
Disriminative Reranking for NaturalLanguage ParsingMihael Collins and Terry KooMassahusetts Institute of Tehnology�This paper onsiders approahes whih rerank the output of an existing probabilistiparser. The base parser produes a set of andidate parses for eah input sentene, withassoiated probabilities that de�ne an initial ranking of these parses. A seond modelthen attempts to improve upon this initial ranking, using additional features of the treeas evidene. The strength of our approah is that it allows a tree to be represented asan arbitrary set of features, without onerns about how these features interat or over-lap, and without the need to de�ne a derivation or a generative model whih takes thesefeatures into aount. We introdue a new method for the reranking task, based on theboosting approah to ranking problems desribed in (Freund et al. 1998). We applied theboosting method to parsing the Wall Street Journal treebank. The method ombined thelog-likelihood under a baseline model (that of (Collins 1999)) with evidene from an ad-ditional 500,000 features over parse trees that were not inluded in the original model.The new model ahieved 89.75% F-measure, a 13% relative derease in F-measure errorover the baseline model's sore of 88.2%. The paper also introdues a new algorithm forthe boosting approah whih takes advantage of the sparsity of the feature spae in theparsing data. Experiments show signi�ant eÆieny gains for the new algorithm overthe obvious implementation of the boosting approah. We argue that the method is anappealing alternative|both in terms of simpliity and eÆieny|to work on feature se-letion methods within log-linear (maximum entropy) models. Although the experimentsin this paper are on natural language parsing, the approah should be appliable to manyother NLP problems whih are naturally framed as ranking tasks, for example speehreognition, mahine translation, or natural language generation.1 IntrodutionMahine-learning approahes to natural language parsing have reently shown some su-ess in omplex domains suh as newswire text. Many of these methods fall into thegeneral ategory of history-based models, where a parse tree is represented as a deriva-tion (sequene of deisions) and the probability of the tree is then alulated as a produtof deision probabilities. While these approahes have many advantages, it an be awk-ward to enode some onstraints within this framework. In the ideal ase, the designerof a statistial parser would be able to easily add features to the model that are believedto be useful in disriminating between andidate trees for a sentene. In pratie, how-ever, adding new features to a generative or history-based model an be awkward|thederivation in the model must be altered to take the new features into aount, and this� MIT Computer Siene and Arti�ial Intelligene Laboratory (CSAIL), the Stata Center, Building32, 32 Vassar Street, Cambridge, MA 02139, USA. Email: mollins�sail.mit.edu,maestro�mit.edu 2003 Assoiation for Computational Linguistis



Computational Linguistis Volume ??, Number ?an be an intriate task.This paper onsiders approahes whih rerank the output of an existing probabilistiparser. The base parser produes a set of andidate parses for eah input sentene, withassoiated probabilities that de�ne an initial ranking of these parses. A seond modelthen attempts to improve upon this initial ranking, using additional features of the treeas evidene. The strength of our approah is that it allows a tree to be represented as anarbitrary set of features, without onerns about how these features interat or overlap,and without the need to de�ne a derivation whih takes these features into aount.We introdue a new method for the reranking task, based on the boosting approahto ranking problems desribed in (Freund et al. 1998). The algorithm an be viewedas a feature seletion method, optimizing a partiular loss funtion (the exponentialloss funtion) that has been studied in the boosting literature. We applied the boostingmethod to parsing the Wall Street Journal treebank (Marus et al. 1993). The methodombines the log-likelihood under a baseline model (that of (Collins 1999)) with evidenefrom an additional 500,000 features over parse trees that were not inluded in the originalmodel. The baseline model ahieved 88.2% F-measure on this task. The new modelahieves 89.75% F-measure, a 13% relative derease in F-measure error.Although the experiments in this paper are on natural language parsing, the ap-proah should be appliable to many other NLP problems whih are naturally framed asranking tasks, for example speeh reognition, mahine translation, or natural languagegeneration. See (Collins, 2002a) for an appliation of the boosting approah to namedentity reognition, and (Walker et al., 2001) for the appliation of boosting tehniquesfor ranking in the ontext of natural language generation.The paper also introdues a new, more eÆient algorithm for the boosting approahwhih takes advantage of the sparse nature of the feature spae in the parsing data. OtherNLP tasks are likely to have similar harateristis in terms of sparsity. Experimentsshow an eÆieny gain of a fator of 2,600 for the new algorithm over the obviousimplementation of the boosting approah. EÆieny issues are important, beause theparsing task is a fairly large problem, involving around 1 million parse trees, and over500,000 features. The improved algorithm an perform 100,000 rounds of feature seletionon our task in a few hours with urrent proessing speeds. The 100,000 rounds of featureseletion take equivalent omputation to around 40 passes over the entire training set (asopposed to 100,000 passes for the \naive" implementation).The problems with history-based models, and the desire to be able to speify featuresas arbitrary prediates of the entire tree, have been noted before. In partiular, previouswork (Ratnaparkhi, Roukos and Ward 1994; Abney 1997; Della Pietra, Della Pietra andLa�erty 1997; Johnson et al. 1999; Riezler et. al 2002) has investigated the use of MarkovRandom Fields (MRFs), or log-linear models as probabilisti models with global featuresfor parsing and other NLP tasks. (Log-linear models are often referred to as maximum-entropy models in the NLP literature.) Similar methods have also been proposed formahine translation (Oh and Ney 2002) and language understanding in dialogue systems(Papineni, Roukos and Ward 1997; Papineni, Roukos and Ward 1998). Previous work(Friedman, Hastie and Tibshirani 1998) has drawn onnetions between log-linear modelsand boosting for lassi�ation problems. One ontribution of our researh is to drawsimilar onnetions between the two approahes to ranking problems.We argue that the eÆient boosting algorithm introdued in this paper is an attra-tive alternative to maximum-entropy models, in partiular feature seletion methods thathave been proposed in the literature on maximum-entropy models. The earlier methodsfor maximum-entropy feature seletion methods (Ratnaparkhi et al., 1994; Berger, DellaPietra and Della Pietra 1996; Della Pietra et al. 1997; Papineni, Roukos and Ward 1997;Papineni, Roukos and Ward 1998) require several full passes over the training set for2



Collins and Koo Disriminative Reranking for NL Parsingeah round of feature seletion, suggesting that at least for the parsing data the im-proved boosting algorithm is several orders of magnitude more eÆient.1 In setion 6.4of this paper we disuss our approah in omparison to these earlier methods for featureseletion, as well as the more reent work of (MCallum 2003; Zhou et al., 2003; Riezlerand Vasserman 2004).The remainder of this paper is strutured as follows. Setion 2 reviews history-basedmodels for NLP, and highlights the pereived shortomings of history-based models whihmotivate the reranking approahes desribed in the remainder of the paper. Setion 3desribes previous work (Friedman et al. 2000; Du�y and Helmbold 1999; Mason et.al 1999; Lebanon and La�erty 2002; Collins, Shapire and Singer, 2002) that derivesonnetions between boosting and maximum-entropy models for the simpler ase of las-si�ation problems|this work will form the basis for the reranking methods. Setion 4desribes how these approahes an be generalized to ranking problems. We introdueloss funtions for boosting and MRF approahes, and disuss optimization methods. Wealso derive the eÆient algorithm for boosting in this setion. Setion 5 gives experimen-tal results, investigating the performane improvements on parsing, eÆieny issues, andthe e�et of various parameters of the boosting algorithm. Setion 6 disusses relatedwork in more detail. Finally, setion 7 gives onlusions.The reranking models in this paper were originally introdued in (Collins, 2000). Inthis paper we give onsiderably more detail in terms of the algorithms involved, theirjusti�ation, and their performane in experiments on natural language parsing.2 History-Based ModelsBefore disussing the reranking approahes, we will desribe history-based models (Blaket al. 1992). They are important for a few reasons. First, several of the best performingparsers on the WSJ treebank (e.g., Ratnaparkhi 1997, Charniak 1997, 2000, Collins 1997,1999, Henderson 2003) are ases of history-based models. Many systems applied to part-of-speeh tagging, speeh reognition and other language or speeh tasks also fall intothis lass of model. Seond, a partiular history-based model (that of (Collins 1999))will be used as the initial model for our approah. Finally, it is important to desribehistory-based models|and to understand their limitations|to motivate our departurefrom them.Parsing an be framed as a supervised learning task, to indue a funtion f : X ! Ygiven training examples hxi; yii where xi 2 X ; yi 2 Y . We de�ne GEN(x) � Y to be theset of andidates for a given input x. In the parsing problem x is a sentene, and GEN(x)is a set of andidate trees for that sentene. A partiular harateristi of the problemis the omplexity of GEN(x): GEN(x) an be very large, and eah member of GEN(x)has rih internal struture. This ontrasts with \typial" lassi�ation problems whereGEN(x) is a �xed, small set, for example f�1;+1g in binary lassi�ation problems.In probabilisti approahes, a model is de�ned whih assigns a probability P (x; y) toeah (x; y) pair.2 The most likely parse for eah sentene x is then argmaxy2GEN(x) P (x; y).1 Note, however, that log-linear models whih employ regularization methods instead of featureseletion|see for example (Johnson et al. 1999; La�erty et al., 2001)|are likely to be omparablein terms of eÆieny to our feature seletion approah. See setion 6.3 for more disussion.2 To be more preise, generative probabilisti models assign joint probabilities P (x; y) to eah (x; y)pair. Similar arguments apply to onditional history-based models, whih de�ne onditionalprobabilities P (y j x) through a de�nitionP (y j x) = Yi=1:::nP (dij�(d1:::di�1; x)) 3
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VP(saw)(3) (4)Figure 1The sequene of deisions involved in generating the right hand side of a lexial rule.This leaves the question of how to de�ne P (x; y). In history-based approahes, a one-to-one mapping is de�ned between eah pair (x; y) and a deision sequene hd1 : : : dni. Thesequene hd1 : : : dni an be thought of as the sequene of moves that build (x; y) in someanonial order. Given this mapping, the probability of a tree an be written asP (x; y) = Yi=1:::nP (dij� (d1 : : : di�1))Here, (d1 : : : di�1) is the history for the i'th deision. � is a funtion whih groups historiesinto equivalene lasses, thereby making independene assumptions in the model.Probabilisti Context-Free Grammars (PCFGs) are one example of a history-basedmodel. The deision sequene hd1 : : : dni is de�ned as the sequene of rule expansions ina top-down, left-most derivation of the tree. The history is equivalent to a partially builttree, and � piks out the non-terminal being expanded (i.e., the left-most non-terminalin the fringe of this tree), making the assumption that P (dijd1 : : : di�1) depends onlyon the non-terminal being expanded. In the resulting model a tree with rule expansionshAi ! �ii is assigned a probability Qni=1 P (�ijAi).Our base model, that of (Collins 1999), is also a history based model. It an beonsidered to be a type of PCFG, where the rules are lexialized. An example rule wouldbe:VP(saw) -> VBD(saw) NP-C(her) NP(today)Lexialization leads to a very large number of rules; to make the number of parame-ters manageable the generation of the right hand side of a rule is broken down into anumber of deisions, as follows:�First the head non-terminal (VBD in the above example) is hosen.�Next, left and right subategorization frames are hosen (fg and fNP-Cg).�Non-terminal sequenes to the left and right of the VBD are hosen (an emptysequene to the left, hNP-C,NPi to the right).�Finally, the lexial heads of the modi�ers are hosen (her and today).where d1 : : : dn are again the deisions made in building a parse, and � is a funtion that groupshistories into equivalene lasses. Note that x is added to the domain of � (the ontext on whihdeisions are onditioned). See (Ratnaparkhi 1997) for one example of a method using this approah.4



Collins and Koo Disriminative Reranking for NL ParsingFigure 1 illustrates this proess. Eah of the above deisions has an assoiated prob-ability onditioned on the left hand side of the rule (VP(saw)) and other information insome ases.History-based approahes lead to models where the log probability of a parse-treean be written as a linear sum of parameters �k multiplied by features hk. Eah featurehk(x; y) is the ount of a di�erent \event", or fragment within the tree. As an example,onsider a PCFG with rules hAk ! �ki for 1 � k � m. If hk(x; y) is the number of timeshAk ! �ki is seen in the tree, and �k = logP (�kjAk) is the parameter assoiated withthat rule, then logP (x; y) = mXk=1�khk(x; y)All models onsidered in this paper take this form, although in the boosting models thesore for a parse is not a log probability. The features hk de�ne an m-dimensional vetorof ounts whih represent the tree. The parameters �k represent the inuene of eahfeature on the sore of a tree.A drawbak of history-based models is that the hoie of derivation has a profoundinuene on the parameterization of the model. (Similar observations have been made inthe related ases of belief networks (Pearl 88), and language models for speeh reognition(Rosenfeld 1997).) When designing a model, it would be desirable to have a frameworkwhere features an be easily added to the model. Unfortunately, with history-based mod-els adding new features often requires a modi�ation of the underlying derivations in themodel. Modifying the derivation to inlude a new feature type an be a laborious task.In an ideal situation we would be able to enode arbitrary features hk, without havingto worry about formulating a derivation that inluded these features.To take a onrete example, onsider part-of-speeh tagging using a Hidden MarkovModel. We might have the intuition that almost every sentene has at least one verb, andtherefore that sequenes inluding at least one verb should have inreased sores underthe model. Enoding this onstraint in a ompat way in an HMM takes some ingenuity.The obvious approah|to add to eah state the information about whether or not averb has been generated in the history|doubles the number of states (and parameters)in the model. In ontrast, it would be trivial to implement a feature hk(x; y) whih is 1if y ontains a verb, 0 otherwise.3 Logisti Regression and BoostingWe now turn to mahine learning methods for the ranking task. In this setion we reviewtwo methods for binary lassi�ation problems: logisti regression (or maximum-entropy)models, and boosting. These methods will form the basis for the reranking approahesdesribed in later setions of the paper. Maximum-entropy models are a very popularmethod within the omputational linguistis ommunity, see for example (Berger, DellaPietra and Della Pietra 1996) for an early artile whih introdues the models and mo-tivates them. Boosting approahes to lassi�ation have reeived onsiderable attentionin the mahine learning ommunity, sine the introdution of AdaBoost by Freund andShapire (1997).Boosting algorithms, and in partiular the relationship between boosting algorithmsand maximum-entropy models, are perhaps not familiar topis in the NLP literature.However there has reently been muh work drawing onnetions between the two meth-ods (Friedman et al. 2000; La�erty 1999; Du�y and Helmbold 1999; Mason et. al 1999;Lebanon and La�erty 2002; Collins, Shapire and Singer, 2002); in this setion we give5



Computational Linguistis Volume ??, Number ?a review of this work. Muh of this work has foused on binary lassi�ation problems,and this setion is also restrited to problems of this type. Later in the paper we showhow several of the ideas an be arried aross to reranking problems.3.1 Binary Classi�ation ProblemsThe general set-up for binary lassi�ation problems is as follows:�The \input domain" (set of possible inputs) is X .�The \output domain" (set of possible labels) is simply a set of two labels,Y = f�1;+1g.3�The training set is an array of n labelled examples,h(x1; y1); (x2; y2); : : : ; (xn; yn)i where eah xi 2 X , yi 2 Y .� Input examples are represented through m \features", whih are funtionshk : X ! < for k = 1 : : :m. It is also sometimes onvenient to think of anexample x as being represented by an m-dimensional \feature vetor"�(x) = hh1(x); h2(x); : : : ; hm(x)i.�Finally, there is a parameter vetor, �� = h�1 : : : �mi, where eah �k 2 <, hene�� is an m-dimensional real-valued vetor.We will see that both logisti regression and boosting implement a linear, or hyperplane,lassi�er. This means that given an input example x, and parameter values ��, the outputfrom the lassi�er is sign (F (x; ��)) (1)where F (x; ��) = mXk=1�khk(x) = �� � �(x) (2)Here �� ��(x) is the inner or dot produt between the vetors �� and �(x), and sign(z) = 1if z � 0, sign(z) = �1 otherwise. Geometrially, the examples x are represented as ve-tors �(x) in some m-dimensional vetor spae, and the parameters �� de�ne a hyperplanewhih passes through the origin4 of the spae, and has �� as its normal. Points lying onone side of this hyperplane are lassi�ed as +1, points on the other side are lassi�ed as�1. The entral question in learning is how to set the parameters ��, given the trainingexamples h(x1; y1); (x2; y2); : : : ; (xn; yn)i. Logisti regression and boosting involve di�er-ent algorithms and riteria for training the parameters ��, but reent work (Friedman etal. 2000; La�erty 1999; Du�y and Helmbold 1999; Mason et. al 1999; Lebanon and Laf-ferty 2002; Collins, Shapire and Singer, 2002) has shown that the methods have strongsimilarities. The next setion desribes parameter estimation methods.3.2 Loss Funtions for Logisti Regression and BoostingA entral idea in both logisti-regression and boosting is that of a loss funtion, whihdrives the parameter estimation methods of the two approahes. This setion desribes3 It turns out to be onvenient to de�ne Y = f�1;+1g rather than Y = f0;+1g, for example.4 It might seem to be a restrition to have the hyperplane passing through the origin of the spae.However if a onstant \bias" feature hm+1(x) = 1 for all x is added to the representation, ahyperplane passing through the origin in this new spae is equivalent to a hyperplane in generalposition in the original m-dimensional spae.6



Collins and Koo Disriminative Reranking for NL Parsingloss funtions for binary lassi�ation. Later in the paper, we introdue loss funtions forreranking tasks whih are losely related to the loss funtions for lassi�ation tasks.First, onsider a logisti regression model. The parameters of the model �� are usedto de�ne a onditional probabilityP (y j x; ��) = eyF (x;��)1 + eyF (x;��) (3)where F (x; ��) is as de�ned in Equation (2). Some form of maximum-likelihood estimationis often used for parameter estimation. The parameters are hosen to maximize the log-likelihood of the training set; equivalently, we will (to emphasize the similarities to theboosting approah) talk about minimizing the negative log-likelihood. The negative log-likelihood, LogLoss(��), is de�ned asLogLoss(��) = � nXi=1 logP (yi j xi; ��) = � nXi=1 log� eyiF (xi;��)1 + eyiF (xi;��)�= nXi=1 log�1 + e�yiF (xi;��)� (4)There are many methods in the literature for minimizing LogLoss(��) with respet to ��,for example Generalized or Improved Iterative Saling (Berger, Della Pietra and DellaPietra 1996; Della Pietra et al. 1997), or onjugate gradient methods (Malouf 2002). Inthe next setion we desribe feature seletion methods, as desribed in (Berger, DellaPietra and Della Pietra 1996; Della Pietra et al. 1997).One the parameters �� are estimated on training examples, the output for an examplex is the most likely label under the model,argmaxy2Y P (y j x; ��) = arg maxy2f�1;+1g yF (x; ��) = sign (F (x; ��)) (5)where as before, sign(z) = 1 if z � 0, sign(z) = �1 otherwise. Thus we see that thelogisti regression model implements a hyperplane lassi�er.In boosting, a di�erent loss funtion is used, namely ExpLoss(��), whih is de�ned asExpLoss(��) = nXi=1 e�yiF (xi;��) (6)This loss funtion is minimized using a feature seletion method, whih we will desribein the next setion.There are strong similarities between LogLoss (equation 4) and ExpLoss (equation 6).In making onnetions between the two funtions, it is useful to onsider a third funtionof the parameters and training examples,Error(��) = nXi=1 [[yiF (xi; ��) � 0℄℄ (7)where [[�℄℄ is 1 if � is true, 0 otherwise. Error(��) is the number of inorretly lassi�edtraining examples under parameter values ��.Finally, it will be useful to de�ne the margin on the i'th training example, givenparameter values ��, as Mi(��) = yiF (xi; ��) (8)7



Computational Linguistis Volume ??, Number ?With these de�nitions, the three loss funtions an be written in the following form:LogLoss(��) = nXi=1 f(Mi(��)) where f(z) = log (1 + e�z)ExpLoss(��) = nXi=1 f(Mi(��)) where f(z) = e�zError(��) = nXi=1 f(Mi(��)) where f(z) = [[z � 0℄℄The three loss funtions di�er only in their hoie of an underlying \potential funtion"of the margins, f(z). This funtion is f(z) = log (1 + e�z), f(z) = e�z, or f(z) = [[z � 0℄℄for LogLoss, ExpLoss and Error respetively. The f(z) funtions penalize non-positivemargins on training examples. The simplest funtion, f(z) = [[z � 0℄℄, gives a ost of 1if a margin is negative (an error is made), 0 otherwise. ExpLoss and LogLoss involvede�nitions for f(z) whih quikly tend to 0 as z ! 1, but whih heavily penalizeinreasingly negative margins.Figure 2 shows plots for the three de�nitions of f(z). The funtions f(z) = e�zand f(z) = log (1 + e�z) are both upper bounds on the error funtion, so that mini-mizing either LogLoss or ExpLoss an be seen as minimizing an upper bound on thenumber of training errors. (Note that minimizing Error(��) itself is known to be at leastNP-hard if no parameter settings an ahieve zero errors on the training set, see forexample (Ho�gen, van Horn, and Simon 1995).) As z ! 1, the funtions f(z) = e�zand f(z) = log (1 + e�z) beome inreasingly similar, beause log (1 + e�z) ! e�z ase�z ! 0. For negative z, the two funtions behave quite di�erently. f(z) = e�z shows anexponentially growing ost funtion as z ! �1. In ontrast, as z ! �1 it an be seenthat log (1 + e�z)! log (e�z) = �z, so this funtion shows asymptotially linear growthfor negative z. As a �nal remark, note that both f(z) = e�z and f(z) = log (1 + e�z)are onvex in z, with the result that LogLoss(��) and ExpLoss(��) are onvex in the pa-rameters ��. This means that there are no problems with loal minima when optimizingthese two loss funtions.3.3 Feature Seletion MethodsIn this paper we onentrate on feature-seletion methods { algorithms whih aim tomake progress in minimizing the loss funtions LogLoss(��) and ExpLoss(��) while usinga small number of features (equivalently, ensuring that most parameter values in �� arezero). Roughly speaking, the motivation for using a small number of features is the hopethat this will prevent over�tting in the models.Feature seletion methods have been proposed in the maximum-entropy literatureby several authors (Ratnaparkhi et al., 1994; Berger, Della Pietra and Della Pietra 1996;Della Pietra et al. 1997; Papineni, Roukos and Ward 1997; Papineni, Roukos and Ward1998; MCallum 2003; Zhou et al., 2003; Riezler and Vasserman 2004). The most basiapproah|for example see (Ratnaparkhi et al., 1994; Berger, Della Pietra and DellaPietra 1996)|involves seletion of a single feature at eah iteration, followed by anupdate to the entire model, as follows:Step 1 Throughout the algorithm, maintain a set of ative features. Initialize this setto be empty.Step 2 Choose a feature from outside of the set of ative features whih has largestestimated impat in terms of reduing the loss funtion LogLoss, and add thisto the ative feature set.8
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Figure 2Potential funtions underlying ExpLoss, LogLoss, and Error. The graph labelled ExpLoss is aplot of f(z) = e�z for z = [�1:5 : : : 1:5℄; LogLoss shows a similar plot for f(z) = log �1 + e�z�;Error is a plot of f(z) = [[z � 0℄℄.Step 3 Minimize LogLoss(��) with respet to the set of ative features|that is, allowonly the ative features to take non-zero parameter values when minimizingLogLoss. Return to Step 2.Methods in the boosting literature (see for example (Shapire and Singer 1999)) an beonsidered to be feature seletion methods of the following form:Step 1 Start with all parameter values set to zero.Step 2 Choose a feature whih has largest estimated impat in terms of reduing theloss funtion ExpLoss.Step 3 Update the parameter for the feature hosen at Step 2 in suh a way as tominimize ExpLoss(��) with respet to this one parameter. All other parametervalues are left �xed. Return to Step 2.The di�erene with this latter \boosting" approah is that in Step 3, only one pa-rameter value is adjusted|namely, the parameter orresponding to the newly hosenfeature. Note that in this framework, the same feature may be hosen at more thanone iteration.5 The maximum-entropy feature seletion method an be quite ineÆient,as the entire model is updated at eah step. For example, Ratnaparkhi (1998) quotes5 i.e., The feature may be repeatedly updated, although the same feature will never be hosen inonseutive iterations, beause after an update the model is minimized with respet to the seletedfeature. 9



Computational Linguistis Volume ??, Number ?times of around 30 hours for 500 rounds of feature seletion on a prepositional phraseattahment task. These experiments were performed in 1998, when proessors were nodoubt onsiderably slower than mahines today. However the PP attahment task is muhsmaller than the parsing task that we are addressing: our task involves around 1,000,000examples, with perhaps a few hundred features per example, and 100,000 rounds offeature seletion; this ompares to 20,000 examples, 16 features per example, and 500rounds of feature seletion for the PP attahment task in (Ratnaparkhi 1998). As anestimate, assuming that omputational omplexity sales linearly in these fators,6 ourtask is 1;000;00020;000 � 32016 � 100;000500 = 200; 000 as large as the PP attahment task. These�gures suggest that the maximum-entropy feature seletion approah may be infeasiblefor large-sale tasks suh as the one in this paper.The fat that the boosting approah does not update the entire model at eah roundof feature seletion may be a disadvantage in terms of the number of features, or testdata auray, of the �nal model. There is reason for onern that Step 2 will at someiterations mistakenly hoose features whih are apparently useful in reduing the lossfuntion, but whih would have little utility if the entire model had been optimized atthe previous iteration of Step 3. However, previous empirial results for boosting haveshown that it is a highly e�etive learning method, suggesting that this is not in fat aproblem for the approah. Given the previous strong results for the boosting approah,and for reasons of omputational eÆieny, we pursue the boosting approah to featureseletion in this paper.3.4 Statistial Justi�ation for the MethodsMinimization of LogLoss is most often justi�ed as a parametri, maximum-likelihood(ML) approah to estimation. Thus this approah bene�ts from the usual guarantees forML estimation|if the distribution generating examples is within the lass of distributionsspei�ed by the log-linear form, then in the limit as the sample size goes to in�nity themodel will be optimal in the sense of onvergene to the true underlying distributiongenerating examples. As far as we are aware, behaviour of the models for �nite samplesizes is less well understood. In partiular, while feature seletion methods have oftenbeen proposed for maximum-entropy models, little theoretial justi�ation (in termsof guarantees about generalization) has been given for them. It seems intuitive that amodel with a smaller number of parameters will require fewer samples for onvergene,but this is not neessarily the ase, and at present this intuition laks a theoretial basis.Feature seletion methods an probably be motivated from either a Bayesian perspetive(through a prior favouring models with a smaller number of non-zero parameters), orfrom a frequentist/goodness-of-�t perspetive (models with fewer parameters are lesslikely to �t the data by hane), but this requires additional researh.The statistial justi�ation for boosting approahes is quite di�erent. Boosting algo-rithms were originally developed within the PAC framework (Valiant, 1984) for mahinelearning, spei�ally to address questions regarding the equivalene of weak and stronglearning. Freund and Shapire (1997) originally introdued AdaBoost, and gave a �rstset of statistial guarantees for the algorithm. Shapire et. al (1998) give a seond set ofguarantees based on the analysis of margins on training examples. Both papers assumethat a �xed distribution D(x; y) is generating both training and test examples, and thatthe goal is to �nd a hypothesis with a small number of expeted errors with respetto this distribution. The form of the distribution is not assumed to be known, and in6 We believe this is a realisti assumption, as eah round of feature seletion takes O(nf) time wheren is the number of training examples, and f is the number of ative features on eah example.10



Collins and Koo Disriminative Reranking for NL Parsingthis sense the guarantees are non-parametri, or \distribution free". Freund and Shapire(1997) show that if the weak learning assumption holds (i.e., roughly speaking, a featurewith error rate better than hane an be found for any distribution over the samplespae X � f�1;+1g), then the training error for the ExpLoss method dereases rapidlyenough for there to be good generalization to test examples. Shapire et. al (1998) showthat under the same assumption, minimization of ExpLoss using the feature seletionmethod ensures that the distribution of margins on training data develops in suh a waythat good generalization performane on test examples is guaranteed.3.5 Boosting with Complex Feature SpaesThus far in this paper we have presented boosting as a feature seletion approah. In thissetion, we note that there is an alternative view of boosting, where it is desribed asa method for ombining multiple models, for example as a method for forming a linearombination of deision trees. We will only onsider the simpler, feature seletion view ofboosting in this paper. This setion is inluded for ompleteness, and beause the moregeneral view of boosting may be relevant to future work on boosting approahes for parsereranking (note, however, that the disussion in this setion is not essential to the restof the paper, so the reader may safely skip this setion if she or he wishes to do so).In feature seletion approahes, as desribed in this paper, the set of possible featureshk(x) for k = 1 : : :m is taken to be a �xed set of relatively simple funtions. In partiular,we have assumed that m is relatively small (for example, small enough for algorithmsthat require O(m) time or spae to be feasible). More generally, however, boosting anbe applied in more omplex settings. For example, a ommon use of boosting is to forma linear ombination of deision trees. In this ase eah example x is represented as anumber of attribute-value pairs, and eah \feature" hk(x) is a omplete deision treebuilt on prediates over the attribute values in x. In this ase the number of \features"m is huge|there are as many features as there are deision trees over the given set ofattributes, thus m grows exponentially quikly with the number of attributes that areused to represent an example x. Boosting may even be applied in situations where thenumber of features is in�nite. For example, it may be used to form a linear ombinationof neural networks. In this ase eah \feature" hk(x) orresponds to a di�erent parametersetting within the (in�nite) set of possible parameter settings for the neural network.In more omplex settings suh as boosting of deision trees or neural networks, it isgenerally not feasible to perform an exhaustive searh (with O(m) time omplexity) forthe feature whih gives the greatest impat on the exponential7 loss funtion. Instead,an approximate searh is performed. In boosting approahes, this approximate searhis ahieved through a protool where at eah round of boosting, a \distribution" overthe training examples is maintained. The distribution an be interpreted as assigning animportane weight to eah training example, most importantly giving higher weight toexamples whih are inorretly lassi�ed. At eah round of boosting the distribution ispassed to an algorithm suh as a deision tree or neural network learning method, whihattempts to return a feature (a deision tree, or a neural network parameter setting)whih has a relatively low error rate with respet to the distribution. The feature thatis returned is then inorporated into the linear ombination of features. The algorithmwhih generates a lassi�er given a distribution over the examples|for example thedeision tree indution method|is usually referred to as \the weak learner". The weaklearner generally uses an approximate (for example greedy) method to �nd a funtion7 Note that it is also possible to apply these methods to the LogLoss funtion; see for example(Friedman et al. 2000; Du�y and Helmbold 1999). 11



Computational Linguistis Volume ??, Number ?with low error{rate with respet to the distribution. Freund and Shapire (1997) showthat providing that at eah round of boosting the weak learner returns a feature withgreater than (50 + �)% auray for some �xed �, then the number of training errorsfalls exponentially quikly with the number of rounds of boosting. This fast drop intraining error translates to statistial bounds on generalization performane (Freundand Shapire, 1997).Under this view of boosting, the feature seletion methods in this paper are a par-tiularly simple ase, where the weak learner an a�ord to exhaustively searh throughthe spae of possible features. Future work on reranking approahes might onsider otherapproahes|suh as boosting of deision trees|whih an e�etively onsider more om-plex features.4 Reranking ApproahesThis setion desribes how the ideas from lassi�ation problems an be extended toreranking tasks. A baseline statistial parser is used to generate N -best output for bothits training set, and for test data sentenes. Eah andidate parse for a sentene is repre-sented as a feature vetor whih inludes the log-likelihood under the baseline model, aswell as a large number of additional features. The additional features an in priniple beany prediates over sentene/tree pairs. Evidene from the initial log-likelihood and theadditional features is ombined using a linear model. Parameter estimation beomes aproblem of learning how to ombine these di�erent soures of information. The boostingalgorithm we use is related to the generalization of boosting methods to ranking prob-lems in (Freund et al. 1998); we also introdue an approah related to the onditionallog-linear models of (Ratnaparkhi et al., 1994; Papineni, Roukos and Ward 1997; Pa-pineni, Roukos and Ward 1998; Johnson et al. 1999; Riezler et. al 2002; Oh and Ney2002).Setion 4.1 gives a formal de�nition of the reranking problem. Setion 4.2 introduesloss funtions for reranking that are analogous to the LogLoss and ExpLoss funtions insetion 3.2. Setion 4.3 desribes a general approah to feature seletion methods withthese loss funtions. Setion 4.4 desribes a �rst algorithm for the exponential (ExpLoss)loss funtion; setion 4.5 introdues a more eÆient algorithm for the ase of ExpLoss.Finally, setion 4.6 desribes issues in feature seletion algorithms for the LogLoss lossfuntion.4.1 Problem De�nitionWe use the following notation in the rest of this paper:� si is the i'th sentene in the training set. There are n sentenes in trainingdata, so that 1 � i � n.� xi;j is the j'th parse of the i'th sentene.There are ni parses for the i'th sentene, so that 1 � i � n and 1 � j � ni.Eah xi;j ontains both the tree and the underlying sentene (i.e. eah xi;j is apair hsi; ti;ji where si is the i'th sentene in training data, and ti;j is the j'thtree for this sentene). We assume that the parses are distint, i.e., thatxi;j 6= xi;j0 for j 6= j0.� Sore(xi;j ) is the \sore" for parse xi;j , a measure of the similarity of xi;j tothe gold-standard parse. For example Sore(xi;j) might be the F-measureauray of parse xi;j ompared to the gold-standard parse for si.12



Collins and Koo Disriminative Reranking for NL Parsing�Q(xi;j) is the probability that the base parsing model assigns to parse xi;j .L(xi;j) = logQ(xi;j) is the log probability.�Without loss of generality, we assume xi;1 to be the highest soring parse forthe i'th sentene.8 More preisely, for all i; 2 � j � ni,Sore(xi;1) > Sore(xi;j). Note that xi;1 may not be idential to thegold-standard parse | in some ases the parser may fail to propose the orretparse anywhere in its list of andidates.9Thus our training data onsists of a set of parses, fxi;j : i = 1 : : : n; j = 1 : : : nig, togetherwith sores Sore(xi;j) and log-probabilities L(xi;j).We will represent andidate parse trees through m features, hk for k = 1 : : :m. Eahhk is an indiator funtion, for examplehk(x) = � 1 if x ontains the rule hS ! NP V P i0 otherwise :We will see that the restrition to binary valued features is important for the simpliityand eÆieny of the algorithms.10 We also assume a vetor of m + 1 parameters, �� =f�0; �1; : : : ; �mg. Eah �i an take any value in the reals. The ranking funtion for aparse tree x implied by a parameter vetor �� is de�ned asF (x; ��) = �0L(x) + mXk=1�khk(x)Given a new test sentene s, with parses xj for j = 1 : : :N , the output of the model willbe the highest soring tree under the ranking funtionarg maxx2fx1:::xNgF (x; ��)Thus F (x; ��) an be interpreted as a measure of how plausible a parse x is, higher soresmeaning that x is more plausible. Competing parses for the same sentene are rankedin order of plausibility by this funtion. We an reover the base ranking funtion|thelog-likelihood L(x)|by setting �0 to a positive onstant, and setting all other parametervalues to be 0. Our intention is to use the training examples to pik parameter valueswhih improve upon this initial ranking.We now disuss how to set these parameters. First we disuss loss funtions Loss(��)whih an be used to drive the training proess. We then go on to desribe featureseletion methods for the di�erent loss funtions.8 In the event that multiple parses get the same, highest sore the parse with the highest value oflog-likelihood L under the baseline model is taken as xi;1. In the event that two parses have thesame sore and the same log-likelihood|whih ourred rarely if ever in our experiments|we makea random hoie between the two parses.9 This is not neessarily a signi�ant issue if an appliation using the output from the parser issensitive to improvements in evaluation measures suh as preision and reall that give redit forpartial mathes between the parser's output and the orret parse. In this ase, it is only importantthat the preision/reall for xi;1 is signi�antly higher than that of the baseline parser, i.e., thatthere is some \headroom" for the reranking module in terms of preision and reall.10 In partiular, this restrition allows losed{form parameter updates for the models based onExpLoss that we onsider. Note that features traking the ounts of di�erent rules an be simulatedthrough several features whih take value 1 if a rule is seen � 1 time, � 2 times, � 3 times and so on.13



Computational Linguistis Volume ??, Number ?4.2 Loss Funtions for Ranking Problems4.2.1 Ranking Errors, and Margins The loss funtions we onsider are all related tothe number of ranking errors a funtion F makes on the training set. The ranking errorrate is the number of times a lower soring parse is (inorretly) ranked above the bestparse: Error(��) =Xi niXj=2[[F (xi;1; ��) � F (xi;j ; ��)℄℄=Xi niXj=2[[F (xi;1; ��)� F (xi;j ; ��) � 0℄℄where again, [[�℄℄ is 1 if � is true, 0 otherwise. In the ranking problem we de�ne themargin for eah example xi;j suh that i = 1 : : : n, j = 2 : : : ni asMij(��) = F (xi;1; ��)� F (xi;j ; ��)Thus Mij(��) is the di�erene in ranking sore between the orret parse of a sentene,and a ompeting parse xi;j . It follows thatError(��) =Xi niXj=2[[Mij(��) � 0℄℄The ranking error is 0 if all margins are positive. The loss funtions we disuss all turnout to be diret funtions of the margins on training examples.4.2.2 Log-Likelihood The �rst loss funtion is that suggested by Markov RandomFields. As suggested by Ratnaparkhi et. al (1994), and Johnson et. al (1999), the ondi-tional probability of xi;q being the orret parse for the i'th sentene is de�ned asP (xi;q j si; ��) = eF (xi;q;��)Pnij=1 eF (xi;j ;��)Given a new test sentene s, with parses xj for j = 1 : : :N , the most likely tree isargmaxxj eF (xj ;��)PNq=1 eF (xq ;��) = argmaxxj F (xj ; ��)Hene one the parameters are trained, the ranking funtion is used to order andidatetrees for test examples.The log-likelihood of the training data isXi logP (xi;1 j si; ��) =Xi log eF (xi;1;��)Pnij=1 eF (xi;j ;��)Under maximum likelihood estimation, the parameters �� would be set to maximizethe log-likelihood. Equivalently, we will again talk about minimizing the negative log-likelihood. Some manipulation shows that the negative log-likelihood is a funtion of themargins on training data:LogLoss(��) = Xi � log eF (xi;1;��)Pnij=1 eF (xi;j ;��)14



Collins and Koo Disriminative Reranking for NL Parsing= Xi � log 1Pnij=1 e�(F (xi;1;��)�F (xi;j ;��))= Xi log0�1 + niXj=2 e�(F (xi;1;��)�F (xi;j;��))1A= Xi log0�1 + niXj=2 e�Mi;j(��)1A (9)Note the similarity of Equation (9) to the LogLoss funtion for lassi�ation in Equa-tion (4).4.2.3 Exponential Loss The next loss funtion is based on the boosting method de-sribed in (Shapire and Singer 1999). It is a speial ase of the general ranking methodsdesribed in (Freund et al. 1998), with the ranking \feedbak" being a simple binary dis-tintion between the highest soring parse and the other parses. Again, the loss funtionis a funtion of the margins on training data:ExpLoss(��) = Xi niXj=2 e�(F (xi;1;��)�F (xi;j ;��)) = Xi niXj=2 e�Mi;j(��) (10)Note the similarity of Equation (10) to the LogLoss funtion for lassi�ation in Equa-tion (6). It an be shown that ExpLoss(��) � Error(��), so that minimizing ExpLoss(��) islosely related to minimizing the number of ranking errors.11 This follows from the fatthat for any x, e�x � [[x < 0℄℄, and therefore thatXi niXj=2 e�Mi;j(��) �Xi niXj=2[[Mi;j(��) � 0℄℄We generalize the ExpLoss funtion slightly, by allowing a weight for eah example xi;j ,for i = 1 : : : n; j = 2 : : : ni. We will use Si;j to refer to this weight. In partiular, in someexperiments in this paper we will use the following de�nition:Si;j = Sore(xi;1)� Sore(xi;j) (11)where, as de�ned in setion 4.1, Sore(xi;j) is some measure of the \goodness" of aparse, suh as F-measure (see Setion 5 for the exat de�nition of Sore used in ourexperiments). The de�nition for ExpLoss is modi�ed to beExpLoss(��) = Xi niXj=2 Si;je�Mi;j(��)This de�nition now takes into aount the importane, Si;j , of eah example. It is anupper bound on the following quantityXi niXj=2 Si;j [[Mi;j(��) � 0℄℄11 Note that LogLoss is not a diret upper bound on the number of ranking errors, although it an beshown that it is a (relatively loose) upper bound on the number of times the orret parse is not thehighest-ranked parse on the model. The latter observation follows from the property that that theorret parse must be highest ranked if its probability is > 0:5. 15



Computational Linguistis Volume ??, Number ?whih is the number of errors weighted by the fators Si;j . The original de�nition ofExpLoss in Equation (10) an be reovered by setting Si;j = 1 for all i; j (i.e., by givingequal weight to all examples). In our experiments we found that a de�nition of Si;j suhas that in Equation (11) gave improved performane on development data, presumablybeause it takes into aount the relative ost of di�erent ranking errors in training dataexamples.4.3 A General Approah to Feature SeletionAt this point we have de�nitions for ExpLoss and LogLoss whih are analogous to thede�nitions in setion 3.2 for binary lassi�ation tasks. Setion 3.3 introdued the ideaof feature seletion methods; the urrent setion gives a more onrete desription of themethods used in our experiments.The goal of feature seletion methods is to �nd a small subset of the features thatontribute most to reduing the loss funtion. The methods we onsider are greedy, ateah iteration piking the feature hk with additive weight Æ whih has the most impaton the loss funtion. In general, a separate set of instanes will be used in ross-validationto hoose the stopping point, i.e., to deide on the number of features in the model.At this point we introdue some notation onerning feature seletion methods. Wede�ne Upd(��; k; Æ) to be an updated parameter vetor, with the same parameter valuesas �� with the exeption of �k, whih is inremented by ÆUpd(��; k; Æ) = f�0; �1; : : : ; �k + Æ; : : : ; �mgThe Æ parameter an potentially take any value in the reals. The loss for the updatedmodel is Loss (Upd(��; k; Æ)). Assuming we greedily pik a single feature with some weightto update the model, and given that the urrent parameter settings are ��, the optimalfeature/weight pair (k�; Æ�) is(k�; Æ�) = argmink;Æ Loss (Upd(��; k; Æ))The feature seletion algorithms we onsider take the following form (��t is the parametervetor at the t'th iteration):1 Initialize ��0 to some value. (This will generally involve values of zero for �1 : : : �m,and a non-zero value for �0, for example ��0 = f1; 0; 0; : : :g.)2 for t = 1 to N (The number of iterations N will be hosen by ross validation):a Find (k�; Æ�) = argmink;Æ Loss �Upd(��t�1; k; Æ)�b Set ��t = Upd(��t�1; k�; Æ�)Note that this is essentially the idea behind the \boosting" approah to featureseletion introdued in setion 3.3. In ontrast, the feature seletion method of (Berger,Della Pietra and Della Pietra 1996), also desribed in setion 3.3, would involve updatingparameter values for all seleted features at step 2(b).The main omputation for both loss funtions involves searh for the optimal fea-ture/weight pair (k�; Æ�). In both ases our approah to solving this problem is a two-stepapproah. In the �rst step the optimal update for eah feature hk is alulated. We de�neBestWt(k; ��) as the optimal update for the k'th feature (it must be alulated for allfeatures k = 1 : : :m):BestWt(k; ��) = argminÆ Loss (Upd(��; k; Æ))16



Collins and Koo Disriminative Reranking for NL ParsingThe next step is to alulate the Loss for eah feature with its optimal update, whihwe will allBestLoss(k; ��) = minÆ Loss (Upd(��; k; Æ)) = Loss (Upd(��; k;BestWt(k; ��)))Having omputed BestWt and BestLoss for eah feature, the optimal feature/weightpair an be found:k� = argmink BestLoss(k; ��); Æ� = BestWt(k�; ��)The next setions desribe how BestWt and BestLoss an be omputed for the two lossfuntions.4.4 Feature Seletion for ExpLossAt the �rst iteration, �0 is set to optimize ExpLoss (reall that L(xi;j) is the log-likelihoodfor parse xi;j under the base parsing model):�0 = argmin� Xi niXj=2 Si;je�(�[L(xi;1)�L(xi;j)℄) (12)In initial experiments we found that this step was ruial to the performane of themethod (as opposed to simply setting �0 = 1, for example). It ensures that the on-tribution of the log-likelihood feature is well-alibrated with respet to the exponentialloss funtion. In our implementation �0 was optimized using simple brute-fore searh.All values of �0 between 0:001 and 10 at inrements of 0:001 were tested, and the valuewhih minimized the funtion in Equation (12) was hosen.12Feature seletion then proeeds to searh for values of the remaining parameters,�1 : : : �m. (Note that it might be preferable to also allow �0 to be adjusted as features areadded; we leave this to future work.) This requires alulation of the terms BestWt(k; ��)and BestLoss(k; ��) for eah feature. For binary-valued features these values have losed-form solutions, whih is omputationally very onvenient. We now desribe the form ofthese updates. See Appendix A for how the updates an be derived (the derivation isessentially the same as that in (Shapire and Singer 1999)).First, we note that for any feature, [hk(xi;1)� hk(xi;j)℄ an take on three values: +1,�1, or 0 (this follows from our assumption of binary-valued feature values). For eah kwe de�ne the following sets:A+k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = 1gA�k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = �1gThus A+k is the set of training examples where the k'th feature is seen in the orretparse but not in the ompeting parse; A�k is the set where the k'th feature is seen in theinorret but not the orret parse.Based on these de�nitions, we next de�ne W+k and W�k as follows:W+k = X(i;j)2A+k Si;je�Mi;j(��) (13)W�k = X(i;j)2A�k Si;je�Mi;j (��) (14)12 A more preise approah, for example binary searh, ould also be used to solve this optimizationproblem. We used the methods that searhes through a set of �xed values for simpliity, impliitlyassuming that a preision of 0:001 was suÆient for our problem. 17



Computational Linguistis Volume ??, Number ?Given these de�nitions, it an be shown (see Appendix A) thatBestWt(k; ��) = 12 log W+kW�k (15)and BestLoss(k; ��) = Z ��qW+k �qW�k �2 (16)where Z =PiPnij=2 Si;je�Mi;j(��) = ExpLoss(��) is a onstant (for �xed ��) whih appearsin the BestLoss for all features, and therefore does not a�et their ranking.As Shapire and Singer (1999) point out, the updates in Equation (15) an beproblemati, as they are unde�ned (in�nite) when either W+k or W�k is zero. Follow-ing (Shapire and Singer 1999), we introdue smoothing through a parameter � and thefollowing new de�nition of BestWt:BestWt(k; ��) = 12 log W+k + �ZW�k + �Z (17)The smoothing parameter � is hosen through optimization on a development set.See �gure 3 for a diret implementation of the feature seletion method for ExpLoss.We use an array of values Gk = ����qW+k �qW�k ����to indiate the gain of eah feature (i.e. the impat that hoosing this feature will haveon the ExpLoss funtion). The features are ranked by this quantity. It an be seen thatalmost all of the omputation involves the alulation of Z, and W+k and W�k for eahfeature hk. One these values have been omputed, the optimal feature and its updatean be hosen.4.5 A New, More EÆient, Algorithm for ExpLossThis setion presents a new algorithm, whih is equivalent to the ExpLoss algorithm in�gure 3, but an be vastly more eÆient for problems with sparse feature spaes. In theexperimental setion of this paper we show that it is almost 2,700 times more eÆientfor our task than the algorithm in �gure 3. The eÆieny of the di�erent algorithms isimportant in the parsing problem. The training data we eventually used ontained around36,000 sentenes, with an average of 27 parses per sentene, giving around 1,000,000 parsetrees in total. There were over 500,000 di�erent features.The new algorithm is also appliable, with minor modi�ations, to boosting ap-proahes for lassi�ation problems where the representation also involves sparse binaryfeatures (for example the text lassi�ation problems in (Shapire and Singer 2000)).As far as we are aware, the new algorithm has not appeared elsewhere in the boostingliterature.Figure 4 shows the improved boosting algorithm. Inspetion of the algorithm in�gure 3 shows that only margins on examples in the sets A+k� and A�k� are modi�ed whena feature k� is seleted. The feature spae in many NLP problems is very sparse (mostfeatures only appear on relatively few training examples, or equivalently, most trainingexamples will only have a few non-zero features). It follows that in many ases, the setsA+k� and A�k� will be muh smaller than the overall size of the training set. Thereforewhen updating the model from �� to Upd(��; k�; Æ�) the values W+k and W�k remainunhanged for many features, and do not need to be realulated. In fat, only features18



Collins and Koo Disriminative Reranking for NL ParsingInput�Examples xi;j for i = 1 : : : n, j = 1 : : : ni drawn from some set X .�Weights Si;j representing importane of examples.� Initial model log-likelihoods L(xi;j), for all examples xi;j .�Feature funtions hk : X ! f0; 1g for k = 1 : : :m.� Smoothing parameter � (usually hosen by optimization on developmentdata).�Number of rounds N (usually hosen by optimization on developmentdata).Initialize� Set �0 = argmin�PiPnij=2 Si;je��[L(xi;1)�L(xi;j)℄.� Set �k = 0 for k = 1 : : :m.�For all i, 2 � j � ni set margins Mi;j = �0 [L(xi;1)� L(xi;j)℄.�For all k = 1 : : :m, setA+k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = 1gA�k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = �1gRepeat for t = 1 to N�Calulate Z =PiPnij=2 Si;je�Mi;j� for k = 1 to m| Set W+k =W�k = 0| for (i; j) 2 A+k , W+k =W+k + Si;je�Mi;j| for (i; j) 2 A�k , W�k =W�k + Si;je�Mi;j| Gk = ����qW+k �qW�k �����Choose k� = argmaxkGk , and Æ� = 12 log W+k�+�ZW�k�+�Z� for (i; j) 2 A+k� , Mi;j =Mi;j + Æ�� for (i; j) 2 A�k� , Mi;j =Mi;j � Æ�� ��t = Upd(��t�1; k�; Æ�)Output Final parameter setting ��NFigure 3A naive algorithm for the boosting loss funtion. 19



Computational Linguistis Volume ??, Number ?whih o-our with k� on some example must be updated. The algorithm in �gure 4only realulates the values of W+k and W�k for those features whih o-our with theseleted feature k�.To ahieve this, the algorithm relies on a seond pair of indies. For all i, 2 � j � niwe de�ne B+i;j = fk : [hk(xi;1)� hk(xi;j)℄ = 1gB�i;j = fk : [hk(xi;1)� hk(xi;j)℄ = �1g (18)So B+i;j and B�i;j are indies from training examples to features. With the algorithm in�gure 4, updating the values of W+k and W�k for the features whih o-our with k�involves the following number of steps:C = X(i;j)2A+k� �jB+i;j j+ jB�i;j j�+ X(i;j)2A�k� �jB+i;j j+ jB�i;j j� (19)In ontrast, the naive algorithm requires a pass over the entire training set, whih requiresthe following number of steps:T = nXi=1 niXj=2 �jB+i;j j+ jB�i;j j� (20)The relative eÆieny of the two algorithms depends on the value of C=T at eah iter-ation. In the worst ase, when every feature hosen appears on every training example,then C=T = 1, and the two algorithms essentially have the same running time. How-ever in sparse feature spaes there is reason to believe that C=T will be small for mostiterations. In setion 5.4.3 we show that this is the ase for our experiments.4.6 Feature Seletion for LogLossWe now desribe an approah that was implemented for LogLoss. At the �rst iteration,�0 is set to 1. Feature seletion then searhes for values of the remaining parameters,�1 : : : �m. We now desribe how to alulate the optimal update for a feature k withthe LogLoss loss funtion. First we reap the de�nition of the probability of a partiularparse xi;q given parameter settings ��:P (xi;q j si; ��) = eF (xi;q;��)Pnij=1 eF (xi;j ;��)Reall that the log-loss isLogLoss(��) =Xi � logP (xi;1 j si; ��)Unfortunately, unlike the ase of ExpLoss, in general an analyti solution for BestWtdoes not exist. However, we an de�ne an iterative solution using tehniques from iterativesaling (Della Pietra et al. 1997). We �rst de�ne ~hk, the number of times that feature kis seen in the best parse, and ~pk(��), the expeted number of times under the model thatfeature k is seen:~hk =Xi hk(xi;1) ~pk(��) =Xi niXj=1 hk(xi;j)P (xi;j j si; ��)20



Collins and Koo Disriminative Reranking for NL ParsingInputExamples xi;j for i = 1 : : : n, j = 1 : : : ni drawn from some set X . Weights Si;jrepresenting importane of examples. Initial model log-likelihoods L(xi;j), for allexamples xi;j . Feature funtions hk : X ! f0; 1g for k = 1 : : :m. Smoothing param-eter � (usually hosen by optimization on development data). Number of rounds N(usually hosen by optimization on development data).Initialize� Set �0 = argmin�PiPnij=2 Si;je��[L(xi;1)�L(xi;j)℄.� Set �k = 0 for k = 1 : : :m.�For all i, 2 � j � ni set margins Mi;j = �0 [L(xi;1)� L(xi;j)℄.�For all k = 1 : : :m, setA+k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = 1g andA�k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = �1g�For all i, 2 � j � ni setB+i;j = fk : [hk(xi;1)� hk(xi;j)℄ = 1g andB�i;j = fk : [hk(xi;1)� hk(xi;j)℄ = �1g�Calulate Z, and W+k , W�k , Gk = ����qW+k �qW�k ���� for k = 1 : : :m usingthe algorithm in �gure 3.Repeat for t = 1 to N�Choose k� = argmaxkGk , and Æ� = 12 log W+k�+�ZW�k�+�Z .� for (i; j) 2 A+k�| set � = Si;j �e�Mi;j�Æ� � e�Mi;j �, set Mi;j =Mi;j + Æ�, andZ = Z +�| for k 2 B+i;j , W+k =W+k +�| for k 2 B�i;j , W�k =W�k +�� for (i; j) 2 A�k�| set � = Si;j �e�Mi;j+Æ� � e�Mi;j �, set Mi;j =Mi;j � Æ�, andZ = Z +�| for k 2 B+i;j , W+k =W+k +�| for k 2 B�i;j , W�k =W�k +��For features k whose values of W+k and/or W�k have hanged, update Gk.� ��t = Upd(��t�1; k�; Æ�)Output Final parameter setting ��NFigure 4An improved algorithm for the boosting loss funtion. 21



Computational Linguistis Volume ??, Number ?Iterative saling then de�nes the following update ~Æ~Æ = log ~hk~pk(��)While in general it is not true that ~Æ = BestWt(k; ��), it an be shown that this updateleads to an improvement in the LogLoss (i.e., that LogLoss(Upd(��; k; ~Æ)) � LogLoss(��)),with equality holding only when �k is already at the optimal value, in other wordswhen argminÆ LogLoss(Upd(��; k; Æ)) = 0. This suggests the following iterative methodfor �nding BestWt(k; ��):1 Initialization: set Æ = 0, ��0 = ��, alulate ~hk2 Repeat until onvergene of Æ:a Calulate ~pk(��0)b Æ  Æ + log ~hk~pk(��0) ��0  Upd(��; k; Æ)3 Return BestWt(k; ��) = ÆGiven this method for alulating BestWt(k; ��), BestLoss(k; ��) an be alulated asLoss(k;BestWt(k; ��)). Note that this is only one of a number of methods for �ndingBestWt(k; ��): given that this is a one parameter, onvex optimization problem, it isfairly simple task and there are many methods whih ould be used.Unfortunately there does not appear to be an eÆient algorithm for LogLoss that isanalogous to the ExpLoss algorithm in �gure 4 (at least if the feature seletion method isrequired to pik the feature with highest impat on the loss funtion at eah iteration). Asimilar observation for LogLoss an be made, in that when updating the model with a fea-ture/weight pair (k�; Æ�) many features will have their values for BestWt and BestLossunhanged. Only those features whih o-our with k� on some example will need to havetheir values of BestWt and BestLoss updated. However this observation does not lead toan eÆient algorithm|updating these values is muh more expensive than in the ExpLossase. The proedure for �nding the optimal value BestWt(k; ��) must be applied for eahfeature whih o-ours with the hosen feature k�. For example, the iterative saling pro-edure desribed above must be applied for a number of features. For eah feature, thiswill involve realulation of the distribution fP (xi;1 j si); P (xi;2 j si); : : : ; P (xi;ni j si)gfor eah example i on whih the feature ours.13 It only takes one feature to be seenon all training examples for the algorithm to involve realulation of P (xi;j j si) forthe entire training set. This ontrasts with the simple updates in the improved boostingalgorithm (W+k =W+k +� and W�k =W�k +�). In fat in the parsing experiments wewere fored to give up on the LogLoss feature seletion methods due to their ineÆieny(see setion 6.4 for more disussion about eÆieny).Note, however, that approximate methods for �nding the best feature and updatingits weight may lead to eÆient algorithms. Appendix B gives a sketh of one suh ap-proah, whih is based on results from (Collins, Shapire and Singer, 2002). We did nottest this method|we leave this to future work.13 This is not a failure of iterative saling alone: given that in the general ase losed form solutionsfor BestWt and BestLoss do not exist, it is hard to imagine a method that omputes these valuesexatly without some kind of iterative method whih requires repeatedly visiting the examples onwhih a feature is seen.22



Collins and Koo Disriminative Reranking for NL Parsing5 Experimental Evaluation5.1 Generation of Parsing DatasetsWe used the Penn Wall Street Journal treebank (Marus et al. 1993) as training and testdata. Setions 2-21 inlusive (around 40,000 sentenes) were used as training data, setion23 was used as the �nal test set. Of the 40,000 training sentenes, the �rst 36,000 wereused as the main training set. The remaining 4,000 sentenes were used as developmentdata, and to ross-validate the number of rounds (features) in the model. Model 2 of(Collins 1999) was used to parse both the training and test data, produing multiplehypotheses for eah sentene. We ahieved this by disabling dynami programming inthe parser, and hoosing a relatively narrow beam width of 1000. The resulting parserreturns all parses that fall within the beam. The number of suh parses varies senteneby sentene; on average, there were 30 parses per sentene.In order to gain a representative set of training data, the 36,000 training senteneswere parsed in 2,000 sentene hunks, eah hunk being parsed with a model trained onthe remaining 34,000 sentenes (this prevented the initial model from being unrealistially\good" on the training sentenes). The 4,000 development sentenes were parsed witha model trained on the 36,000 training sentenes. Setion 23 was parsed with a modeltrained on all 40,000 sentenes.In the experiments we used the following de�nition for the Sore of the parse:Sore(xi;j) = F-measure(xi;j)100 � Size(xi;j)where F-measure(xi;j) is the F1 sore14 of the parse when ompared to the gold-standardparse (a value between 0 and 100), and Size(xi;j) is the number of onstituents in thegold standard parse for the i'th sentene. Hene the Sore funtion is sensitive to boththe auray of the parse, and also the number of onstituents in the gold-standard parse.5.2 FeaturesThe following types of features were inluded in the model. We will use the rule VP ->PP VBD NP NP SBAR with head VBD as an example. Note that the output of our baselineparser produes syntati trees with headword annotations (see (Collins 1999) for adesription of the rules used to �nd headwords).Rules These inlude all ontext-free rules in thetree, for example VP -> PP VBD NP NP SBAR. VP

VBD NP NP SBARPPBigrams These are adjaent pairs of non-terminals to the left and right of the head. Asshown, the example rule would ontribute thebigrams (Right,VP,NP,NP), (Right,VP,NP,SBAR),(Right,VP,SBAR,STOP), to the right of the head,and (Left,VP,PP,STOP) to the left of the head.
VP

VBD NP NP SBARPP

14 Note that in the rare ases that the baseline parser produes no onstituents, the preision isunde�ned|in these ases we de�ned the F-measure to be 0. 23



Computational Linguistis Volume ??, Number ?Grandparent Rules Same as Rules, but alsoinluding the non-terminal above the rule. VP

VBD NP NP SBARPP

S

Grandparent Bigrams Same as Bigrams, butalso inluding the non-terminal above the bigrams. VP

VBD NP NP SBARPP

S

Lexial Bigrams Sameas Bigrams, but withthe lexial heads of thetwo non-terminals alsoinluded. VP

NP(boy)VBD(gave)PP(in) NP(treat) SBAR(because)

Two-level Rules Same as Rules, but alsoinluding the entire rule above the rule. VP

VBD NP NP SBARPP

NP

S

Two-level Bigrams Same as Bigrams, but alsoinluding the entire rule above the rule. VP

VBD NP NP SBARPP

NP

S

Trigrams All trigrams within the rule. Theexample rule would ontribute the trigrams(VP,STOP,PP,VBD!), (VP,PP,VBD!,NP), (VP,VBD!,NP,NP), (VP,NP,NP,SBAR) and (VP,NP,SBAR,STOP) (! is used to mark the head of therule).
VP

VBD! NP NP SBARPP

24



Collins and Koo Disriminative Reranking for NL Parsing
Head-Modi�ers All head-modi�er pairs, withthe grandparent non-terminal also inluded.An adj ag is also inluded, whih is 1 if themodi�er is adjaent to the head, 0 otherwise.As an example, say the non-terminal dominat-ing the example rule is S. The example rulewould ontribute (Left,S,VP,VBD,PP,adj=1),(Right,S,VP,VBD,NP,adj=1), (Right,S,VP,VBD,NP,adj=0), and (Right,S,VP,VBD,SBAR,adj=0).

VP

VBD NP NP SBARPP
adj=1

adj=0

adj=0adj=1

S

PPs Lexial trigrams involving the heads of ar-guments of prepositional phrases. The exampleshown at right would ontribute the trigram(NP,NP,PP,NP,president,of,U.S.), in additionto the relation (NP,NP,PP,NP,of,U.S.)whih ig-nores the headword of the onstituent being modi-�ed by the PP. The three non-terminals (for exam-ple NP, NP, PP) identify the parent of the entirephrase, the non-terminal of the head of the phrase,and the non-terminal label for the PP.
presidentthe

NP(president) PP(of)

of NP(U.S.)

U.S.the

NP(president)

Distane Head-Modi�ers Features involving the distane between head words. Forexample, assume dist is the number of words between the head words of the VBD and SBARin the (VP,VBD,SBAR) head-modi�er relation in the above rule. This relation would thengenerate features (VP,VBD,SBAR,= dist), and (VP,VBD,SBAR,� x) for all dist � x � 9and (VP,VBD,SBAR,� x) for all 1 � x � dist.Further Lexialization In order to generate more features, a seond pass was madewhere all non-terminals were augmented with their lexial heads when these headwordswere losed-lass words. All features apart from Head-Modi�ers, PPs and DistaneHead-Modi�ers were then generated with these augmented non-terminals.All of these features were initially generated, but only features seen on at least oneparse for at least 5 di�erent sentenes were inluded in the �nal model (this ount ut-o�was implemented to keep the number of features down to a tratable number).5.3 Applying the Reranking MethodsThe ExpLoss method was trained with several values for the smoothing parameter�: f0:0001; 0:00025; 0:0005; 0:00075; 0:001; 0:0025; 0:005; 0:0075g. For eah value of � themethod was run for 100; 000 rounds on the training data. The implementation was suh25



Computational Linguistis Volume ??, Number ?that the feature updates for all 100; 000 rounds for eah training run were reorded ina �le. This made it simple to test the model on development data for all values of Nbetween 0 and 100; 000.The di�erent values of � and N were ompared on development data through thefollowing riterion: Xi Sore(zi) (21)where Sore is as de�ned above, and zi is the output of the model on the i'th developmentset example. The �;N values whih maximized this quantity were used to de�ne the �nalmodel applied to the test data (setion 23 of the treebank). The optimal values were� = 0:0025 and N = 90; 386, at whih point 11,673 features had non-zero values (notethat the feature seletion tehniques may result in a given feature being updated morethan one). The omputation took roughly 3-4 hours on a 1.6 GHz pentium proessormahine, and around 2 Gigabytes of memory.Table 1 shows results for the method. (Collins 1999) was the base model; the ExpLossmodel gave a 1.5% absolute improvement over this method. The method gives very similarauray to the model of (Charniak 2000), whih also uses a rih set of initial featuresin addition to Charniak's original model (Charniak 1997).The LogLoss method was too ineÆient to run on the full data set. Instead we madesome tests on a smaller subset of the data (5934 sentenes, giving 200,000 parse trees), and52,294 features.15 On an older mahine (an order of magnitude or more slower than themahine used for the �nal tests) the boosting method took 40 minutes for 10,000 roundson this data set. The LogLoss method took 20 hours to omplete 3500 rounds (a fatorof about 85 times slower). This was in spite of various heuristis that were implementedin an attempt to speed up LogLoss|for example, seleting multiple features at eahround, or realulating the statistis for only the best K features for some small K atthe previous round of feature seletion. In initial experiments we found ExpLoss to givesimilar, perhaps slightly better, auray than LogLoss.5.4 Further ExperimentsThis setion desribes further experiments investigating various aspets of the boostingalgorithm: the e�et of the � and N parameters, learning urves, the hoie of the Si;jweights, and eÆieny issues.5.4.1 The E�et of the � and N Parameters Figure 5 shows the learning urve ondevelopment data for the optimal value of � (i.e., � = 0:0025). The auray shown is therelative performane to the baseline method of using the probability from the generativemodel alone in ranking parses, where the measure in Equation (21) is used to measureperformane. For example, a sore of 101:5 indiates a 1:5% inrease in this sore. Thelearning urve is initially steep, eventually attening o�, but reahing its peak value aftera large number (90,386) of rounds of feature seletion.Table 2 indiates how the peak performane varies with the smoothing parameter �.Figure 6 shows learning urves for various values of �. It an be seen that values otherthan � = 0:0025 an lead to undertraining or overtraining of the model.5.4.2 The E�et of the Si;j Weights on Examples In setion 4.2.3 we introdued theidea of weights Si;j representing the importane of examples. Thus far, in the experiments15 All features desribed above exept Distane Head-Modi�ers and Further Lexializationwere inluded.26



Collins and Koo Disriminative Reranking for NL ParsingMODEL � 40 Words (2245 sentenes)LR LP CBs 0 CBs 2 CBsCH97 87.5% 87.4% 1.00 62.1% 86.1%CO99 88.5% 88.7% 0.92 66.7% 87.1%CH00 90.1% 90.1% 0.74 70.1% 89.6%ExpLoss 90.2% 90.4% 0.73 71.2% 90.2%MODEL � 100 Words (2416 sentenes)LR LP CBs 0 CBs 2 CBsCH97 86.7% 86.6% 1.20 59.5% 83.2%RA98 86.3% 87.5% 1.21 60.2% |CO99 88.1% 88.3% 1.06 64.0% 85.1%CH00 89.6% 89.5% 0.88 67.6% 87.7%ExpLoss 89.6% 89.9% 0.86 68.7% 88.3%Table 1Results on Setion 23 of the WSJ Treebank. LR/LP = labelled reall/preision. CBs is theaverage number of rossing brakets per sentene. 0 CBs, 2 CBs are the perentage ofsentenes with 0 or � 2 rossing brakets respetively. All the results in this table are formodels trained and tested on the same data, using the same evaluation metri. CH97 =Charniak 1997, RA98 = Ratnaparkhi 1998, CH00 = Charniak 2000, CO99 = Collins 1999.Note that the ExpLoss results are very slightly di�erent from the original results published in(Collins, 2000). We reently reimplemented the boosting ode, and re-ran the experiments, andminor di�erenes in the ode and � values tested on development data lead to minorimprovements in the results.
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Figure 5Graphs showing the learning urve on development data for the optimal value for �, i.e.,� = 0:0025. The y-axis is the level of auray (100 is the baseline sore), and the x-axis is thenumber of rounds of boosting.in this paper we have used the de�nitionSi;j = Sore(xi;1)� Sore(xi;j) (22)thereby weighting examples in proportion to their di�erene in sore from the orretparse for the sentene in question. In this setion we ompare this approah to a defaultde�nition of Si;j , namely Si;j = 1 (23)Using this de�nition, we trained the ExpLoss method on the same training set for27
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Figure 6Graphs showing learning urves on development data for various values of �. In eah ase they-axis is the level of auray (100 is the baseline sore), and the x-axis is the number ofrounds of boosting. The three graphs ompare the urve for � = 0:0025 (the optimal value) to� = 0:0001, � = 0:0075, and � = 0:001 respetively. The �rst graph shows that � = 0:0001 leadsto under-smoothing (overtraining). Initially the graph is higher than that for � = 0:0025, buton later rounds the performane starts to derease. The seond graph shows that � = 0:0075leads to over-smoothing (undertraining). The graph shows onsistently lower performane thanthat for � = 0:0025. The third graph shows that there is little di�erene in performane for� = 0:001 vs. � = 0:0025.28



Collins and Koo Disriminative Reranking for NL Parsing� Best N Best Sore0.0001 29,471 101.7430.00025 22,468 101.8490.0005 48,795 101.8450.00075 43,386 101.8090.001 43,975 101.8490.0025 90,386 101.8640.005 66,378 101.8240.0075 80,746 101.722Table 2Table showing peak performane ahieved for various values of �. \Best N" refers to thenumber of rounds at whih peak development set auray was reahed. \Best Sore" indiatesthe relative performane ompared to the baseline method, at the optimal value for N .� Best Sore Best Sore(weighted) (unweighted)0.0001 101.743 101.7440.00025 101.849 101.7540.0005 101.845 101.7780.00075 101.809 101.7620.001 101.849 101.7780.0025 101.864 101.6990.005 101.824 101.610.0075 101.722 101.604Table 3Table showing peak performane ahieved for various values of � forSi;j = Sore(xi;1)� Sore(xi;j) (olumn labelled \weighted") and Si;j = 1 (olumn labelled\unweighted").several values of the smoothing parameter �, and evaluated the performane on develop-ment data. Table 3 ompares the peak performane ahieved under the two de�nitionsof Si;j on the development set. It an be seen that the de�nition in Equation (22) out-performs the simpler method in Equation (23). Figure 7 shows the learning urves forthe optimal values of � for the two methods. It an be seen that the learning urve forthe de�nition of Si;j in Equation (22) onsistently dominates the urve for the simplerde�nition.5.4.3 EÆieny Gains Setion 4.5 introdued an eÆient algorithm for optimizingExpLoss. In this setion we explore the empirial gains in eÆieny seen on the parsingdatasets in this paper.We �rst de�ne the quantity T as follows:T =Xi niXj=2 �jB+i;j j+ jB�i;j j�This is a measure of the number of updates to the W+k and W�k variables required inmaking a pass over the entire training set. Thus this is a measure of the amount ofomputation that the naive algorithm for ExpLoss, in �gure 3, requires for eah roundof feature seletion. 29
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Figure 7Figure showing performane vs. number of rounds of boosting forSi;j = Sore(xi;1)� Sore(xi;j) (urve labelled \weighted") and Si;j = 1 (urve labelled \notweighted").Next, say the improved algorithm in �gure 4 selets feature k� on the t'th round offeature seletion. Then we de�ne the following quantity:Ct = X(i;j)2A+k� �jB+i;j j+ jB�i;j j�+ X(i;j)2A�k� �jB+i;j j+ jB�i;j j�This is a measure of the number of summations required by the improved algorithm in�gure 4 at the t'th round of feature seletion.We are now in a position to ompare the running times of the two algorithms. Wede�ne the following quantities: Work(n) = nXt=1 CtT (24)Savings(n) = nTPnt=1 Ct (25)Savings(a; b) = (1 + b� a)TPbt=a Ct (26)Here, Work(n) is the omputation required for n rounds of feature seletion, where asingle unit of omputation orresponds to a pass over the entire training set. Savings(n)traks the relative eÆieny of the two algorithms as a funtion of the number of features,n. For example, if Savings(100) = 1; 200 this signi�es that for the �rst 100 rounds offeature seletion the improved algorithm is 1; 200 times as eÆient as the naive algorithm.Finally, Savings(a; b) indiates the relative eÆieny between rounds a and b of featureseletion inlusive. For example, Savings(11; 100) = 83 signi�es that between rounds 11and 100 inlusive of the algorithm, the improved algorithm was 83 times as eÆient.Figures 8 and 9 show graphs ofWork(n) and Savings(n) vs. n. The savings from theimproved algorithm are dramati. In 100; 000 rounds of feature seletion the improvedalgorithm requires total omputation that is equivalent to a mere 37:1 passes over thetraining set. This is a saving of a fator of 2692 over the naive algorithm.Table 4 shows the value of Savings(a; b) for various values of (a; b). It an be seenthat the performane gains are signi�antly larger in later rounds of feature seletion,30
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presumably beause in later stages relatively infrequent features are being seleted. Evenso, there are still savings of a fator of almost 50 in the early stages of the method. 31



Computational Linguistis Volume ??, Number ?6 Related Work6.1 History-Based Models with Complex FeaturesCharniak (2000) desribes a parser whih inorporates additional features to a previouslydeveloped parser, that of (Charniak 1997). The method gives substantial improvementsover the original parser, and results whih are very lose to the results of the boostingmethod we have desribed in this paper (see setion 5 for experimental results omparingthe two methods). Our features are in many ways similar to those of (Charniak 2000).The model in (Charniak 2000) is quite di�erent, however. The additional features areinorporated using a method inspired by maximum-entropy models (e.g., the model of(Ratnaparkhi 1997)).Ratnaparkhi (1997) desribes the use of maximum entropy tehniques applied toparsing. Log-linear models are used to estimate the onditional probabilities P (dij� (d1 : : : di�1))in a history-based parser. As a result the model an take into aount a quite rih set offeatures in the history.Both approahes still rely on deomposing a parse tree into a sequene of deisions,and we would argue that the tehniques desribed in this paper have more exibility interms of the features that an be inluded in the model.6.2 Joint Log-Linear ModelsAbney (1997) desribes the appliation of log-linear models to stohasti HPSG gram-mars. Della Pietra et. al (1997) desribe feature seletion methods for log-linear models,and Rosenfeld (1997) desribes appliation of these methods to language modeling forspeeh reognition. These methods all emphasize models whih de�ne a joint probabilityover the spae of all parse trees (or strutures in question): for this reason we desribethese approahes as \Joint Log-Linear Models". The probability of a tree xi;j isP (xi;j) = eF (xi;j)Px2Z eF (x) (27)Here Z is the (in�nite) set of possible trees, and the denominator annot be alulatedexpliitly. This is a problem for parameter estimation, where an estimate of the denom-inator is required, and Monte-Carlo methods have been proposed (Della Pietra et al.1997; Abney 1997; Rosenfeld 1997) as a tehnique for estimation of this value. Our senseis that these methods an be omputationally expensive. Notie that the joint likelihoodin Equation (27) is not a diret funtion of the margins on training examples, and its re-lation to error rate is therefore not so lear as in the disriminative approahes desribedin this paper.6.3 Conditional Log-Linear ModelsRatnapakhi et. al (1994), Johnson et. al (1999), and Riezler et. al (2002) suggest train-ing log-linear models|i.e., the LogLoss funtion in Equation (9)|for parsing problems.Ratnaparkhi et. al (1994) use feature seletion tehniques for the task. Johnson et. al(1999), and Riezler et. al (2002) do not use a feature seletion tehnique, instead usingan objetive funtion whih inludes a gaussian prior on the parameter values, therebypenalizing parameter values whih beome too large:��� = argmin��  LogLoss(��) + Xk=0:::m �2k�2k! (28)Closed-form updates under iterative saling are not possible with this objetive funtion,instead optimization algorithms suh as gradient desent or onjugate gradient methods32



Collins and Koo Disriminative Reranking for NL Parsingare used to estimate parameter values.In more reent work, La�erty et. al (2001) desribe the use of onditional MarkovRandom Fields (CRFs) for tagging tasks suh as named entity reognition or part-of-speeh tagging (Hidden Markov Models are a ommon method applied to these tasks).CRFs employ the objetive funtion in Eq. 28. A key insight of (La�erty et al., 2001) isthat when features are of a signi�antly loal nature, the gradient of the funtion in Equa-tion (28) an be alulated eÆiently using dynami programming, even in ases wherethe set of andidates involves all possible tagged sequenes, and is therefore exponentialin size. See also (Sha and Pereira 2003) for more reent work on CRFs.Optimizing a log-linear model with a gaussian prior|i.e., hoosing parameter valueswhih ahieve the global minimum of the objetive funtion in Eq. 28|is a plausiblealternative to the feature seletion approahes desribed in the urrent paper, or to thefeature seletion methods previously applied to log-linear models. The Gaussian prior(i.e., thePk �2k=�2k penalty) has been found in pratie to be very e�etive in ombattingover�tting of the parameters to the training data (Chen and Rosenfeld 1999; Johnson etal. 1999; La�erty et al., 2001; Riezler et. al 2002). Optimizing the funtion in Eq. 28 an beaomplished using variants of gradient desent, whih in pratie require 10's or at most100's of passes over the training data (e.g., see (Sha and Pereira 2003)). Thus they arelikely to be omparable in terms of eÆieny to the feature seletion approah desribedin this paper (in the experimental setion, we showed that for the parse reranking taskthe eÆient boosting algorithm requires omputation that is equivalent to around 40passes over the training data).Note, however, that the two methods will di�er onsiderably in terms of the sparsityof the resulting reranker. While the feature seletion approah leads to around 11; 000(2%) of the features in our model having non-zero parameter values, log-linear modelswith gaussian priors typially have very few non-zero parameters (e.g., see (Riezler andVasserman 2004)). This may be important in some domains, for example where thereare a very large number of features, and where this large number leads to diÆulties interms of memory requirements or omputation time.6.4 Feature Seletion MethodsA number of previous papers (Berger, Della Pietra and Della Pietra 1996; Ratnaparkhi1998; Della Pietra et al. 1997; MCallum 2003; Zhou et al., 2003; Riezler and Vasserman2004) desribe feature seletion approahes for log-linear models applied to NLP prob-lems. Earlier work (Berger, Della Pietra and Della Pietra 1996; Ratnaparkhi 1998; DellaPietra et al. 1997) suggested methods that added a feature at a time to the model, andupdated all parameters in the urrent model at eah step (for more detail, see setion 3.3).Assuming that seletion of a feature takes one pass over the training set, and �tting amodel takes p passes over the training set, these methods require f � (p + 1) passesover the training set where f is the number of features seleted. In our experiments,f � 10; 000. It is diÆult to estimate the value for p, but assuming (very onservatively)that p = 2, seleting 10; 000 features would require 30; 000 passes over the training set.This is around 1; 000 times as muh omputation as that required for the eÆient boostingalgorithm applied to our data, suggesting that the feature seletion methods in (Berger,Della Pietra and Della Pietra 1996; Ratnaparkhi 1998; Della Pietra et al. 1997) are notsuÆiently eÆient for the parsing task.More reent work (MCallum 2003; Zhou et al., 2003; Riezler and Vasserman 2004),has onsidered methods for speeding up the feature seletion methods desribed in(Berger, Della Pietra and Della Pietra 1996; Ratnaparkhi 1998; Della Pietra et al. 1997).MCallum (2003), and Riezler and Vasserman (2004), desribe approahes that add kfeatures at eah step, where k is some onstant greater than 1. The running time for33



Computational Linguistis Volume ??, Number ?these methods is therefore O(f � (p+1)=k). Riezler and Vasserman (2004) test a varietyof values for k, �nding that k = 100 gives optimal performane. MCallum (2003) usesa value of k = 1000. Zhou et. al (2003) uses a di�erent heuristi, whih avoids having toreompute the gain for every feature at every iteration.We would argue that the alternative feature seletion methods in the urrent papermay be preferable on the grounds of both eÆieny and simpliity. Even with large valuesof k in the approah of (MCallum 2003; Riezler and Vasserman 2004) (e.g., k = 1000),the approah we desribe is likely to be at least as eÆient as these alternative approahes.In terms of simpliity, the methods in (MCallum 2003; Riezler and Vasserman 2004)require seletion of a number of free parameters governing the behavior of the algorithm:the value for k, the value for a regularizer onstant (used in both (MCallum 2003;Riezler and Vasserman 2004)), and the preision with whih the model is optimizedat eah stage of feature seletion (MCallum (2003) desribes using \just a few BFGSiterations" at eah stage). In ontrast, our method requires a single parameter to behosen (the value for the � smoothing parameter), and makes a single approximation(that only a single feature is updated at eah round of feature seletion). The latterapproximation is partiularly important, as it leads to the eÆient algorithm in �gure 4that avoids a pass over the training set at eah iteration of feature seletion|note that insparse feature spaes f rounds of feature seletion in our approah an take onsiderablyless than f passes over the training set, in ontrast to other work on feature seletionwithin log-linear models.Note that there are other important di�erenes between the approahes. Both DellaPietra et. al (1997) and MCallum (2003) desribe methods that indue onjuntionsof \base" features, in a similar way to deision tree learners. Thus a relatively smallnumber of base features an lead to a very large number of possible onjoined features.In future work it may be interesting to onsider these kinds of approahes for the parsingproblem. Another di�erene is that both MCallum, and Riezler and Vasserman, desribeapproahes that use a regularizer in addition to feature seletion: MCallum uses a 2-norm regularizer, Riezler and Vasserman use a 1-norm regularizer.Finally, note that other feature-seletion methods have been proposed within themahine learning ommunity: for example \�lter" methods, where feature seletion isperformed as a preproessing step before applying a learning method; and bakwardseletion methods (Koller and Sahami, 1996), where initially all features are added tothe model, and features are then inrementally removed from the model.6.5 Boosting, Pereptron and Support Vetor Mahine Approahes for Rank-ing ProblemsFreund et. al (1998) introdued a formulation of boosting for ranking problems. Theproblem we have onsidered is a speial ase of the problem in (Freund et al. 1998),in that we have onsidered a binary distintion between andidates (i.e., the best parsevs. other parses), whereas Freund et. al onsider learning full or partial orderings overandidates. The improved algorithm that we have introdued in �gure 4 is however, anew algorithm, whih ould perhaps be generalized to the full problem of (Freund et al.1998)|we leave this to future researh.Altun, Hofmann and Johnson (2003) and Altun, Johnson and Hofmann (2003) de-sribe experiments on tagging tasks using the ExpLoss funtion, in ontrast to theLogLoss funtion used in (La�erty et al., 2001). Altun, Hofmann and Johnson (2003)desribe how dynami programming methods an be used to alulate gradients of theExpLoss funtion even in ases where the set of andidates again inludes all possibletagged sequenes, a set whih grows exponentially in size with the length of the sentenebeing tagged. Results in (Altun, Johnson, and Hofmann 2003) suggest that the hoie of34



Collins and Koo Disriminative Reranking for NL ParsingExpLoss vs. LogLoss does not have a major impat on auray for the tagging task inquestion.Pereptron-based algorithms, or the voted pereptron approah of (Freund and Shapire,1999), are another alternative to boosting and LogLoss methods. See (Collins, 2002a;Collins, 2002b; Collins and Du�y, 2002; Collins and Du�y, 2001) for appliations of thepereptron algorithm. Collins (2002b) gives onvergene proofs for the methods; Collins(2002a) diretly ompares the boosting and pereptron approahes on a named entitytask; and Collins and Du�y (2001, 2002) use a reranking approah with kernels, whihallow representations of parse trees or labelled sequenes in very high dimensional spaes.Shen, Sarkar and Joshi (2003) desribe support vetor mahine approahes to rankingproblems, and apply Support Vetor Mahines (SVMs) using Tree Adjoining Grammar(Joshi, Levy and Takahashi 1975) features to the parsing datasets we have desribed inthis paper, with good empirial results.See (Collins 2004) for a disussion of many of these methods, inluding an overview ofstatistial bounds for the boosting, pereptron and SVM methods, as well as a disussionof the omputational issues of the di�erent algorithms.7 ConlusionsThis paper has introdued a new algorithm, based on boosting approahes in mahinelearning, to ranking problems in natural language proessing. The approah gives a 13%relative redution in error on parsing Wall Street Journal data. While in this paper theexperimental fous has been on parsing, many other problems in natural language pro-essing or speeh reognition an also be framed as reranking problems, so the methodsdesribed should be quite broadly appliable. The boosting approah to ranking has beenapplied to named-entity segmentation (Collins, 2002a) and natural language generation(Walker et al., 2001). The key harateristis of the approah are the use of global fea-tures, and the use of a training riterion (optimization problem) that is disriminative,and losely related to the task in hand|i.e., parse auray.In addition, the paper introdued a new algorithm for the boosting approah whihtakes advantage of the sparse nature of the feature spae in the parsing data that we use.Other NLP tasks are likely to have similar harateristis in terms of sparsity. Experi-ments show an eÆieny gain of a fator of over 2,600 on the parsing data for the newalgorithm over the obvious implementation of the boosting approah. We would arguethat the improved boosting algorithm is a natural alternative to maximum-entropy or(onditional) log-linear models. The paper has drawn onnetions between boosting andmaximum-entropy models in terms of the optimization problems that they involve, thealgorithms used, their relative eÆieny, and their performane in empirial tests.AknowledgmentsThanks to Rob Shapire and Yoram Singer for useful disussions on boosting algorithms, andto Mark Johnson for useful disussions about linear models for parse ranking. Steve Abneyand Fernando Pereira gave useful feedbak on earlier drafts of this work. Finally, thanks to theanonymous reviewers for several useful omments.ReferenesAbney, Steven. (1997). Stohasti Attribute-Value Grammars. Computational Linguistis,23(4):597-618.Altun, Yasemin, Thomas Hofmann and Mark Johnson. (2003). Disriminative Learning for 35
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Collins and Koo Disriminative Reranking for NL ParsingAppendixAppendix A: Derivation of Updates for ExpLossThis appendix gives a derivation of the optimal updates for ExpLoss. The derivation isvery lose to that in (Shapire and Singer 1999). Reall that for parameter values ��, weneed to ompute BestWt(k; ��) and BestLoss(k; ��) for k = 1 : : :m, whereBestWt(k; ��) = argminÆ ExpLoss (Upd(��; k; Æ))and BestLoss(k; ��) = ExpLoss (Upd(��; k;BestWt(k; ��)))The �rst thing to note is that an update in parameters from �� to Upd(��; k; Æ)) resultsin a simple additive update to the ranking funtion F :F (xi;j ;Upd(��; k; Æ)) = F (xi;j ; �) + Æhk(xi;j)It follows that the margin on example (i; j) also has a simple update:Mi;j(Upd(��; k; Æ)) = F (xi;1;Upd(��; k; Æ))� F (xi;j ;Upd(��; k; Æ))= F (xi;1; ��)� F (xi;j ; ��) + Æ [hk(xi;1)� hk(xi;j)℄= Mi;j(��) + Æ [hk(xi;1)� hk(xi;j)℄The updated ExpLoss funtion an then be written asExpLoss(Upd(��; k; Æ)) = Xi niXj=2 Si;je�Mi;j(Upd(��;k;Æ))= Xi niXj=2 Si;je�Mi;j(��)�Æ[hk(xi;1)�hk(xi;j)℄Next, we note that [hk(xi;1)� hk(xi;j)℄ an take on three values: +1, �1, or 0. We splitthe training sample into three sets depending on this valueA+k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = 1gA�k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = �1gA0k = f(i; j) : [hk(xi;1)� hk(xi;j)℄ = 0gGiven these de�nitions, we de�ne W+k , W�k and W 0k asW+k = X(i;j)2A+k Si;je�Mi;j(��)W�k = X(i;j)2A�k Si;je�Mi;j (��)W 0k = X(i;j)2A0k Si;je�Mi;j(��)
39



Computational Linguistis Volume ??, Number ?ExpLoss is now rewritten in terms of these quantities:ExpLoss(Upd(��; k; Æ)) = X(i;j)2A+kSi;je�Mi;j(��)�Æ +X(i;j)2A�kSi;je�Mi;j(��)+Æ +X(i;j)2A0kSi;je�Mi;j(��)= e�ÆW+k + eÆW�k +W 0k (A-1)To �nd the value of Æ that minimizes this loss, we set the derivative of (A-1) w.r.t. Æ to0, giving the following solution:BestWt(k; ��) = 12 log W+kW�kPlugging this value of Æ bak into (A-1) gives the best loss:BestLoss(k; ��) = 2qW+k W�k +W 0k= 2qW+k W�k + Z �W+k �W�k= Z ��qW+k �qW�k �2 (A-2)where Z = ExpLoss(��) = PiPnij=2 Si;je�Mi;j(��) is a onstant (for onstant ��) whihappears in the BestLoss for all features, and therefore does not a�et their ranking.Appendix B: An Alternative Method for LogLossIn this setion we sketh an alternative approah for feature seletion in LogLoss, whihis potentially an eÆient method, at the ost of introduing an approximation in thefeature seletion method. Until now, we have de�ned BestLoss(k; ��) to be the minimumof the loss given that the k'th feature is updated an optimal amount:BestLoss(k; ��) = minÆ LogLoss (Upd(��; k; Æ))In this setion we sketh a di�erent approah, based on results from (Collins, Shapireand Singer, 2002), whih leads to a very similar algorithm to that for ExpLoss in �g-ures 3 or 4. Take the following de�nitions (note the similarity to the de�nitions in Equa-tions 13, 14, 15, 16, with only the de�nitions for W+k and W�k being altered):W+k = X(i;j)2A+k qi;j W�k = X(i;j)2A�k qi;j where qi;j = e�Mi;j(��)1 +Pniq=2 e�Mi;q(��) (B-3)BestWt(k; ��) = 12 log W+kW�k (B-4)BestLoss(k; ��) = LogLoss(��)��qW+k �qW�k �2 (B-5)Note that the ExpLoss omputations an be reovered by replaing qi;j in Equation (B-3)by qi;j = e�Mi;j(��). This is essentially the only di�erene between the new algorithm andthe ExpLoss method.40



Collins and Koo Disriminative Reranking for NL ParsingResults from (Collins, Shapire and Singer, 2002) show that under these de�nitionsthe following guarantee holds:LogLoss (Upd(��; k;BestWt(k; ��))) � BestLoss(k; ��)So it an be seen that the update from �� to Upd(��; k;BestWt(k; ��)) is guaranteed toderease LogLoss by at least �qW+k �qW�k �2. From these results, the algorithmsin �gures 3 and 4 ould be altered to take the revised de�nitions of W+k and W�k intoaount. Seleting the feature with the minimum value of BestLoss(k; ��) at eah iterationleads to largest guaranteed derease in LogLoss. Note that this is now an approximation,in that BestLoss(k; ��) is an upper bound on the log-likelihood whih may or may not betight. There are onvergene guarantees for the method, however, in that as the numberof rounds of feature seletion goes to in�nity, the LogLoss approahes its minimum value.The algorithms in �gures 3 and 4 ould be modi�ed to take the alternative de�nitionsof W+k and W�k into aount, thereby being modi�ed to optimize LogLoss instead ofExpLoss. The denominator terms in the qi;j de�nitions in Equation (B-3) may ompliatethe algorithms somewhat, but it should still be possible to derive relatively eÆientalgorithms using the tehnique.For a full derivation of the modi�ed updates, and quite tehnial onvergene proofs,see (Collins, Shapire and Singer, 2002). We give a sketh of the argument here. First,we show thatLogLoss (Upd(��; k; Æ)) � LogLoss (��)�W+k �W�k +W+k e�Æ +W�k eÆ (B-6)This an be derived as follows (in this derivation we use gk(xi;j) = hk(xi;1)� hk(xi;j)):LogLoss (Upd(��; k; Æ)) = LogLoss (��) + LogLoss (Upd(��; k; Æ))� LogLoss (��)= LogLoss (��) +Xi log 1 +Pnij=2 e�Mi;j (��)�Ægk(xi;j)1 +Pnij=2 e�Mi;j(��) != LogLoss (��) +Xi log 11 +Pnij=2 e�Mi;j(��) + Pnij=2 e�Mi;j(��)�Ægk(xi;j)1 +Pnij=2 e�Mi;j(��) != LogLoss (��) +Xi log0�1� niXj=2 qi;j + niXj=2 qi;je�Ægk(xi;j)1A(B-7)� LogLoss (��)�Xi niXj=2 qi;j +Xi niXj=2 qi;je�Ægk(xi;j) (B-8)= LogLoss (��)� (W 0k +W+k +W�k ) +W 0k +W+k e�Æ +W�k eÆ= LogLoss (��)�W+k �W�k +W+k e�Æ +W�k eÆEquation (B-8) an be derived from Equation (B-7) through the bound log(1 + x) � xfor all x.The seond step is to minimize the right hand side of the bound in Equation (B-6)with respet to Æ. It an be veri�ed that the minimum is found atÆ = 12 log W+kW�k 41
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