
Final Report:

Natural Language Generation in the Context of

Machine Translation

Jan Hajič1

Martin Čmejrek2

Bonnie Dorr3

Yuan Ding4

Jason Eisner5

Dan Gildea6

Terry Koo7

Kristen Parton8

Gerald Penn9

Dragomir Radev10

Owen Rambow11

with contributions by12

Jan Cuř́ın

Vladislav Kuboň

Ivona Kučerová

October 28, 2005

1Team leader, Charles University, Prague, Czech Republic
2Charles University, Prague, Czech Republic
3Affiliate team member, University of Maruland, USA
4University of Pennsylvannia, USA
5Johns Hopkins University, USA
6Affiliate team member, University of Pennsylvannia, USA
7MIT, USA
8Stanford Univerity, USA
9University of Toronto, Canada

10University of Michigan, USA
11University of Pennsylvania, USA
12All from Charles University, Prague, Czech Republic

Abstract

Abstract
Text......

Chapter 1

Introduction

Jan Hajič

1.1 Section Name

Text......

2

Chapter 2

Summary of Resources

Jan Hajič, Martin Čmejrek, Jan Cuř́ın, Vladislav Kuboň

2.1 Section

Text......

3

Chapter 3

The Generation System

MAGENTA

Jason Eisner, Jan Hajič, Dan Gildea,
Yuan Ding, Terry Koo, Kristen Parton

3.1 System Architecture

by Jan Hajič and Jason Eisner

3.1.1 Section Name

Text......

3.2 Synchronous Tree Transducers

by Jason Eisner

3.2.1 Section

Text......

3.3 The Elementary Tree Model

by Jan Hajič

3.3.1 Section

Text......

3.4 The Proposer

by Yuan Ding

4

3.4.1 Section

Text......

3.5 Using Global Tree Information: Preposition

Insertion

by Terry Koo

Prepositions are elided in the TR but exist in the AR. This section de-
scribes our implementation of a classifier that indicates where prepositions
must be inserted into the TR. Because the system operates on the tree as a
whole, it has access to global tree information and can make more accurate
decisions than the Proposer. Although we only discuss preposition insertion
in this section, the techniques we present are applicable to other tree trans-
formations such as insertion of determiners or auxiliary verbs.

The remainder of this section is split into four subsections. The first two
subsections present, respectively, an overview of the C5.0 data mining tool,
which we used to train our classifier, and the general technique of using
classifiers to capture global tree information. The next subsection presents
our preposition insertion implementation, describing the operation of our
classifier, how we prepared its testing and training data, how we improved
its performance, and how it performs. The final subsection concludes with
suggestions for future work.

3.5.1 Description of C5.0

C5.0 is a data mining tool that generates classifiers in the form of decision
trees or rule sets. We present a brief overview of the C5.0 data mining tool.
The reader already familiar with C5.0 may skip this sub-section.

The training data for C5.0 is set of cases, where each case consists of a
context and a classification. The context can be made of any number of
variables which can be real numbers, dates, enumerated discrete values, or
functions on the other variables (such as area := width*height or young
:= age < 20). The classification is the category to which C5.0 should assign
this case. C5.0 has a number of training options, a few of which we describe
below.

Discrete Value Sub-setting C5.0 can make decisions based on subsets of
discrete values instead of individual discrete values. On a data set with
many discrete values, discrete value sub-setting reduces fragmentation
of the training data.

Adaptive Boosting C5.0 can run several trials of classifier generation on
given sets of training and test data. The first classifier generated

5

may do well but will probably make errors on some regions of the
test data. C5.0 takes these errors into account and trains the second
classifier with an emphasis on these error-prone data. This process
continues iteratively until some specified number of trials is complete
or the accuracy of the classifier becomes either very high or very low.

Misclassification Costs C5.0 allows misclassification costs to be specified
individually. This is useful in when one kind of error is more grave
than another; for instance, when diagnosing a potentially fatal disease,
we would rather misdiagnose a healthy patient as sick than vice versa.
By specifying a high cost for misclassifying sick as healthy and a low
cost for misclassifying healthy as sick, we can instill a bias in the
classifier C5.0 produces.

When using a C5.0 classifier, the context is presented as input, and the clas-
sifier attempts to deduce the correct classification. Source code is available
for a free C program called sample, which takes a trained C5.0 decision tree
or rule set and classifies new cases with it.

3.5.2 Using Classifiers to Capture Tree Information

We now discuss the general technique of using classifiers to aid our tree
transduction. Recall that our tree transduction operates by transforming
small tree fragments at a time and then composing those fragments into
whole trees. Unfortunately, the TR tree fragments only provide local infor-
mation limited by the size of the fragment. This lack of information makes
it difficult for the Proposer to choose the correct AR transformation.

In actuality, the entire TR tree is available to the transducer, but we choose
not to transduce the entire tree at one go for data sparseness and computa-
tional efficiency reasons. However, some TR to AR transformations depend
on long-range relationships or other data which are lost when the tree is bro-
ken into small fragments. We would like to capture the relevant long-range
information in some local form that the Proposer can easily access.

Our approach is to preprocess the TR tree with a classifier, attaching arbi-
trary informative labels to individual nodes. When the Proposer receives a
tree fragment, it reads the labels off of the nodes in the fragment, incorpo-
rating the labels’ information in its decisions.

3.5.3 The Preposition Insertion Classifier

The classifier operates by labeling individual nodes of the TR tree. The pos-
sible labels are nothing, indicating that no preposition should be inserted
above this node, or insert X, where X represents a preposition to insert
above the labeled node. X can either be a single preposition such as “of” or
a compound preposition such as “because of”. In the case of a compound

6

preposition such as “because of”, “of” should be inserted as the parent to
the labeled node and “because” should be inserted as the parent of “of”.

Unfortunately, we were unable to integrate the preposition insertion classi-
fier into the tree transduction system, due to time constraints. However, the
classifier itself is fully implemented and has been tested as an independent
module.

The remainder of this subsection is broken into three parts which describe,
respectively, how we created the training data for our classifier, how we at-
tempted to improve its performance, and how the classifier performs.

Preparing the Training Data

We now discuss how we prepared training data for our preposition insertion
classifier. To begin, we have only trained and tested the classifier on data
from Input 1. This is because Input 1 has a large amount of data, covering
all 24 WSJ sections, and was the earliest available Input of this size. Natu-
rally, we did not train or test the classifier on the parts of the WSJ which
were reserved for testing.

POS Tag
TR Func

POS Tag
TR Func

POS Tag
TR Func

POS Tag
TR Func

POS Tag
TR Func
TR Lemma

POS Tag
TR Func

Figure 3.1: Inputs to the classifier when classifying current node (hexagon).

The classifier’s inputs, displayed in Figure ??, are the attributes of the node
to be classified and a few of the surrounding nodes. Specifically, we pass
the POS tag and TR functor of the node being classified, its parent node,
its left and right brother nodes, and its leftmost and rightmost children. In
addition, the TR lemma of the parent node is also included. We would ide-
ally include more TR lemmas but doing so increases the size of the problem

7

drastically and causes C5.0 to exit with an out of memory error.

One caveat about our inputs is that the POS tags in the classifier’s input
are not full POS tags — at transduction time, only simple POS tags are
available. This simple POS tag can distinguish between basic categories
such as noun, verb, and adjective, but does not make distinctions within
these categories, such as VBZ and VBD. We simulate this by using only the
first character of the full POS tag in the input to the classifier.

To create the data, we used a Perl script that traverses a TR tree, creating
a single case entry for each node. The contextual information is gathered
in fairly straightforward fashion, by examining the parent, left and right
brother, and leftmost and rightmost children of the current node. The clas-
sification is a bit more tricky to find, however.

Since the TR trees from Input 1 are automatically generated from English
surface text, they contain the original prepositions, marked as hidden nodes.
The hidden prepositions are also attached at a different position in the TR
than the AR; if a preposition is attached above node X in the AR tree, it is
attached as the leftmost child of X in the TR tree. As a second check, we
examine the corresponding AR tree and make sure that the hidden prepo-
sitions in the TR tree appear in the AR tree as parents of the current node,
with AR functor AuxP and POS tag IN. These two quick checks will accept
some subordinating conjunctions as prepositions, but this is reasonable since
the two phenomena are closely related. Finally, the prepositions that pass
both checks are concatenated with insert, forming the current node’s clas-
sification. If no prepositions were found, the classification nothing is used.

In the previous paragraph, we have left out two important mechanisms for
reasons of clarity. These mechanisms are conjunction and apposition hop-
ping and skipping. We first describe conjunction and apposition hopping.

John

@@
talked

XXXXX
and
��

Mary

��
to

HHH
Jane

��
to

Figure 3.2: TR tree for “John talked to Mary and to Jane”

Suppose that we always looked at the literal parent node when gathering con-
text information. In the TR of a sentence such as “John talked to Mary and

8

to Jane” (see Figure ??), the parent of “Mary” and “Jane” is the conjunction
“and”. However, “and” provides no information about the relationship be-
tween “talked” and “Mary” or “Jane” represented by the preposition “to”.
We should have ignored “and” and looked at the parent of “and”, “talked”.
Rather, “and” is simply a grouping node and the true parent, with respect
to the preposition “to”, is “talked”. Through an identical mechanism, ap-
positions also exhibit this spurious parenthood. To fix these errors, we look
for the parent by hopping upward until we find a node that is neither a
conjunction nor an apposition.

John

@@
talked

hhhhhhh
and
�����

to

��
Mary

HHH
Jane

Figure 3.3: TR tree for “John talked to Mary and Jane”

Conjunction and apposition skipping complements hopping. In the sentence
“John talked to Mary and Jane” (see Figure ??), “and” would be classified
insert to by our naive data creation script. However, the “and” is not the
actual target of the preposition “to”. Rather, the targets are “Mary” and
“Jane”. We solve this problem by simply skipping over conjunction and ap-
position nodes without creating any data for them; we let conjunction and
apposition hopping generate the appropriate data when “Mary” and “Jane”
are processed. We must, however, ensure that the correct prepositions are
detected when “Mary” and “Jane” are processed. Thus, we alter the hop-
ping process to check for prepositions attached to any of the nodes on the
path to the true parent. In the TR of the sentence “John talked to Mary
and Jane”, “to” is attached to “and”, which is between “talked” and both
“Mary” and “Jane”. This means that “Mary” and “Jane” are processed
as if they had the preposition “to” inserted above them, even though they
do not. Note that this makes the TR trees of Figures ?? and ?? identical
with respect to the training data they produce. Since the two sentences are
nearly identical in terms of meaning, and certainly interchangeable, we have
decided that this is acceptable behavior.

Improving Performance

We now discuss how we improved the performance of our classifier. Our
efforts have focused on increasing insertion recall, which we define as the
number of correct preposition insertions the classifier makes divided by the
total number of prepositions in the test set. We emphasize insertion recall

9

because the classifier, when integrated, will make suggestions to the Pro-
poser. Ideally, these suggestions always include the correct answer. We fo-
cus only on insertions because our system attains perfect recall on nothing,
for trivial reasons which we will explain later.

Our first performance problems derive from the high prior probability of
the classification nothing, which makes up roughly 9/10 of all classifica-
tions. On the other hand, there are roughly 330 classifications corresponding
to preposition insertions, all sharing the remaining 1/10 of the probability
space. This makes the classifier tentative about inserting prepositions; if
there is any uncertainty about whether to insert a preposition, the classifier
will generally opt for nothing since it is right 9 times out of 10. Unfortu-
nately, this tentativeness causes poor insertion recall.

We first attempted to deal with this problem by using C5.0’s differential mis-
classification costs feature to favor insertions and disfavor nothing. How-
ever, we made little improvement with this approach and actually performed
worse in some cases. We also attempted to use the adaptive boosting, hoping
that C5.0 could detect that it was classifying many prepositions insertions
as nothing and compensate for that in successive trials. However, attempts
to train using adaptive boosting also met with failure: C5.0 aborted the
training every time because the scores of the classifiers became too low.

The solution we eventually arrived at was to train on data that consisted
only of preposition insertion cases. Our intuition was that if the nothing

cases were causing confusion, then we should remove them. The classifier we
trained on the preposition-only data is able to get significantly higher inser-
tion recall than the classifier we trained on all the data, even though both
classifiers are trained on the same preposition insertion cases. The obvious
disadvantage is that a classifier trained on preposition-only data will never
make a classification of nothing. We solve this problem by modifying the
classifier to return two classifications: nothing and the preposition insertion
determined by the decision tree. This explains why, as we mentioned above,
we have perfect recall on nothing.

Notice that we are now returning multiple suggested classifications. Al-
though this increases the number of possibilities that the tree transduction
must evaluate, the increased insertion recall more than offsets the computa-
tional disadvantage. The natural step at this point is to alter our decision
tree so that it returns multiple classifications.

Our first and most primitive application of this idea is what we call N

Thresholding. To explain, when the normal classifier evaluates an input, it
creates confidence values for each of the possible classifications and returns
the classification with the highest confidence as its decision. A classifier
using N Thresholding is the same except it returns the best Nthresh classi-
fications. This method is able to get high insertion recall, but only when
Nthresh is large. Furthermore, when Nthresh is large, there are many cases

10

where the decision tree’s highest or second highest confidence classification
is correct, but the remaining classifications are still returned as dead weight.
Manual study of the confidence values of in these cases shows that most of
the confidence mass is concentrated in these one or two highest-ranked classi-
fications. Additionally, when the correct answer is in one of the lower-ranked
classifications, the confidence mass is generally more spread out. These two
observations lead us to our next thresholding technique.

The next kind of thresholding we developed is what we call C Thresholding,
where C stands for “confidence”. Instead of returning a fixed number of
classifications, C Thresholding can return a variable number. C Threshold-
ing operates by picking the smallest set of M classifications such that the
sum of the confidence values of the M classifications is greater than fCtotal.
f is an adjustable parameter and Ctotal is the sum of confidence values for
all classifications. Thus, if the confidence mass is concentrated in one or
two classifications, the threshold will probably be passed using just those
one or two classifications. If, on the other hand, the confidence mass is
spread evenly, more classifications will be returned. This behavior follows
the trends we have observed.

Note that although Ctotal ≤ 1, it is not necessarily 1; hence the need to mul-
tiply f by Ctotal to create the threshold value. We set a hard limit on how
many classifications can be returned, which is also an adjustable parameter.
Thus far, however, we have used the hard limit 15 for all of our classifiers,
and anticipate that changing the hard limit would not have any profound
effects. For comparison to the N Thresholding classifier on a given set of
cases, we calculate the “effective Nthresh” of a C Thresholding classifier as
the average number of classifications suggested.

Unfortunately, when compared at equal values of Nthresh, the C Thresh-
olding classifier does not perform much better than the N Thresholding
classifier. This is strange, since manual study of insertion cases shows that
C Thresholding consistently returns fewer classifications than N Threshold-
ing.

The problem lies in the nothing cases. Since the classifier has been trained
on preposition-only data, it has no knowledge of what to do with nothing

cases. When it is presented with the input for a nothing case, it will produce
a fairly even spread of very low confidences. As we have mentioned earlier,
this causes the C Thresholding technique to return multiple classifications.
After more manual study, we made the key observation that Ctotal is small
for these nothing cases. This leads us to our next and final thresholding
technique.

Our final thresholding technique is what we call Aggressive C Thresholding.
This is identical to C Thresholding except the threshold value is f(Ctotal)

2.
Preposition insertion cases will have Ctotal reasonably close to 1, so the
effect of squaring it is small and the number of classifications returned is

11

N Thresholding C Thresholding Aggressive C

Nthresh Recall (%) Eff. Nthresh Recall (%) Eff. Nthresh Recall (%)

2 70.1568 2.8719 74.2187 2.0697 71.1497
3 76.3963 2.9981 74.6136 2.0992 71.6462

3.1038 75.2680 2.1158 71.7026
3.2714 77.4343 2.1493 73.4514
3.3517 78.2241 2.1666 73.9366
3.5324 78.8334 2.1702 73.9479
3.7341 79.5555 2.1799 74.0494

4 80.5935 4.0257 80.1647 2.2271 74.5797
4.4184 82.9065 2.2812 76.5655

5 82.9967 4.8659 84.1137 2.3397 76.7799
5.3083 84.7004 2.3583 76.8927

6 84.8810 5.9295 86.4380 2.4066 77.2199
7 86.2011 6.6144 87.7581 2.4884 77.9871
8 87.2955 7.7973 89.0105 2.6519 78.8559
9 87.9838 9.0266 89.8793 2.9678 80.1647
10 88.6720 10.1724 90.2516 3.2876 80.8643
11 89.1459 12.5654 90.6916 3.5069 81.3156

Figure 3.4: Number of Classifications Returned and Percent Recall for the three
thresholding methods. Values in both C Thresholding columns are bold-ed when
their effective Nthresh is close to an integer. For easier comparison, the N Threshold-
ing values have been moved next to their closest companions in the C Thresholding
column.

similar to C Thresholding. However, for nothing classifications, Ctotal will
be small, and squaring it will force the threshold value very low. There-
fore, in these nothing cases, Aggressive C Thresholding returns far fewer
classifications, usually only 1, than normal C Thresholding. Aggressive C
Thresholding thus combines the accuracy of C Thresholding on preposition
insertion cases with high economy on nothing cases.

Our current best classifier is trained on preposition-only data and uses Ag-
gressive C Thresholding to modulate its suggestions.

Results

We now present the results of testing our preposition insertion classifier. All
of the results we include are of a classifier trained on preposition-only data,
and using various thresholding techniques.

Figures ?? and ?? do not show any clear winner between N Thresholding
and C Thresholding. Both, however, show that Aggressive C Thresholding
has a clear advantage over the other two. The Aggressive C Thresholding
classifier can classify with 80% insertion recall, using only about 3 classifi-

12

70
71

72
73

74
75

76
77

78
79

80
81

82
83

84
85

2 3 4 5

In
se

rt
io

n
R

ec
al

l (
%

)

Number of Classifications Returned

 N Threshold
 C Threshold

 Aggressive C Threshold

Figure 3.5: Percent Recall vs. Number of Classifications Returned for the three
thresholding methods.

cations per case. Of course, this performance can be improved upon, but it
is nevertheless an impressive start.

3.5.4 Future Work

There are a number of tasks we should undertake following this research.
Clearly, the first task is integrating the above classifier with the Proposer.
This will include training the classifier again on the other Inputs. Once inte-
grated, we can evaluate the impact that the classifier has on overall English
generation performance. From there, we will create more classifiers if the
technique turns out to be useful, which we expect to be the case.

We should also improve the performance of the preposition insertion clas-
sifier. For instance, recall that we use only one TR lemma in the input
because C5.0 cannot allocate enough memory. We would like to group TR
lemmas, which have over 30,000 different values, into a smaller number of
categories. Instead of directly using the TR lemmas as input, we can use the
derived categories. Provided that the number of categories is small enough,
we could use the categorized TR lemmas of multiple nodes.

Another improvement would focus on the creation of training data. Recall
that we accept some subordinating conjunctions as prepositions. If we were
able to separate prepositions from subordinating conjunctions, we could cre-

13

ate a more uniform set of training data, which in turn might lead to a more
accurate decision tree.

Finally, we could look at using several different classifier generators, with
the hope that one might provide us significantly better performance.

To conclude, we have shown the effective of the general technique of using
classifiers to capture tree information. We have also created a working clas-
sifier which achieves high recall on preposition insertions. We hope that in
the future the preposition insertion classifier and other classifiers like it will
be integrated into the tree transduction.

3.6 The Word Order Language Model

by Dan Gildea

3.6.1 Section

Text......

3.7 Punctuation and English Morphology

by Kristen Parton

3.7.1 Section

Text......

14

Chapter 4

The Generation System

ARGENT

Dragomir Radev

4.1 Section name

Text......

15

Chapter 5

Towards a Full MT System:

English and Czech

Tectogrammatical Parsing

Gerald Penn, Owen Rambow, Bonnie Dorr and Ivona Kučerová

5.1 Czech Tectogrammatical Parsing by xxx

by Gerald Penn

5.1.1 Section

Text......

5.2 Using xxx for English Tectogrammatical Pars-

ing

by Owen Rambow, Bonnie Dorr and Ivona Kučerová

5.2.1 Section

Text......

16

Chapter 6

Evaluation

Terry Koo and Jan Hajič

6.1 Overview

We evaluated our systems with IBM’s BLEU evaluation metric. Because
BLEU scores are a relative measure, we also created baseline and upper
bound systems to use as reference points. Additionally, we created a com-
petitor system using GIZA++, so that we could compare our performance
to that of a good word-to-word system.

The remainder of this chapter describes, in order, the BLEU evaluation
metric, the baseline system, the upper bound system, the GIZA++ system,
the evaluation mechanics, and the results.

6.2 BLEU

We used IBM’s BLEU metric because of its convenience and accuracy.
BLEU is automatic, so it does not require expensive and time-consuming
human evaluations. Additionally, BLEU has been shown to correlate with
the judgments of humans [?].

We obtained a Perl implementation of the baseline BLEU metric, as de-
scribed by [?]. The following paragraphs describe the operation of the base-
line BLEU metric as we have used it.

BLEU has two inputs: the candidate translation and a set of reference
translations. First, the candidate and reference translations are broken into
sentences. Each sentence is then processed into sets of 1-grams, 2-grams,
3-grams and 4-grams. Each of the candidate sentence’s n-grams are checked
for inclusion in the union of the reference sentences’ n-grams, and matching
n-grams are tallied. To guard against overly repeated n-grams (i.e. “the
the the the the”), a given n-gram is prevented from matching more times
than the maximum number of times it appears in any of the reference sen-
tences. For each level of n-gram, the number of matching n-grams in the

17

entire candidate translation is divided by the total number of n-grams in
the candidate translation. This yields four numbers which are the modified

n-gram precision for 1-grams through 4-grams.

With the above scheme, shorter sentences can get higher modified n-gram
precision scores than longer ones, since the number of times an n-gram can
match is bounded. At the extreme, one can imagine a sentence composed
of a single 4-gram that matches the reference; this would get perfect scores
for all n-gram levels. To counteract the advantage of short sentences, BLEU
uses a brevity penalty. The brevity penalty is a decaying exponential in c/r,
where c is the length of the candidate translation in words, and r is the
length of a best-matched reference translation. Specifically, r is the sum of
the lengths of the reference sentences which are closest in length to their
corresponding candidate sentence. The brevity penalty multiplied by the
geometric mean of the four modified n-gram precision scores gives the final
BLEU score.

We made one modification to the BLEU implementation, which was to add
sentence ID’s. Initially, we had trouble with dropped sentences because
the original Perl code assumed the sentences in the candidate and reference
translations were in the same order. A dropped sentence would change the
candidate translation’s order and cause an incorrect evaluation. Our modifi-
cation allows BLEU to use sentence ID’s to match sentences in the candidate
and reference translations, rather than depending on a rigid ordering.

The number and variety of reference translations used affects the BLEU
score and its accuracy. There may be many ways to correctly translate a
given sentence, but the BLEU metric will only acknowledge the words and
phrasing found in the reference translations. The more reference transla-
tions there are, and the more variety there is among them, the better the
BLEU score can recognize valid translations.

In our own evaluations, we used 5 reference translations. Each reference
contained roughly 500 matching sentences selected from WSJ sections 22,
23, and 24. Of the five references, one was the original Penn Treebank sen-
tences and the other four were translations to English of a Czech translation
of the Penn Treebank, done by four separate humans. We feel this gives us
a good level of coverage in our reference translations.

6.3 Upper Bound System

The upper bound for the performance of our system would be translation
by humans. Accordingly, our upper bound comparison system is composed
of the references translations themselves.

To evaluate the references, we held out each reference in turn and evaluated

18

it against the remaining four, averaging the five BLEU scores at the end.
For the purposes of a meaningful comparison, all of the results we present
were created using the same 5-way averaging.

6.4 Baseline System

Each of the four Inputs is associated with its own baseline. Each baseline,
however, operates off the same principle: output the TR lemmas of each
input TR tree in some order.

For Inputs 1 and 3, the TR lemmas are output in a randomized order. These
Inputs are automatically generated from surface text and the TR trees cap-
ture the true surface word ordering. However, our generation system for
these Inputs views the input TR trees as unordered. Thus the baseline is
similarly deprived of word order information.

For Inputs 2 and 4, the TR lemmas are output in the order they appear in
the TR tree. These inputs are, respectively, the manually annotated and
Czech transfer TR trees. Their word orderings are meaningful; the manually
annotated TR captures the deep word order while the Czech transfer TR
captures the Czech word ordering. Our generation system can make use of
this input word ordering. Therefore, the baseline should also be able to take
advantage of this.

6.5 GIZA++ System

The GIZA++ system was created by Jan Cuř́ın and trained on 30 million
words of bilingual text. This system is a representative of the word-to-word
machine translation systems with which our own system will compete.

6.6 Evaluation Mechanics

Our 500 reference sentences were split into two test sets: a devtest set which
we used to evaluate our system during its development, and an evaltest set
which remained untouched until its use in the final evaluation at the con-
clusion of the workshop.

The evaluation itself is orchestrated by a number of sh and Perl scripts. The
scripts allowed individual evaluations to be run as well as batch evaluations,
and created a HTML webpage and GIF bar graph as output.

19

6.7 Results

Base 1 Gen 1 Base 2 Gen 2 Upper

BLEU 0.04184 0.24416 0.16022 0.2365 0.53366

4-Gram 0.01146 0.10286 0.08038 0.09894 0.3385
3-Gram 0.02608 0.20238 0.17814 0.2016 0.46396
2-Gram 0.07564 0.41364 0.37008 0.41038 0.62766
1-Gram 0.76004 0.88762 0.7609 0.88116 0.8441

Brev 0.64902 0.82612 0.63484 0.8117 0.99396

Base 3 Gen 3 Base 4 Gen 4 GIZA++

BLEU 0.04142 0.24324 0.05862 0.0479 0.18954

4-Gram 0.01146 0.10152 0.0181 0.00594 0.06884
3-Gram 0.026 0.20078 0.0408 0.02722 0.1365
2-Gram 0.07194 0.4132 0.12028 0.13192 0.28172
1-Gram 0.76194 0.8872 0.48054 0.6013 0.62328

Brev 0.65042 0.82758 0.7252 0.80064 0.9402

Figure 6.1: Final evaluation results for all systems.

Figures ?? and ?? display the final evaluation results in chart and graph
form. In each of these, “Base N” is the baseline for Input N, and “Gen N”
is the generation system for Input N. The BLEU scores as well as the four
modified n-gram precision scores and the brevity penalties are displayed.

The system as it currently stands can outperform the baselines for Inputs
1, 2, and 3, but it is still below the baseline for Input 4, the full MT. It is
also well below the GIZA++ system’s performance This is unfortunate, but
as there are still many components missing from our generation system, we
feel it is acceptable.

20

BLEU
4-Gram
3-Gram
2-Gram
1-Gram

Brev

Base1Gen1Base2Gen2Base3Gen3Base4Gen4 Giza Upper
BLEU

4-Gram
3-Gram

2-Gram
1-Gram

Brev

0

0.2

0.4

0.6

0.8

1

BLEU
Score

F
igu

re
6.2:

G
rap

h
of

fi
n
al

evalu
ation

resu
lts

for
all

sy
stem

s.

21

Bibliography

[Papineni 2001] Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing Zhu
(2001). “IBM Research Report Bleu: a Method for Auto-
matic Evaluation of Machine Translation,” IBM Research
Division Technical Report, RC22176 (W0109-022), York-
town Heights, New York.

[Och 2000] Franz Josef Och, Hermann Ney. “Improved Statistical
Alignment Models”. Proc. of the 38th Annual Meeting of

the Association for Computational Linguistics, pp. 440-447,
Hong Kong, China, October 2000.

22

Chapter 7

Conclusions and Future

Directions

Jan Hajič and Jason Eisner

7.1 Section Title

Text......

23

