Schapire et. al (1998) show
that under the same assumption, minimization of ExpLoss using the feature selection
method ensures that the distribution of margins on training data develops in such a way
that good generalization performance on test examples is guaranteed.

3.5 Boosting with Complex Feature Spaces

Thus far in this paper we have presented boosting as a feature selection approach. In this
section, we note that there is an alternative view of boosting, where it is described as
a method for combining multiple models, for example as a method for forming a linear
combination of decision trees. We will only consider the simpler, feature selection view of
boosting in this paper. This section is included for completeness, and because the more
general view of boosting may be relevant to future work on boosting approaches for parse
reranking (note, however, that the discussion in this section is not essential to the rest
of the paper, so the reader may safely skip this section if she or he wishes to do so).

In feature selection approaches, as described in this paper, the set of possible features
hi(z) for k= 1...mis taken to be a fixed set of relatively simple functions. In particular,
we have assumed that m is relatively small (for example, small enough for algorithms
that require O(m) time or space to be feasible). More generally, however, boosting can
be applied in more complex settings. For example, a common use of boosting is to form
a linear combination of decision trees. In this case each example z is represented as a
number of attribute-value pairs, and each “feature” hy(x) is a complete decision tree
built on predicates over the attribute values in x. In this case the number of “features”
m is huge—there are as many features as there are decision trees over the given set of
attributes, thus m grows exponentially quickly with the number of attributes that are
used to represent an example x. Boosting may even be applied in situations where the
number of features is infinite. For example, it may be used to form a linear combination
of neural networks. In this case each “feature” hy(z) corresponds to a different parameter
setting within the (infinite) set of possible parameter settings for the neural network.

In more complex settings such as boosting of decision trees or neural networks, it is
generally not feasible to perform an exhaustive search (with O(m) time complexity) for
the feature which gives the greatest impact on the exponential” loss function. Instead,
an approximate search is performed. In boosting approaches, this approximate search
is achieved through a protocol where at each round of boosting, a “distribution” over
the training examples is maintained. The distribution can be interpreted as assigning an
importance weight to each training example, most importantly giving higher weight to
examples which are incorrectly classified. At each round of boosting the distribution is
passed to an algorithm such as a decision tree or neural network learning method, which
attempts to return a feature (a decision tree, or a neural network parameter setting)
which has a relatively low error rate with respect to the distribution. The feature that
is returned is then incorporated into the linear combination of features. The algorithm
which generates a classifier given a distribution over the examples—for example the
decision tree induction method—is usually referred to as “the weak learner”. The weak
learner generally uses an approximate (for example greedy) method to find a function

7 Note that it is also possible to apply these methods to the LogLoss function; see for example
(Friedman et al. 2000; Duffy and Helmbold 1999).
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with low error-rate with respect to the distribution. Freund and Schapire (1997) show
that providing that at each round of boosting the weak learner returns a feature with
greater than (50 + €)% accuracy for some fixed €, then the number of training errors
falls exponentially quickly with the number of rounds of boosting. This fast drop in
training error translates to statistical bounds on generalization performance (Freund
and Schapire, 1997).

Under this view of boosting, the feature selection methods in this paper are a par-
ticularly simple case, where the weak learner can afford to exhaustively search through
the space of possible features. Future work on reranking approaches might consider other
approaches—such as boosting of decision trees—which can effectively consider more com-
plex features.

4 Reranking Approaches

This section describes how the ideas from classification problems can be extended to
reranking tasks. A baseline statistical parser is used to generate N-best output for both
its training set, and for test data sentences. Each candidate parse for a sentence is repre-
sented as a feature vector which includes the log-likelihood under the baseline model, as
well as a large number of additional features. The additional features can in principle be
any predicates over sentence/tree pairs. Evidence from the initial log-likelihood and the
additional features is combined using a linear model. Parameter estimation becomes a
problem of learning how to combine these different sources of information. The boosting
algorithm we use is related to the generalization of boosting methods to ranking prob-
lems in (Freund et al. 1998); we also introduce an approach related to the conditional
log-linear models of (Ratnaparkhi et al., 1994; Papineni, Roukos and Ward 1997; Pa-
pineni, Roukos and Ward 1998; Johnson et al. 1999; Riezler et. al 2002; Och and Ney
2002).

Section 4.1 gives a formal definition of the reranking problem. Section 4.2 introduces
loss functions for reranking that are analogous to the LogLoss and ExpLoss functions in
section 3.2. Section 4.3 describes a general approach to feature selection methods with
these loss functions. Section 4.4 describes a first algorithm for the exponential (ExpLoss)
loss function; section 4.5 introduces a more efficient algorithm for the case of ExpLoss.
Finally, section 4.6 describes issues in feature selection algorithms for the LogLoss loss
function.

4.1 Problem Definition
We use the following notation in the rest of this paper:

e 5; is the ¢’th sentence in the training set. There are n sentences in training
data, so that 1 <i <mn.

e z; ; is the j’th parse of the i’th sentence.

There are n; parses for the ¢’th sentence, so that 1 <i<mnand 1 <j < n;.
Each x; ; contains both the tree and the underlying sentence (i.e. each z;; is a
pair (s;,t; ;) where s; is the ’th sentence in training data, and ¢; ; is the j’th
tree for this sentence). We assume that the parses are distinct, i.e., that

zij # wij for j #j'.

e Score(z; ;) is the “score” for parse x; j, a measure of the similarity of z; ; to
the gold-standard parse. For example Score(z; ;) might be the F-measure
accuracy of parse x; ; compared to the gold-standard parse for s;.

12
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e ()(x; ;) is the probability that the base parsing model assigns to parse z; ;.
L(x;,;) = log Q(z;,;) is the log probability.

e Without loss of generality, we assume z;; to be the highest scoring parse for
the i’th sentence.® More precisely, for all i,2 < j < ng,
Score(x;,1) > Score(z; ;). Note that x; 1 may not be identical to the
gold-standard parse — in some cases the parser may fail to propose the correct
parse anywhere in its list of candidates.®

Thus our training data consists of a set of parses, {x; ; : ¢ =1...n,j = 1...n;}, together
with scores Score(x; ;) and log-probabilities L(x; ;).

We will represent candidate parse trees through m features, hy, for k = 1...m. Each
hy is an indicator function, for example

() = { 1 if z contains the rule (S — NP V P)

0 otherwise
We will see that the restriction to binary valued features is important for the simplicity
and efficiency of the algorithms.'® We also assume a vector of m + 1 parameters, & =
{ap,1,...,a,}. Bach a; can take any value in the reals. The ranking function for a
parse tree z implied by a parameter vector @ is defined as

F(z,@) = aoL(z) + »  arhy(z)
k=1

Given a new test sentence s, with parses z; for j = 1... N, the output of the model will
be the highest scoring tree under the ranking function

arg max F(z,a)
ze{ri..en}

Thus F(z,&) can be interpreted as a measure of how plausible a parse x is, higher scores
meaning that = is more plausible. Competing parses for the same sentence are ranked
in order of plausibility by this function. We can recover the base ranking function—the
log-likelihood L(x)—by setting ag to a positive constant, and setting all other parameter
values to be 0. Our intention is to use the training examples to pick parameter values
which improve upon this initial ranking.

We now discuss how to set these parameters. First we discuss loss functions Loss(@)
which can be used to drive the training process. We then go on to describe feature
selection methods for the different loss functions.

8 In the event that multiple parses get the same, highest score the parse with the highest value of
log-likelihood L under the baseline model is taken as z; 1. In the event that two parses have the
same score and the same log-likelihood—which occurred rarely if ever in our experiments—we make
a random choice between the two parses.

9 This is not necessarily a significant issue if an application using the output from the parser is
sensitive to improvements in evaluation measures such as precision and recall that give credit for
partial matches between the parser’s output and the correct parse. In this case, it is only important
that the precision/recall for w; 1 is significantly higher than that of the baseline parser, i.e., that
there is some “headroom” for the reranking module in terms of precision and recall.

10 In particular, this restriction allows closed—form parameter updates for the models based on
ExpLoss that we consider. Note that features tracking the counts of different rules can be simulated
through several features which take value 1 if a rule is seen > 1 time, > 2 times, > 3 times and so on.
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4.2 Loss Functions for Ranking Problems

4.2.1 Ranking Errors, and Margins The loss functions we consider are all related to
the number of ranking errors a function F' makes on the training set. The ranking error
rate is the number of times a lower scoring parse is (incorrectly) ranked above the best
parse:

Error(@) = Z zl:[[F(l'i,l;@) < F(w5,a)]

i j=2
=> > [F(zi1,@) — F(xi;,a) < 0]
i j=2

where again, [7] is 1 if 7 is true, 0 otherwise. In the ranking problem we define the
margin for each example z; j such that i =1...n, j =2...n; as

Mi]'(c_!) = F(ﬂfi71,0_é) — F(CUZ'J', C_!)

Thus M;;(@) is the difference in ranking score between the correct parse of a sentence,
and a competing parse z; ;. It follows that

Error(a) = » 2[[1\41»,.(@) < 0]

i j=2

The ranking error is 0 if all margins are positive. The loss functions we discuss all turn
out to be direct functions of the margins on training examples.

4.2.2 Log-Likelihood The first loss function is that suggested by Markov Random
Fields. As suggested by Ratnaparkhi et. al (1994), and Johnson et. al (1999), the condi-
tional probability of x;, being the correct parse for the ¢’th sentence is defined as

eF(mi-W&)

Plaig [ 56,0) = St
J:

Given a new test sentence s, with parses z; for j = 1... N, the most likely tree is

eF(zjva) ( )
arg max ——————— = argmax F'(z;, &
T Zflvzl el(zg,a) z;

Hence once the parameters are trained, the ranking function is used to order candidate
trees for test examples.
The log-likelihood of the training data is

eF(zi,hEz)

log P(x;1 | si, @) = log ==

Under maximum likelihood estimation, the parameters & would be set to maximize
the log-likelihood. Equivalently, we will again talk about minimizing the negative log-
likelihood. Some manipulation shows that the negative log-likelihood is a function of the
margins on training data:

i eF(zm,&)
Logloss(a) = > ~log s m
=1

i J=
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1
Z — lOg Z;LZ:]_ ef(F(z,-‘hd)fF(wi)]y&))

i

= Zlog 1+Ze (@01,3)=F(e:5,8)

Z log | 1+ i e~ Mii(@) (9)
i j=2

Note the similarity of Equation (9) to the LogLoss function for classification in Equa-
tion (4).

4.2.3 Exponential Loss The next loss function is based on the boosting method de-
scribed in (Schapire and Singer 1999). It is a special case of the general ranking methods
described in (Freund et al. 1998), with the ranking “feedback” being a simple binary dis-
tinction between the highest scoring parse and the other parses. Again, the loss function
is a function of the margins on training data:

ExpLoss(@ ZZG_(F(% 1,@)—F(z,5,0)) Zze ij(a@) (10)

Note the similarity of Equation (10) to the LogLoss function for classification in Equa-
tion (6). It can be shown that ExpLoss(a) > Error(a@), so that minimizing ExpLoss(@) is
closely related to minimizing the number of ranking errors.*! This follows from the fact
that for any x, e=* > [z < 0], and therefore that

Zie_Mi‘j(a) > Zi[[Mi,j(d) < 0]
i =2 i =2

We generalize the ExpLoss function slightly, by allowing a weight for each example z; ;,
fori=1...n,7=2...n;. We will use S;; to refer to this weight. In particular, in some
experiments in this paper we will use the following definition:

S;,j = Score(x;,1) — Score(z; ;) (11)

where, as defined in section 4.1, Score(x; ;) is some measure of the “goodness” of a
parse, such as F-measure (see Section 5 for the exact definition of Score used in our
experiments). The definition for ExpLoss is modified to be

ExpLoss(a Z Z S;je” M;,;(a)

This definition now takes into account the importance, S; ;, of each example. It is an
upper bound on the following quantity

2 Z Sig[Mi (@) < 0]

11 Note that LoglLoss is not a direct upper bound on the number of ranking errors, although it can be
shown that it is a (relatively loose) upper bound on the number of times the correct parse is not the
highest-ranked parse on the model. The latter observation follows from the property that that the
correct parse must be highest ranked if its probability is > 0.5.
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which is the number of errors weighted by the factors S; ;. The original definition of
ExpLoss in Equation (10) can be recovered by setting S; ; = 1 for all 4, j (i.e., by giving
equal weight to all examples). In our experiments we found that a definition of S; ; such
as that in Equation (11) gave improved performance on development data, presumably
because it takes into account the relative cost of different ranking errors in training data
examples.

4.3 A General Approach to Feature Selection

At this point we have definitions for ExpLoss and LogLoss which are analogous to the
definitions in section 3.2 for binary classification tasks. Section 3.3 introduced the idea
of feature selection methods; the current section gives a more concrete description of the
methods used in our experiments.

The goal of feature selection methods is to find a small subset of the features that
contribute most to reducing the loss function. The methods we consider are greedy, at
each iteration picking the feature hj with additive weight § which has the most impact
on the loss function. In general, a separate set of instances will be used in cross-validation
to choose the stopping point, i.e., to decide on the number of features in the model.

At this point we introduce some notation concerning feature selection methods. We
define Upd(a, k, d) to be an updated parameter vector, with the same parameter values
as @ with the exception of ay, which is incremented by ¢

Upd(d;kaé):{a07a1;"'7ak+6;"'7am}

The 6 parameter can potentially take any value in the reals. The loss for the updated
model is Loss (Upd(a, k, d)). Assuming we greedily pick a single feature with some weight
to update the model, and given that the current parameter settings are @, the optimal
feature/weight pair (k*,0*) is

(k*,0%) = arg rzligl Loss (Upd(a, k, 9))

The feature selection algorithms we consider take the following form (&! is the parameter
vector at the t’th iteration):

1 Initialize @° to some value. (This will generally involve values of zero for aj . ..amn,
and a non-zero value for «y, for example a° = {1,0,0,...}.)

2 for t = 1 to N (The number of iterations N will be chosen by cross validation):
a Find (k*,6*) = argminy s Loss (Upd(a'~', k, )
b Set a! = Upd(al~t, k*,d%)

Note that this is essentially the idea behind the “boosting” approach to feature
selection introduced in section 3.3. In contrast, the feature selection method of (Berger,
Della Pietra and Della Pietra 1996), also described in section 3.3, would involve updating
parameter values for all selected features at step 2(b).

The main computation for both loss functions involves search for the optimal fea-
ture/weight pair (k*,0*). In both cases our approach to solving this problem is a two-step
approach. In the first step the optimal update for each feature hy, is calculated. We define
BestWt(k,a) as the optimal update for the k’th feature (it must be calculated for all
features k = 1...m):

BestWit(k,a) = arg méin Loss (Upd(a, k, 9))
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The next step is to calculate the Loss for each feature with its optimal update, which
we will call

BestLoss(k,a) = main Loss (Upd(a, k,6)) = Loss (Upd(a, k, BestWt(k,a)))

Having computed BestWt and BestLoss for each feature, the optimal feature/weight
pair can be found:

k* = argmkin BestLoss(k,a), 0" = BestWit(k*,a)

The next sections describe how BestWt and BestLoss can be computed for the two loss
functions.

4.4 Feature Selection for ExpLoss
At the first iteration, «y is set to optimize ExpLoss (recall that L(z; ;) is the log-likelihood
for parse x; j under the base parsing model):

n;
ap = argm;nz Z Si.je (alb(zia)=L(zi3)]) (12)
i =2
In initial experiments we found that this step was crucial to the performance of the
method (as opposed to simply setting «p = 1, for example). It ensures that the con-
tribution of the log-likelihood feature is well-calibrated with respect to the exponential
loss function. In our implementation ag was optimized using simple brute-force search.
All values of ag between 0.001 and 10 at increments of 0.001 were tested, and the value
which minimized the function in Equation (12) was chosen.'?

Feature selection then proceeds to search for values of the remaining parameters,
aj - ... (Note that it might be preferable to also allow « to be adjusted as features are
added; we leave this to future work.) This requires calculation of the terms BestWt(k, @)
and BestLoss(k, @) for each feature. For binary-valued features these values have closed-
form solutions, which is computationally very convenient. We now describe the form of
these updates. See Appendix A for how the updates can be derived (the derivation is
essentially the same as that in (Schapire and Singer 1999)).

First, we note that for any feature, [hy(2;,1) — he(x; ;)] can take on three values: +1,
—1, or 0 (this follows from our assumption of binary-valued feature values). For each k
we define the following sets:

AF = {67) s [ha(zin) — he(@ig)] = 1}

Ay {@@,9) « [hw(win) — hi(wi5)] = -1}
Thus A} is the set of training examples where the k’th feature is seen in the correct
parse but not in the competing parse; A, is the set where the k’th feature is seen in the

incorrect but not the correct parse.
Based on these definitions, we next define W,:' and W~ as follows:

W,:r = Z Si7j€_Mi'j(5[) (13)
(i,4)EAF

Wy o= Y Sije M@ (14)
(4,J)€AL

12 A more precise approach, for example binary search, could also be used to solve this optimization
problem. We used the methods that searches through a set of fixed values for simplicity, implicitly
assuming that a precision of 0.001 was sufficient for our problem.
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Given these definitions, it can be shown (see Appendix A) that

1 +
BestWit(k,a) = 3 log%
k

and

BestLoss(k,a) = Z — (m- m>2 (16)

where Z =37, 371, S;je~Mii(®) = ExpLoss(&) is a constant (for fixed @) which appears
in the BestLoss for all features, and therefore does not affect their ranking.

As Schapire and Singer (1999) point out, the updates in Equation (15) can be
problematic, as they are undefined (infinite) when either W, or W, is zero. Follow-
ing (Schapire and Singer 1999), we introduce smoothing through a parameter € and the
following new definition of BestWt:

+
BestWit(k,a) = 1 log M (17)
2 P W, +eZ
The smoothing parameter € is chosen through optimization on a development set.
See figure 3 for a direct implementation of the feature selection method for ExpLoss.

We use an array of values
Gy = ‘\/W]:_ — \/Wk_

to indicate the gain of each feature (i.e. the impact that choosing this feature will have
on the ExpLoss function). The features are ranked by this quantity. It can be seen that
almost all of the computation involves the calculation of Z, and W,:r and W~ for each
feature hr. Once these values have been computed, the optimal feature and its update
can be chosen.

4.5 A New, More Efficient, Algorithm for ExpLoss

This section presents a new algorithm, which is equivalent to the ExpLoss algorithm in
figure 3, but can be vastly more efficient for problems with sparse feature spaces. In the
experimental section of this paper we show that it is almost 2,700 times more efficient
for our task than the algorithm in figure 3. The efficiency of the different algorithms is
important in the parsing problem. The training data we eventually used contained around
36,000 sentences, with an average of 27 parses per sentence, giving around 1,000,000 parse
trees in total. There were over 500,000 different features.

The new algorithm is also applicable, with minor modifications, to boosting ap-
proaches for classification problems where the representation also involves sparse binary
features (for example the text classification problems in (Schapire and Singer 2000)).
As far as we are aware, the new algorithm has not appeared elsewhere in the boosting
literature.

Figure 4 shows the improved boosting algorithm. Inspection of the algorithm in
figure 3 shows that only margins on examples in the sets A,‘& and A}, are modified when
a feature k* is selected. The feature space in many NLP problems is very sparse (most
features only appear on relatively few training examples, or equivalently, most training
examples will only have a few non-zero features). It follows that in many cases, the sets
AZZ and A, will be much smaller than the overall size of the training set. Therefore
when updating the model from @ to Upd(a,k*,6*) the values W, and W, remain
unchanged for many features, and do not need to be recalculated. In fact, only features
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Input
e Examples x; j fort =1...n, j =1...n; drawn from some set X
e Weights S; ; representing importance of examples.
e Initial model log-likelihoods L(z; ;), for all examples ; ;.
e Feature functions hy : ¥ — {0,1} fork=1...m

e Smoothing parameter € (usually chosen by optimization on development
data).

e Number of rounds N (usually chosen by optimization on development
data).

Initialize
o Set ap = argming >, Y7, S; jeolE @) =Liwi ;)]
eSet ap =0fork=1...m
e For all 4, 2 < j < n; set margins M; ; = ao [L(@;1) — L(x; )]
ekorall k=1...m, set

A = {(,4) : [ha(xin) — hu(zi )]
Ay = A6 7)  Tha(win) — hi(wi )] = —1}

Repeat fort =1to NV
e Calculate Z =), Z;‘Zz Siyje—Mi,j
efork=1tom

—Set W,F =W, =0
— for (i, )eA W =W +8; e M
— for (4, 7) EAk, Wk =W, + S, e M

— Gy =

k*+eZ
W ez

e Choose k* = argmax; Gy, and 6* = }log
ofor (i,j) € Af., M;; = M;;+6*

ofor (i,j) € Ay, M;;=M,;;—6*

ea! = Upd(at=1t, k*, %)

Output Final parameter setting a’v

Figure 3
A naive algorithm for the boosting loss function.
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which co-occur with £* on some example must be updated. The algorithm in figure 4
only recalculates the values of W,:' and W, for those features which co-occur with the
selected feature k*.

To achieve this, the algorithm relies on a second pair of indices. For all i, 2 < j < n;
we define

)]
)]

So Bif ; and B, ; are indices from training examples to features. With the algorithm in

1}
-1} (18)

B;rj = {k:[he(zin) — hi(zij
= {k:[he(zi1) — he(zi;

B

figure 4, updating the values of W,:r and W, for the features which co-occur with k*
involves the following number of steps:

C= > (BLl+IB )+ > (IBHl+1B,) (19)

(i.5)€AL, (L5)EAL,

In contrast, the naive algorithm requires a pass over the entire training set, which requires
the following number of steps:

=303 (8 157, 20)

i=1 j=2

The relative efficiency of the two algorithms depends on the value of C'/T at each iter-
ation. In the worst case, when every feature chosen appears on every training example,
then C/T = 1, and the two algorithms essentially have the same running time. How-
ever in sparse feature spaces there is reason to believe that C/T will be small for most
iterations. In section 5.4.3 we show that this is the case for our experiments.

4.6 Feature Selection for LogLoss

We now describe an approach that was implemented for LogLoss. At the first iteration,

o is set to 1. Feature selection then searches for values of the remaining parameters,

aj ...a,. We now describe how to calculate the optimal update for a feature k with

the LoglLoss loss function. First we recap the definition of the probability of a particular

parse x; , given parameter settings a:
eF(zi,q,&)

ni F(z; j,&
DI

P(Ii,q | Siad) =

Recall that the log-loss is

LogLoss(a) = Z —log P(zi1 | si,@)

i

Unfortunately, unlike the case of ExpLoss, in general an analytic solution for BestWt
does not exist. However, we can define an iterative solution using techniques from iterative
scaling (Della Pietra et al. 1997). We first define hy, the number of times that feature &
is seen in the best parse, and py(@), the expected number of times under the model that
feature k is seen:

hy = th(xm) (@) = Z_Zzhk(xi,j)])(xid | si, @)

i
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Input

Examples z;; for ¢ = 1...n, j = 1...n; drawn from some set X. Weights .S; ;
representing importance of examples. Initial model log-likelihoods L(z; ), for all
examples «; ;. Feature functions hy, : X — {0,1} for £ = 1...m. Smoothing param-
eter € (usually chosen by optimization on development data). Number of rounds N
(usually chosen by optimization on development data).

Initialize
o Set ap = argming y_; D7, S; je~olblwi)=Liwis)],
eSet ap =0for k=1...m.
e For all 4, 2 < j < n; set margins M; ; = oo [L(xi,1) — L(x;,5)].
ekorall k=1...m, set

Af = {(,4) : [he(win) — ha(wi;)] =1} and
Ay = A6 d)  [he(in) — b (@)

eFor all i, 2 <j <n; set

B:,_j = {k:[he(zi1) — he(ziy)]
B, = {k:[h(zin) — hi(zi ;)] = -1}
e Calculate Z, and W,:', Wo, G = ‘,/W,j — /W, | for k=1...m using

the algorithm in figure 3.

Repeat fort = 1to N

Wl +ez
WeteZ'

e Choose k* = argmaxy, G, and §* = 1 log
o for (i,j) € Af.

—set A =39;; (e Mii=" —e=Mii) set M;; = M;; + 6", and

Z=Z+A
—forke Bf;, WH=wl+A

—forke B, ;, W, =W, +A
o for (i,j) € A,.

—set A =G;; (emMiitd" —e=Mij) get M; ; = M;; — 6%, and

Z=Z+A
—forkeBf;,, Wf=wf+aA

—forkeB,;, W, =W +A

o For features k whose values of W,:r and/or W, have changed, update Gj.
el = Upd(at™t, k*,d%)

Output Final parameter setting @’V
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An improved algorithm for the boosting loss function.
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Iterative scaling then defines the following update 0

0=log Pr(@)

While in general it is not true that 6= BestWt(k,a), it can be shown that this update
leads to an improvement in the LogLoss (i.e., that LogLoss(Upd(a, k,0)) < LogLoss(@)),
with equality holding only when «y is already at the optimal value, in other words
when arg ming LogLoss(Upd(@, k,d)) = 0. This suggests the following iterative method
for finding BestWt(k,&):

1 Initialization: set § = 0, @' = @, calculate hy
2 Repeat until convergence of §:

a Calculate pg(a’)

b 5%6+10g%

a/
c @ + Upd(a,k,9d)
3 Return BestWi(k,a) = ¢

Given this method for calculating BestWt(k,a), BestLoss(k,a) can be calculated as
Loss(k, BestWt(k,a)). Note that this is only one of a number of methods for finding
BestWt(k,a@): given that this is a one parameter, convex optimization problem, it is
fairly simple task and there are many methods which could be used.

Unfortunately there does not appear to be an efficient algorithm for LogLoss that is
analogous to the ExpLoss algorithm in figure 4 (at least if the feature selection method is
required to pick the feature with highest impact on the loss function at each iteration). A
similar observation for LogLoss can be made, in that when updating the model with a fea-
ture/weight pair (k*,0*) many features will have their values for BestWt and BestLoss
unchanged. Only those features which co-occur with £* on some example will need to have
their values of BestW't and BestLoss updated. However this observation does not lead to
an efficient algorithm—updating these values is much more expensive than in the ExpLoss
case. The procedure for finding the optimal value BestWt(k, @) must be applied for each
feature which co-occurs with the chosen feature k*. For example, the iterative scaling pro-
cedure described above must be applied for a number of features. For each feature, this
will involve recalculation of the distribution {P(x; 1 | s;), P(®i2 | 8i),-.-, P(Tin; | si)}
for each example i on which the feature occurs.!® It only takes one feature to be seen
on all training examples for the algorithm to involve recalculation of P(x;; | s;) for
the entire training set. This contrasts with the simple updates in the improved boosting
algorithm (W," = W," + A and W,” = W,~ + A). In fact in the parsing experiments we
were forced to give up on the LogLoss feature selection methods due to their inefficiency
(see section 6.4 for more discussion about efficiency).

Note, however, that approximate methods for finding the best feature and updating
its weight may lead to efficient algorithms. Appendix B gives a sketch of one such ap-
proach, which is based on results from (Collins, Schapire and Singer, 2002). We did not
test this method—we leave this to future work.

13 This is not a failure of iterative scaling alone: given that in the general case closed form solutions
for BestWt and BestLoss do not exist, it is hard to imagine a method that computes these values
exactly without some kind of iterative method which requires repeatedly visiting the examples on
which a feature is seen.
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5 Experimental Evaluation

5.1 Generation of Parsing Datasets

We used the Penn Wall Street Journal treebank (Marcus et al. 1993) as training and test
data. Sections 2-21 inclusive (around 40,000 sentences) were used as training data, section
23 was used as the final test set. Of the 40,000 training sentences, the first 36,000 were
used as the main training set. The remaining 4,000 sentences were used as development
data, and to cross-validate the number of rounds (features) in the model. Model 2 of
(Collins 1999) was used to parse both the training and test data, producing multiple
hypotheses for each sentence. We achieved this by disabling dynamic programming in
the parser, and choosing a relatively narrow beam width of 1000. The resulting parser
returns all parses that fall within the beam. The number of such parses varies sentence
by sentence; on average, there were 30 parses per sentence.

In order to gain a representative set of training data, the 36,000 training sentences
were parsed in 2,000 sentence chunks, each chunk being parsed with a model trained on
the remaining 34,000 sentences (this prevented the initial model from being unrealistically
“000d” on the training sentences). The 4,000 development sentences were parsed with
a model trained on the 36,000 training sentences. Section 23 was parsed with a model
trained on all 40,000 sentences.

In the experiments we used the following definition for the Score of the parse:

F-measure(z; ;)

Score(x; ;) = 100

X Size(azm)

where F-measure(z; ;) is the F} score'* of the parse when compared to the gold-standard
parse (a value between 0 and 100), and Size(x; ;) is the number of constituents in the
gold standard parse for the i’th sentence. Hence the Score function is sensitive to both
the accuracy of the parse, and also the number of constituents in the gold-standard parse.

5.2 Features

The following types of features were included in the model. We will use the rule VP ->
PP VBD NP NP SBAR with head VBD as an example. Note that the output of our baseline
parser produces syntactic trees with headword annotations (see (Collins 1999) for a
description of the rules used to find headwords).

Rules These include all context-free rules in the
tree, for example VP -> PP VBD NP NP SBAR.

VP

Bigrams These are adjacent pairs of non-

terminals to the left and right of the head. As k\

shown, the example rule would contribute the @rP VBD ‘ﬂm@D
bigrams (Right,VP,NP,NP), (Right,VP,NP,SBAR),

(Right,VP,SBAR,STOP), to the right of the head,
and (Left,VP,PP,STOP) to the left of the head.

14 Note that in the rare cases that the baseline parser produces no constituents, the precision is
undefined—in these cases we defined the F-measure to be 0.
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Grandparent Rules Same as Rules, but also
including the non-terminal above the rule.

VP

Grandparent Bigrams Same as Bigrams, but @FrD VED ‘ﬂwb

also including the non-terminal above the bigrams.
vpP

Lexical Bigrams Same
as Bigrams, but with i .
the lexical heads of the (@_Pr(n)) vBD(gale) P(boy) r@"eam

two non-terminals also
included.

Two-level Rules Same as Rules, but also
including the entire rule above the rule.

Two-level Bigrams Same as Bigrams, but also
including the entire rule above the rule.

Trigrams All trigrams within the rule. The
example rule would contribute the trigrams
(vp,stToOP,PP,VBD!), (VP,PP,VBD!,NP), (VP,
VBD!,NP,NP), (VP,NP,NP,SBAR) and (VP,NP,
SBAR,STOP) (! is used to mark the head of the
rule).
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VP

Head-Modifiers All head-modifier pairs, with
the grandparent non-terminal also included.
An adj flag is also included, which is 1 if the _

modifier is adjacent to the head, 0 otherwise. adieT adi=1 2dj=0
As an example, say the non-terminal dominat- adj=0
ing the example rule is S. The example rule

would contribute (Left,S,VP,VBD,PP,adj=1),

(Right,S,VP,VBD,NP,adj=1), (Right,S,VP,

VBD,NP,adj=0), and (Right,S,VP,VBD,SBAR,

adj=0).

PP VBD NP NP  SBA

PPs Lexical trigrams involving the heads of ar-
guments of prepositional phrases. The example
shown at right would contribute the trigram
(NP,NP,PP,NP,president,of,U.S.), in addition
to the relation (NP,NP,PP,NP,of,U.S.) which ig-
nores the headword of the constituent being modi-
fied by the PP. The three non-terminals (for exam-
ple NP, NP, PP) identify the parent of the entire
phrase, the non-terminal of the head of the phrase,
and the non-terminal label for the PP.

Distance Head-Modifiers Features involving the distance between head words. For
example, assume dist is the number of words between the head words of the VBD and SBAR
in the (VP,VBD,SBAR) head-modifier relation in the above rule. This relation would then
generate features (VP,VBD,SBAR,= dist), and (VP,VBD,SBAR,< z) for all dist <z <9
and (VP,VBD,SBAR,> z) for all 1 < z < dist.

Further Lexicalization In order to generate more features, a second pass was made
where all non-terminals were augmented with their lexical heads when these headwords
were closed-class words. All features apart from Head-Modifiers, PPs and Distance
Head-Modifiers were then generated with these augmented non-terminals.

All of these features were initially generated, but only features seen on at least one
parse for at least 5 different sentences were included in the final model (this count cut-off
was implemented to keep the number of features down to a tractable number).

5.3 Applying the Reranking Methods

The ExpLoss method was trained with several values for the smoothing parameter
e: {0.0001,0.00025, 0.0005,0.00075,0.001,0.0025, 0.005,0.0075}. For each value of € the
method was run for 100,000 rounds on the training data. The implementation was such
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that the feature updates for all 100,000 rounds for each training run were recorded in
a file. This made it simple to test the model on development data for all values of NV
between 0 and 100, 000.

The different values of € and N were compared on development data through the
following criterion:

Z Score(z;) (21)

where Score is as defined above, and z; is the output of the model on the i’th development
set example. The €, N values which maximized this quantity were used to define the final
model applied to the test data (section 23 of the treebank). The optimal values were
€ = 0.0025 and N = 90,386, at which point 11,673 features had non-zero values (note
that the feature selection techniques may result in a given feature being updated more
than once). The computation took roughly 3-4 hours on a 1.6 GHz pentium processor
machine, and around 2 Gigabytes of memory.

Table 1 shows results for the method. (Collins 1999) was the base model; the ExpLoss
model gave a 1.5% absolute improvement over this method. The method gives very similar
accuracy to the model of (Charniak 2000), which also uses a rich set of initial features
in addition to Charniak’s original model (Charniak 1997).

The LogLoss method was too inefficient to run on the full data set. Instead we made
some tests on a smaller subset of the data (5934 sentences, giving 200,000 parse trees), and
52,294 features.'® On an older machine (an order of magnitude or more slower than the
machine used for the final tests) the boosting method took 40 minutes for 10,000 rounds
on this data set. The LogLoss method took 20 hours to complete 3500 rounds (a factor
of about 85 times slower). This was in spite of various heuristics that were implemented
in an attempt to speed up LogLoss—for example, selecting multiple features at each
round, or recalculating the statistics for only the best K features for some small K at
the previous round of feature selection. In initial experiments we found ExpLoss to give
similar, perhaps slightly better, accuracy than LogLoss.

5.4 Further Experiments
This section describes further experiments investigating various aspects of the boosting
algorithm: the effect of the e and N parameters, learning curves, the choice of the S; ;
weights, and efficiency issues.

5.4.1 The Effect of the ¢ and N Parameters Figure 5 shows the learning curve on
development data for the optimal value of € (i.e., e = 0.0025). The accuracy shown is the
relative performance to the baseline method of using the probability from the generative
model alone in ranking parses, where the measure in Equation (21) is used to measure
performance. For example, a score of 101.5 indicates a 1.5% increase in this score. The
learning curve is initially steep, eventually flattening off, but reaching its peak value after
a large number (90,386) of rounds of feature selection.

Table 2 indicates how the peak performance varies with the smoothing parameter e.
Figure 6 shows learning curves for various values of €. It can be seen that values other
than € = 0.0025 can lead to undertraining or overtraining of the model.

5.4.2 The Effect of the S; ; Weights on Examples In section 4.2.3 we introduced the
idea of weights S; ; representing the importance of examples. Thus far, in the experiments

15 All features described above except Distance Head-Modifiers and Further Lexicalization
were included.
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MODEL < 40 Words (2245 sentences)
LR | LP | CBs | 0CBs [2CBs

CH97 87.5% | 87.4% | 1.00 | 62.1% | 86.1%
C099 88.5% | 88.7% | 0.92 | 66.7% | 87.1%
CHO0 90.1% | 90.1% | 0.74 | 70.1% | 89.6%

ExpLoss | 90.2% | 90.4% | 0.73 | 71.2% | 90.2%

MODEL < 100 Words (2416 sentences)

LR LP CBs | 0CBs | 2 CBs
CH97 86.7% | 86.6% | 1.20 | 59.5% | 83.2%
RA98 86.3% | 87.5% | 1.21 | 60.2% —
C0O99 88.1% | 88.3% | 1.06 | 64.0% | 85.1%
CHO0 89.6% | 89.5% | 0.88 | 67.6% | 87.7%

ExpLoss | 89.6% | 89.9% | 0.86 | 68.7% | 88.3%

Table 1

Results on Section 23 of the WSJ Treebank. LR/LP = labelled recall/precision. CBs is the
average number of crossing brackets per sentence. 0 CBs, 2 CBs are the percentage of
sentences with 0 or < 2 crossing brackets respectively. All the results in this table are for
models trained and tested on the same data, using the same evaluation metric. CH97 =
Charniak 1997, RA98 = Ratnaparkhi 1998, CHO0 = Charniak 2000, CO99 = Collins 1999.
Note that the ExpLoss results are very slightly different from the original results published in
(Collins, 2000). We recently reimplemented the boosting code, and re-ran the experiments, and
minor differences in the code and ¢ values tested on development data lead to minor
improvements in the results.
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Figure 5

Graphs showing the learning curve on development data for the optimal value for ¢, i.e.,

e = 0.0025. The y-axis is the level of accuracy (100 is the baseline score), and the z-axis is the
number of rounds of boosting.

in this paper we have used the definition
S;,j = Score(x;,1) — Score(z; ;) (22)

thereby weighting examples in proportion to their difference in score from the correct
parse for the sentence in question. In this section we compare this approach to a default

definition of S; j, namely
Sij=1 (23)

Using this definition, we trained the ExpLoss method on the same training set for
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Figure 6

Graphs showing learning curves on development data for various values of e. In each case the
y-axis is the level of accuracy (100 is the baseline score), and the z-axis is the number of
rounds of boosting. The three graphs compare the curve for e = 0.0025 (the optimal value) to
€ = 0.0001, e = 0.0075, and € = 0.001 respectively. The first graph shows that e = 0.0001 leads
to under-smoothing (overtraining). Initially the graph is higher than that for € = 0.0025, but
on later rounds the performance starts to decrease. The second graph shows that e = 0.0075
leads to over-smoothing (undertraining). The graph shows consistently lower performance than
that for e = 0.0025. The third graph shows that there is little difference in performance for

€ = 0.001 vs. e = 0.0025.
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€ Best IV | Best Score
0.0001 | 29,471 | 101.743
0.00025 | 22,468 | 101.849
0.0005 | 48,795 | 101.845
0.00075 | 43,386 | 101.809
0.001 43,975 | 101.849
0.0025 | 90,386 | 101.864
0.005 66,378 | 101.824
0.0075 | 80,746 | 101.722

Table 2

Table showing peak performance achieved for various values of €. “Best N” refers to the
number of rounds at which peak development set accuracy was reached. “Best Score” indicates
the relative performance compared to the baseline method, at the optimal value for V.

€ Best Score | Best Score
(weighted) | (unweighted)
0.0001 101.743 101.744
0.00025 | 101.849 101.754
0.0005 | 101.845 101.778
0.00075 | 101.809 101.762
0.001 101.849 101.778
0.0025 | 101.864 101.699
0.005 101.824 101.61
0.0075 | 101.722 101.604

Table 3

Table showing peak performance achieved for various values of € for

Si; = Score(x;,1) — Score(z; ;) (column labelled “weighted”) and S; ; = 1 (column labelled
“unweighted”).

several values of the smoothing parameter €, and evaluated the performance on develop-
ment data. Table 3 compares the peak performance achieved under the two definitions
of S;; on the development set. It can be seen that the definition in Equation (22) out-
performs the simpler method in Equation (23). Figure 7 shows the learning curves for
the optimal values of € for the two methods. It can be seen that the learning curve for
the definition of S; ; in Equation (22) consistently dominates the curve for the simpler
definition.

5.4.3 Efficiency Gains Section 4.5 introduced an efficient algorithm for optimizing
ExpLoss. In this section we explore the empirical gains in efficiency seen on the parsing
datasets in this paper.

We first define the quantity 7" as follows:

n;
T=3 > (IBfI+1B;0)
i j=2

This is a measure of the number of updates to the W,j and W, variables required in
making a pass over the entire training set. Thus this is a measure of the amount of
computation that the naive algorithm for ExpLoss, in figure 3, requires for each round
of feature selection.
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Figure 7

Figure showing performance vs. number of rounds of boosting for

Si; = Score(x;,1) — Score(z; ;) (curve labelled “weighted”) and S;; =1 (curve labelled “not
weighted”).

Next, say the improved algorithm in figure 4 selects feature k* on the ¢’th round of
feature selection. Then we define the following quantity:

Cy = Z (|Bz+]| + |Bz_j|) + Z (|Bz+j| + |Bz_]|)

(i,5)€AL, (i,J)EAL.

This is a measure of the number of summations required by the improved algorithm in
figure 4 at the t’th round of feature selection.

We are now in a position to compare the running times of the two algorithms. We
define the following quantities:

Work(n) = % (24)
t=1
nT
Savings(n) = —7—— (25)
Zt:l Ct
Savings(a,b) = (1-'_:)7_@11 (26)
Zt:a Ct

Here, Work(n) is the computation required for n rounds of feature selection, where a
single unit of computation corresponds to a pass over the entire training set. Savings(n)
tracks the relative efficiency of the two algorithms as a function of the number of features,
n. For example, if Savings(100) = 1,200 this signifies that for the first 100 rounds of
feature selection the improved algorithm is 1, 200 times as efficient as the naive algorithm.
Finally, Savings(a,b) indicates the relative efficiency between rounds a and b of feature
selection inclusive. For example, Savings(11,100) = 83 signifies that between rounds 11
and 100 inclusive of the algorithm, the improved algorithm was 83 times as efficient.

Figures 8 and 9 show graphs of Work(n) and Savings(n) vs. n. The savings from the
improved algorithm are dramatic. In 100,000 rounds of feature selection the improved
algorithm requires total computation that is equivalent to a mere 37.1 passes over the
training set. This is a saving of a factor of 2692 over the naive algorithm.

Table 4 shows the value of Savings(a,b) for various values of (a,b). It can be seen
that the performance gains are significantly larger in later rounds of feature selection,
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Figure 8
A graph of Work(n) (y-axis) vs. n (z-axis).
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Figure 9
A graph of Savings(n) (y-axis) vs. n (z-axis).

| a-b | Savings(a,b) |
[1-100,000 | 2692.7 |
1-10 48.6
11-100 83.5
101-1,000 280.0

1001-10,000 1263.9
10001-50,000 | 2920.2
50001-100,000 | 4229.8

Table 4
Values of Savings(a,b) for various values of a, b.

presumably because in later stages relatively infrequent features are being selected. Even
so, there are still savings of a factor of almost 50 in the early stages of the method.
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6 Related Work

6.1 History-Based Models with Complex Features

Charniak (2000) describes a parser which incorporates additional features to a previously
developed parser, that of (Charniak 1997). The method gives substantial improvements
over the original parser, and results which are very close to the results of the boosting
method we have described in this paper (see section 5 for experimental results comparing
the two methods). Our features are in many ways similar to those of (Charniak 2000).
The model in (Charniak 2000) is quite different, however. The additional features are
incorporated using a method inspired by maximum-entropy models (e.g., the model of
(Ratnaparkhi 1997)).

Ratnaparkhi (1997) describes the use of maximum entropy techniques applied to
parsing. Log-linear models are used to estimate the conditional probabilities P (d;|® (d; ... d;—1))
in a history-based parser. As a result the model can take into account a quite rich set of
features in the history.

Both approaches still rely on decomposing a parse tree into a sequence of decisions,
and we would argue that the techniques described in this paper have more flexibility in
terms of the features that can be included in the model.

6.2 Joint Log-Linear Models

Abney (1997) describes the application of log-linear models to stochastic HPSG gram-
mars. Della Pietra et. al (1997) describe feature selection methods for log-linear models,
and Rosenfeld (1997) describes application of these methods to language modeling for
speech recognition. These methods all emphasize models which define a joint probability
over the space of all parse trees (or structures in question): for this reason we describe
these approaches as “Joint Log-Linear Models”. The probability of a tree z; ; is

el (wij)

ZxEZ eF(z)

Here Z is the (infinite) set of possible trees, and the denominator cannot be calculated
explicitly. This is a problem for parameter estimation, where an estimate of the denom-
inator is required, and Monte-Carlo methods have been proposed (Della Pietra et al.
1997; Abney 1997; Rosenfeld 1997) as a technique for estimation of this value. Our sense
is that these methods can be computationally expensive. Notice that the joint likelihood
in Equation (27) is not a direct function of the margins on training examples, and its re-
lation to error rate is therefore not so clear as in the discriminative approaches described
in this paper.

P@%}j) = (27)

6.3 Conditional Log-Linear Models

Ratnapakhi et. al (1994), Johnson et. al (1999), and Riezler et. al (2002) suggest train-
ing log-linear models—i.e., the LogLoss function in Equation (9)—for parsing problems.
Ratnaparkhi et. al (1994) use feature selection techniques for the task. Johnson et. al
(1999), and Riezler et. al (2002) do not use a feature selection technique, instead using
an objective function which includes a gaussian prior on the parameter values, thereby
penalizing parameter values which become too large:

2
a* = arg min (LogLoss(oz) + Z %> (28)

2
k=0...m (Zsk

Closed-form updates under iterative scaling are not possible with this objective function,
instead optimization algorithms such as gradient descent or conjugate gradient methods
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are used to estimate parameter values.

In more recent work, Lafferty et. al (2001) describe the use of conditional Markov
Random Fields (CRFs) for tagging tasks such as named entity recognition or part-of-
speech tagging (Hidden Markov Models are a common method applied to these tasks).
CRFs employ the objective function in Eq. 28. A key insight of (Lafferty et al., 2001) is
that when features are of a significantly local nature, the gradient of the function in Equa-
tion (28) can be calculated efficiently using dynamic programming, even in cases where
the set of candidates involves all possible tagged sequences, and is therefore exponential
in size. See also (Sha and Pereira 2003) for more recent work on CRFs.

Optimizing a log-linear model with a gaussian prior—i.e., choosing parameter values
which achieve the global minimum of the objective function in Eq. 28—is a plausible
alternative to the feature selection approaches described in the current paper, or to the
feature selection methods previously applied to log-linear models. The Gaussian prior
(i.e., the 3>, o2 /¢7 penalty) has been found in practice to be very effective in combatting
overfitting of the parameters to the training data (Chen and Rosenfeld 1999; Johnson et
al. 1999; Lafferty et al., 2001; Riezler et. al 2002). Optimizing the function in Eq. 28 can be
accomplished using variants of gradient descent, which in practice require 10’s or at most
100’s of passes over the training data (e.g., see (Sha and Pereira 2003)). Thus they are
likely to be comparable in terms of efficiency to the feature selection approach described
in this paper (in the experimental section, we showed that for the parse reranking task
the efficient boosting algorithm requires computation that is equivalent to around 40
passes over the training data).

Note, however, that the two methods will differ considerably in terms of the sparsity
of the resulting reranker. While the feature selection approach leads to around 11,000
(2%) of the features in our model having non-zero parameter values, log-linear models
with gaussian priors typically have very few non-zero parameters (e.g., see (Riezler and
Vasserman 2004)). This may be important in some domains, for example where there
are a very large number of features, and where this large number leads to difficulties in
terms of memory requirements or computation time.

6.4 Feature Selection Methods

A number of previous papers (Berger, Della Pietra and Della Pietra 1996; Ratnaparkhi
1998; Della Pietra et al. 1997; McCallum 2003; Zhou et al., 2003; Riezler and Vasserman
2004) describe feature selection approaches for log-linear models applied to NLP prob-
lems. Earlier work (Berger, Della Pietra and Della Pietra 1996; Ratnaparkhi 1998; Della
Pietra et al. 1997) suggested methods that added a feature at a time to the model, and
updated all parameters in the current model at each step (for more detail, see section 3.3).
Assuming that selection of a feature takes one pass over the training set, and fitting a
model takes p passes over the training set, these methods require f x (p + 1) passes
over the training set where f is the number of features selected. In our experiments,
f & 10,000. It is difficult to estimate the value for p, but assuming (very conservatively)
that p = 2, selecting 10, 000 features would require 30,000 passes over the training set.
This is around 1, 000 times as much computation as that required for the efficient boosting
algorithm applied to our data, suggesting that the feature selection methods in (Berger,
Della Pietra and Della Pietra 1996; Ratnaparkhi 1998; Della Pietra et al. 1997) are not
sufficiently efficient for the parsing task.

More recent work (McCallum 2003; Zhou et al., 2003; Riezler and Vasserman 2004),
has considered methods for speeding up the feature selection methods described in
(Berger, Della Pietra and Della Pietra 1996; Ratnaparkhi 1998; Della Pietra et al. 1997).
McCallum (2003), and Riezler and Vasserman (2004), describe approaches that add k
features at each step, where k is some constant greater than 1. The running time for
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these methods is therefore O(f x (p+1)/k). Riezler and Vasserman (2004) test a variety
of values for k, finding that £ = 100 gives optimal performance. McCallum (2003) uses
a value of £ = 1000. Zhou et. al (2003) uses a different heuristic, which avoids having to
recompute the gain for every feature at every iteration.

We would argue that the alternative feature selection methods in the current paper
may be preferable on the grounds of both efficiency and simplicity. Even with large values
of k in the approach of (McCallum 2003; Riezler and Vasserman 2004) (e.g., k = 1000),
the approach we describe is likely to be at least as efficient as these alternative approaches.
In terms of simplicity, the methods in (McCallum 2003; Riezler and Vasserman 2004)
require selection of a number of free parameters governing the behavior of the algorithm:
the value for k, the value for a regularizer constant (used in both (McCallum 2003;
Riezler and Vasserman 2004)), and the precision with which the model is optimized
at each stage of feature selection (McCallum (2003) describes using “just a few BFGS
iterations” at each stage). In contrast, our method requires a single parameter to be
chosen (the value for the e smoothing parameter), and makes a single approximation
(that only a single feature is updated at each round of feature selection). The latter
approximation is particularly important, as it leads to the efficient algorithm in figure 4
that avoids a pass over the training set at each iteration of feature selection—mnote that in
sparse feature spaces f rounds of feature selection in our approach can take considerably
less than f passes over the training set, in contrast to other work on feature selection
within log-linear models.

Note that there are other important differences between the approaches. Both Della
Pietra et. al (1997) and McCallum (2003) describe methods that induce conjunctions
of “base” features, in a similar way to decision tree learners. Thus a relatively small
number of base features can lead to a very large number of possible conjoined features.
In future work it may be interesting to consider these kinds of approaches for the parsing
problem. Another difference is that both McCallum, and Riezler and Vasserman, describe
approaches that use a regularizer in addition to feature selection: McCallum uses a 2-
norm regularizer, Riezler and Vasserman use a 1-norm regularizer.

Finally, note that other feature-selection methods have been proposed within the
machine learning community: for example “filter” methods, where feature selection is
performed as a preprocessing step before applying a learning method; and backward
selection methods (Koller and Sahami, 1996), where initially all features are added to
the model, and features are then incrementally removed from the model.

6.5 Boosting, Perceptron and Support Vector Machine Approaches for Rank-
ing Problems

Freund et. al (1998) introduced a formulation of boosting for ranking problems. The
problem we have considered is a special case of the problem in (Freund et al. 1998),
in that we have considered a binary distinction between candidates (i.e., the best parse
vs. other parses), whereas Freund et. al consider learning full or partial orderings over
candidates. The improved algorithm that we have introduced in figure 4 is however, a
new algorithm, which could perhaps be generalized to the full problem of (Freund et al.
1998)—we leave this to future research.

Altun, Hofmann and Johnson (2003) and Altun, Johnson and Hofmann (2003) de-
scribe experiments on tagging tasks using the ExpLoss function, in contrast to the
LogLoss function used in (Lafferty et al., 2001). Altun, Hofmann and Johnson (2003)
describe how dynamic programming methods can be used to calculate gradients of the
ExpLoss function even in cases where the set of candidates again includes all possible
tagged sequences, a set which grows exponentially in size with the length of the sentence
being tagged. Results in (Altun, Johnson, and Hofmann 2003) suggest that the choice of
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ExpLoss vs. LogLoss does not have a major impact on accuracy for the tagging task in
question.

Perceptron-based algorithms, or the voted perceptron approach of (Freund and Schapire,
1999), are another alternative to boosting and LogLoss methods. See (Collins, 2002a;
Collins, 2002b; Collins and Duffy, 2002; Collins and Duffy, 2001) for applications of the
perceptron algorithm. Collins (2002b) gives convergence proofs for the methods; Collins
(2002a) directly compares the boosting and perceptron approaches on a named entity
task; and Collins and Duffy (2001, 2002) use a reranking approach with kernels, which
allow representations of parse trees or labelled sequences in very high dimensional spaces.

Shen, Sarkar and Joshi (2003) describe support vector machine approaches to ranking
problems, and apply Support Vector Machines (SVMs) using Tree Adjoining Grammar
(Joshi, Levy and Takahashi 1975) features to the parsing datasets we have described in
this paper, with good empirical results.

See (Collins 2004) for a discussion of many of these methods, including an overview of
statistical bounds for the boosting, perceptron and SVM methods, as well as a discussion
of the computational issues of the different algorithms.

7 Conclusions

This paper has introduced a new algorithm, based on boosting approaches in machine
learning, to ranking problems in natural language processing. The approach gives a 13%
relative reduction in error on parsing Wall Street Journal data. While in this paper the
experimental focus has been on parsing, many other problems in natural language pro-
cessing or speech recognition can also be framed as reranking problems, so the methods
described should be quite broadly applicable. The boosting approach to ranking has been
applied to named-entity segmentation (Collins, 2002a) and natural language generation
(Walker et al., 2001). The key characteristics of the approach are the use of global fea-
tures, and the use of a training criterion (optimization problem) that is discriminative,
and closely related to the task in hand—i.e., parse accuracy.

In addition, the paper introduced a new algorithm for the boosting approach which
takes advantage of the sparse nature of the feature space in the parsing data that we use.
Other NLP tasks are likely to have similar characteristics in terms of sparsity. Experi-
ments show an efficiency gain of a factor of over 2,600 on the parsing data for the new
algorithm over the obvious implementation of the boosting approach. We would argue
that the improved boosting algorithm is a natural alternative to maximum-entropy or
(conditional) log-linear models. The paper has drawn connections between boosting and
maximum-entropy models in terms of the optimization problems that they involve, the
algorithms used, their relative efficiency, and their performance in empirical tests.
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Appendix

Appendix A: Derivation of Updates for ExpLoss

This appendix gives a derivation of the optimal updates for ExpLoss. The derivation is
very close to that in (Schapire and Singer 1999). Recall that for parameter values @, we

need to compute BestWt(k,a) and BestLoss(k,&) for k =1...m, where

BestWt(k,a) = arg main ExpLoss (Upd(a, k, 9))

and
BestLoss(k,a) = ExpLoss (Upd(a, k, BestWt(k,@)))

The first thing to note is that an update in parameters from & to Upd(a, k, 9)) results
in a simple additive update to the ranking function F:

F(xi,j: Upd(@, k, 5)) = F(xi,j: a) + 6hy, (.Z'@j)
It follows that the margin on example (i, j) also has a simple update:

M@j(UPd(d,k,(S)) = F(IiJ,Upd(d,k,&)) — F(IiJ,Upd(d,k,(S))
= F(zi1,a) — Fwig, ) + 6 [h (i) — he(wi;)]
= M;;(@) + 6 [hn(zin) — hu(zi;)]

The updated ExpLoss function can then be written as

Z f: SLje*Mi,j(Upd(mm))

i j=2

Z i Si7j€_ i, (0)=0lhe(@i,1)—he(zi,5)]

i j=2

ExpLoss(Upd(a, k,9))

Next, we note that [hy(z;1) — hi(z; ;)] can take on three values: +1, —1, or 0. We split
the training sample into three sets depending on this value

AL = {69) : (@in) — he(w )] =1}
Ay = AG9)  ha(min) — be(wi)] = -1}
Ay = {6,4) : [he(win) — he(xi )] = 0}

Given these definitions, we define W,", W, and W as

Wi = Z Siyje_M""'(a‘)
(i) €AY

W, = Z Sme*Mi.j(&)
(4,J)€AL

W = Z Siyje_M""'(a‘)
(i) €A}
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ExpLoss is now rewritten in terms of these quantities:

EXpLOSS(Upd(@, k, 5)) = Z S@J'C_Mi‘j(a)_(s + Z Si7j€_Mi’j(&)+6 + Z S@J'C_Mi'j(a)
(i,j)eAf (i,j) €A, (4,5) €A}
= Wi +etW, + W} (A-1)

To find the value of ¢ that minimizes this loss, we set the derivative of (A-1) w.r.t. d to
0, giving the following solution:

Wi

BestWt(k,a) = %log =
k

Plugging this value of ¢ back into (A-1) gives the best loss:

BestLoss(k,a) = 2\/WIW, + W}
= QWSW, +Z-WF -w,
2
Z—(wW,:r—\/Wk> (A-2)

where Z = ExpLoss(a@) = -, > ;L S; je~Mii(@) is a constant (for constant &) which
appears in the BestLoss for all features, and therefore does not affect their ranking.

Appendix B: An Alternative Method for LogLoss

In this section we sketch an alternative approach for feature selection in LogLoss, which
is potentially an efficient method, at the cost of introducing an approximation in the
feature selection method. Until now, we have defined BestLoss(k, &) to be the minimum
of the loss given that the k’th feature is updated an optimal amount:

BestLoss(k,a) = main LogLoss (Upd(a, k,0))

In this section we sketch a different approach, based on results from (Collins, Schapire
and Singer, 2002), which leads to a very similar algorithm to that for ExpLoss in fig-
ures 3 or 4. Take the following definitions (note the similarity to the definitions in Equa-
tions 13, 14, 15, 16, with only the definitions for W,:r and W, being altered):

N e~ Mii(a)
W]j = Z ql7.7 Wk = Z ql:] Where ql,] = 1+Z’I’Lz e*Mi,q(d) (B_3)
(i) eAF (i.§)eA; 4=2
1. W
BestWt(k,a) = =log—& B-4
(a) = Flog gk (5-4)

BestLoss(k,a) = LogLoss(a)— <\/WT+ - \/ﬂ)2 (B-5)

Note that the ExpLoss computations can be recovered by replacing g; ; in Equation (B-3)
by q;; = e Mii (@) This is essentially the only difference between the new algorithm and
the ExpLoss method.
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Results from (Collins, Schapire and Singer, 2002) show that under these definitions
the following guarantee holds:

LogLoss (Upd(a, k, BestWt(k,a))) < BestLoss(k, &)
So it can be seen that the update from & to Upd(a k,BestWt(k,a)) is guaranteed to

decrease LogLoss by at least (wW"' VW, ) From these results, the algorithms

in figures 3 and 4 could be altered to take the revised definitions of W," and W into
account. Selecting the feature with the minimum value of BestLoss(k, @) at each iteration
leads to largest guaranteed decrease in LogLoss. Note that this is now an approximation,
in that BestLoss(k, @) is an upper bound on the log-likelihood which may or may not be
tight. There are convergence guarantees for the method, however, in that as the number
of rounds of feature selection goes to infinity, the LogLoss approaches its minimum value.

The algorithms in figures 3 and 4 could be modified to take the alternative definitions
of W,j' and W, into account, thereby being modified to optimize LogLoss instead of
ExpLoss. The denominator terms in the g; ; definitions in Equation (B-3) may complicate
the algorithms somewhat, but it should still be possible to derive relatively efficient
algorithms using the technique.

For a full derivation of the modified updates, and quite technical convergence proofs,
see (Collins, Schapire and Singer, 2002). We give a sketch of the argument here. First,
we show that

LogLoss (Upd(a, k,6)) < LogLoss (@) — W," — W, + W,Fe™® + W, €® (B-6)
This can be derived as follows (in this derivation we use gi(z;;) = he(2i,1) — he(2ij)):

LogLoss (Upd(a, k,0)) = LogLoss (&) + LogLoss (Upd(a, k,d)) — LogLoss (&)

] L+ P, e M 070n (e
= LogLoss(a) + Zlog ( 1 -JI- SOt e~ Mii(a)
i =2

= LogLoss(a) +

Z b 1 . Z;“ ) e*Mi.j(&)*égk(wi,j)
& 1+Z] 26 5(8) ]‘+Z] 26 i@

= LogLoss(a) + Z log [ 1— Z i+ Z gije —0gk(wi,5)

< LogLoss (& Z Z gi,j + Z Z gi,je 09 wii) (B-8)

i j=2 i j=2
= LogLoss (@) — (WP + W, + W, ) + W + Wire™ + W, €
= LogLoss (@) — W,} =W, + W e * + W€
Equation (B-8) can be derived from Equation (B-7) through the bound log(l + z) < x
for all «.

The second step is to minimize the right hand side of the bound in Equation (B-6)
with respect to 6. It can be verified that the minimum is found at

0 = =log —-
QOgW*
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at which value the right-hand-side of Equation (B-6) is equal to

LogLoss(a) — <\/I/IT,;" - \/WT—)Z
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