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dropped the glass in the bar

S

NP

VP

NP

NP
PP

NP

She

mirror: "through the looking glass"

container: "wine glass"

material: "lead glass"

amount: "glass of milk"

dropped

She glass

bar

in

the

the blocky object: "candy bar; gold bar"

coastal feature: "sand bar"

establishment: "Ferdy’s Bar"

furniture: "marble−topped bar"

legal term: "the bar exam"

prevention: "a bar to free trade"

rod: "bars in the window"

(a) (b)

Figure 1: Diagram (a) above shows a phrase structure tree, which gives rise to the
dependency tree show in diagram (b). The nouns glass and bar have been expanded to
show some of the possible word senses each can take on. The correct word senses are
highlighted in blue.

1 High-Level Description

Our hidden variable model is a simple extension of the head-driven statis-
tical models introduced in (Collins 1999) and (Charniak 1997). From each
parse tree we produce a dependency tree, which captures the dependency
relationships between headwords in the parse. Our main innovation is
to treat this dependency tree as a pairwise Markov Random Field (MRF);
each word in the dependency tree is given a hidden word sense, and these
hidden senses interact along dependency arcs. Figure 2 illustrates the in-
teraction of hidden word senses.

Our reranking algorithm is characterized by four elements. First, we
make use of a feature vector representation, which reduces each MRF into
a high-dimensional vector of feature counts. Second, we use a matched
vector of parameters to define a probability distribution over the MRFs.
Third, we define a loss function which approximates the training error of
the algorithm. Fourth, we optimize the parameter vector through gradient
descent on the loss function. The remainder of this section explains each
of these four elements in greater detail.

1.1 Notation

We begin by defining notation and formally restating the problem. We
are given a corpus of m training examples x1, . . . , xm, where each exam-
ple contains of a set of mi candidate dependency trees ti,1, . . . , ti,mi

. Each
candidate tree is scored according to its adherence to the gold standard
parses, and in each group of candidates, the highest-scored tree is spe-
cially labeled as ti,1.

Recall that each word in the trees ti,j contains a hidden word sense. For
convenience of notation, we define tree-wide assignments of word senses
to all nodes. Note that the possible number of such assignments is expo-
nential in the size of the tree; if there are n words and each word si possible
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John

one

moved (his foot)
moved (himself)

moved

forward

foot
foot (body part)
foot (12 inches)

(S (NP John) (VP (V moved) (NP (CD one) (N foot)) (ADVP forward)))

moved (himself)

foot (12 inches)

(S (NP John) (VP (V moved) (NP (NP (CD one) (N foot)) (ADVP forward))))

John
moved (his foot)

moved

foot
foot (body part) forward

one

Figure 2: The sentence “John moved one foot forward” give rise to two the two alternate
dependency trees above. The differing dependency structures, in turn, imply different
plausible word sense assignments, colored red above.

senses, then there are
∏n

i=1 si possible sense assignments.
Formally, let mi,j give the number of possible assignments to the hid-

den variables in candidate tree ti,j; we label the assignments themselves
as ai,j,1, . . . , ai,j,mi,j

. Figure 3 arranges the various entities associated with
a given data example xi.
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Trees
Candidate

t i,1,1

t i,1,2

Assignments
to Hidden
Variables

x iInstance

t i,2 t i,3

t i,2,1 t i,3,1

t i,2,2 t i,3,2

t i,1

...

"Incorrect" Trees

...

...

...

... ... ...
...

...

"Correct" Tree

t i,m  ,m

t i,m  ,2

i,j
t i,1,mi,j

t i,2,mi,j
t i,3,mi,j

t i,m  ,1

t i,m i

i

i

i

Figure 3: A table depicting the elements which compose a single reranking example xi. The top row enumerates the candidate dependency trees
ti,j ; note that the best-scored tree ti,1 is labeled as “correct” tree, while the other trees are labeled “incorrect” trees. The assignments of hidden word
senses are enumerated in columns below each candidate tree.
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1.2 Feature-Based Probability Model

A dependency tree ti,j together with some sense assignment ai,j,k is re-
duced into a high-dimensional feature vector. We define the function Φ(i, j, k),
which gives the feature vector representing tree ti,j with assignment ai,j,k.
Each dimension of the vector Φ(i, j, k) contains an occurrence count for
some salient structure or relationship.

For example, Φ1(i, j, k) might count the number of times the rule S
⇒ NP VPappears in candidate parse xi,j, while Φ100(i, j, k) might count
the number of times S ⇒ NP VPappears with the WordNet synset com-
pany#1 (business institution) heading the NP.

However, we do not allow arbitrary features. Rather, we restrict our-
selves to features which involve either a single word sense or a pair of
word senses that are involved in a dependency relationship (i.e. they
neighbor each other in the dependency tree). Although confining, this
limitation allows us to bring powerful dynamic-programming methods to
bear on the problem, as we will see in section 2.

To accompany the feature vectors, we define a dimensionally-matched
parameter vector Θ. These parameters are used to induce a probability
distribution

p(j, k | i, Θ) =
eΦ(i,j,k)·Θ

∑

j′,k′

eΦ(i,j′,k′)·Θ

which ranks the dependency trees and word sense assignments accord-
ing to the likelihood that they yield the best-scoring structure and sense
assignment. Note that according to the definition above, each dimension
in Θ indicates the discriminative ability of the related feature. Continuing
our example from above, if Θ1 = 0.0000001 and Θ100 = 0.5, then we can
conclude that the rule S ⇒ NP VPby itself is not a good discriminator,
but when seen with WordNet synset company#1, it is a strong indicator of
a good parse.

We use the distribution p(j, k | i, Θ) above to define two additional prob-
ability distributions. First, by summing out the hidden word sense assign-
ments, we obtain a distribution over candidate trees

p(j | i, Θ) =
∑

k

p(j, k | i, Θ)

which gives the probability that dependency tree ti,j is the best-scoring
tree. Second, by dividing the two previous distributions, we obtain a con-
ditional probability distribution over the word sense assignments for a
given dependency tree

p(k | i, j, Θ) =
p(j, k | i, Θ)

p(j | i, Θ)

4



1.3 Loss Function and Gradient

Ideally, the probability distribution p should satisfy the following prop-
erty:

∀i, ∀j > 1 p(1 | i, Θ) > p(j | i, Θ)

so that the best-scoring candidate tree ti,1 is awarded the greatest share
of the probability mass. Accordingly, the goal of the training phase of
our algorithm is to generate parameters Θ that maximize the probability
mass awarded to trees t1,1, t2,1, . . . , tm,1. This subsection captures this goal
formally by defining a loss function1

L(Θ) = −
∑

i

log p(1 | i, Θ)

which we will minimize by gradient descent. Substituting our definitions
for the various probability distributions yields

L(Θ) = −
∑

i

log
∑

k

p(1, k | i, Θ)

= −
∑

i





log
∑

k

eΦ(i,1,k)·Θ

∑

j′,k′

eΦ(i,j′,k′)·Θ







=
∑

i



− log

(

∑

k

eΦ(i,1,k)·Θ

)

+ log





∑

j′,k′

eΦ(i,j′,k′)·Θ









Our next step is to find an expression for ∂L/∂Θ. For the sake of sim-
plicity, we rewrite L in terms of functions Fi and Gi as follows:

L(Θ) =
∑

i

(−Fi(Θ) + Gi(Θ))

Fi(Θ) = log
∑

k

eΦ(i,1,k)·Θ

Gi(Θ) = log
∑

j,k

eΦ(i,j,k)·Θ

The gradient ∂Fi/∂Θ is given by

1In practice, we wish to avoid overfitting the parameters to the training data, so we

would actually use a loss function such as L̂(Θ) = −
∑

i log p(1 | i, Θ)+ C
2

∑

m Θ2

m, which
adds a term penalizing the size of the parameters. We neglect this penalty term in our
analysis as it adds nothing conceptually important to our description and can be dealt
with trivially.
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∂Fi

∂Θ
=

∂

∂Θ
log

∑

k

eΦ(i,1,k)·Θ

=

∑

k
Φ(i, 1, k)eΦ(i,1,k)·Θ

∑

k′

eΦ(i,1,k′)·Θ

=
∑

k

Φ(i, 1, k)







eΦ(i,1,k)·Θ

∑

k′

eΦ(i,1,k′)·Θ







=
∑

k

Φ(i, 1, k)













eΦ(i,1,k)·Θ

/

∑

q,r
eΦ(i,q,r)·Θ

∑

k′

eΦ(i,1,k′)·Θ

/

∑

q′,r′
eΦ(i,q′,r′)·Θ













=
∑

k

Φ(i, 1, k)







p(1, k | i, Θ)
∑

k′

p(1, k′ | i, Θ)







=
∑

k

Φ(i, 1, k)

(

p(1, k | i, Θ)

p(1 | i, Θ)

)

=
∑

k

Φ(i, 1, k)p(k | i, 1, Θ)

= Ep[Φ(i, 1, k)]

where Ep[Φ(i, j, k)] is the feature vector produced by candidate tree xi,j in
expectation, under the probability distribution p. Graphically, Ep[Φ(i, j, k)]
is the weighted average of the feature vectors produced by the j th column
of Figure 3. We now turn our attention to ∂Gi/∂Θ:

∂Gi

∂Θ
=

∂

∂Θ
log

∑

j′,k′

eΦ(i,j′,k′)·Θ

=

∑

j,k
Φ(i, j, k)eΦ(i,j,k)·Θ

∑

j′,k′

eΦ(i,j′,k′)·Θ

=
∑

j,k

Φ(i, j, k)
eΦ(i,j,k)·Θ

∑

j′,k′

eΦ(i,j′,k′)·Θ

=
∑

j,k

Φ(i, j, k)p(j, k | i, Θ)

=
∑

j,k

Φ(i, j, k)p(k | i, j, Θ)p(j | i, Θ)

=
∑

j

p(j | i, Θ)
∑

k

Φ(i, j, k)p(k | i, j, Θ)
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Probability of Tree
and Assignment

Probability of Assignment
Given Tree

Parameters

Feature Vectors

Gradient of Loss Function

Expected Feature Vector

Probability of Tree

Φ
Ep

∂L
∂Θ

Θ

p

p
p

p(j, k | i, Θ)

p(k | i, j, Θ)

p(j | i, Θ)

Figure 4: A flowchart depicting how the major elements of the reranking algorithm
interact with each other.

=
∑

j

p(j | i, Θ)Ep[Φ(i, j, k)]

Therefore, Gi(Θ) is equal to the expected feature vector produced by
the entire example xi. Referring back to Figure 3 once more, we can think
of Gi(Θ) graphically as the weighted average of the feature vectors pro-
duced by the entire table. Finally, we substitute our results above into the
expression for ∂L/∂Θ:

∂L

∂Θ
=

∑

i

(

−
∂Fi

∂Θ
+

∂Gi

∂Θ

)

=
∑

i



−Ep[Φ(i, 1, k)] +
∑

j

p(j | i, Θ)Ep[Φ(i, j, k)]





Note that ∂L
∂Θ

is completely expressed in terms of the two functions p(j | i, Θ)
and Ep[Φ(i, j, k)]. This property figures importantly in Section 2, where
we will show how p and Ep, and hence the gradient, can be computed
efficiently.

1.4 Summary

In summary, our reranking algorithm proceeds as follows. We first pro-
duce feature vectors from every dependency tree ti,j and sense assignment
ai,j,k. We initialize the parameters Θ, creating a probability distribution
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over trees and assignments. Next, we use the gradient of the loss function
to slightly shift Θ in a beneficial direction; the process of calculating the
gradient and shifting the parameters is repeated. The iteration is ended by
a cutoff based either on the number of iterations or the amount of change
resulting in the loss function. The flowchart in Figure 4 lays out the high-
level operation of the algorithm.

2 Incorporating Belief Propagation

The reranking algorithm as described in the previous section is quite in-
efficient. The gradient must be recomputed on each iteration of gradient
descent, which means that the algorithm must repeatedly evaluate

Ep[Φ(i, j, k)] and p(j | i, Θ) ∀i, j

The formulae for Ep[Φ(i, j, k)] and p(j | i, Θ) given in Section 1 require an
enumeration over all possible assignments to hidden variables, a combi-
natorially complex task. In addition, feature vectors must be produced for
every tree ti,j and sense assignment ai,j,k; again, an combinatorially-sized
task. However, recall from Section 1.2 that we imposed the following re-
striction on our features:

(i) A feature can involve at most two hidden word senses,

(ii) If a feature involves two senses, these two must be involved in a de-
pendency relationship; that is, they must be linked by an edge in the
dependency tree.

In this section, we show how these restrictions allow us to make use of
belief propagation as a module which computes Ep[Φ(i, j, k)] and p(j | i, Θ)
in linear time (Yedidia et al. 2002). Additionally, the restrictions permit a
decomposed feature vector representation which sidesteps the problem of
enumerating a combinatorially-sized set of feature vectors.

The remainder of this section is divided into four subsections: the first
subsection introduces new notation, the second subsection describes the
belief propagation algorithm, and the third subsection explains how we
use belief propagation to create p and Ep, and the fourth subsection sum-
marizes our modifications to the reranking algorithm.

2.1 Notation

We narrow the scope of our analysis to a single dependency tree ti,j. Let
the nodes in the tree be numbered 1, 2, . . . , n and let N(u) give the set of
nodes neighboring u. Let the hidden word sense of node u be su ∈ Su,
where Su is the set of possible senses of the word at node u. As before, we
use the notation ai,j,k denote an assignment of word senses to all nodes.
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α 4

α 4

α 2

α 2

α 1
α 1

α 3
α 3

(0) = 3.5
(1) = 7.6

(0) = 54
(1) = 9.6

(0) = 1.2
(1) = 9

β
β

β
β

β
β

β
β

β
β

β
β

(0) = 1
(1) = 0.2

1,2

1,2

1,2

1,2

1,4

1,4

1,4

1,4

1,3

1,3

1,3

1,3(1,1) = 11

(0,0) = 2
(0,1) = 1
(1,0) = 2.5

(0,0) = 0.6
(0,1) = 1.5
(1,0) = 4
(1,1) = 1.2

(1,0) = 132

(0,0) = 32
(0,1) = 14

(1,1) = 0.2

4
3

2

1

Figure 5: An example graph over binary-valued hidden variables in which the values
of the weight functions αu and βu,v have been filled in. As the highlighted values indi-
cate, the probability distribution p(ai,j,k) generated from this example would favor the
assignment ai,j,k = (s1 = 1, s2 = 0, s3 = 0, s4 = 1).

The input to belief propagation is a set of node weights αu ∈ Su 7→ R

and edge weights βu,v ∈ (Su × Sv) 7→ R such that αu(su) gives a measure
of the appropriateness of sense su being assigned to the word at node u,
and βu,v(su, sv) gives a measure of the appropriateness of values su and sv

appearing on edge (u, v) in conjunction2. These weight functions define
the following probability distribution over assignments ai,j,k:

p (ai,j,k) =
1

Zi,j

∏

w

αw(sw)
∏

u<v

βu,v(su, sv)

where Zi,j is a normalizing constant that ensures
∑

k p(ai,j,k) = 1. Figure 5
depicts the functions αu and βu,v for a small sample graph of four nodes.

The belief propagation algorithm produces three items as output. The
first output is a set of node beliefs bu ∈ Su 7→ R which satisfy the following
properties:

1. bu(su) indicates the appropriateness of assigning sense su to the word
at node u, and

2.
∑

su∈Su

bu(su) = 1

In fact, since we are performing belief propagation on a tree, the node
beliefs bu actually give the exact marginalized probability distribution at
each node u; that is,

bu(xu) =
∑

ai,j,k | su=xu

p(ai,j,k)

2Note that β must also satisfy βu,v(su, sv) = βv,u(sv, su), so that the edge weights are
undirected.
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The second output is a set of pairwise beliefs bu,v ∈ (Su×Sv) 7→ R which, in
the tree case, give the exact marginalized distributions over pairs of nodes;
that is:

bu,v(xu, xv) =
∑

ai,j,k | su=xu,sv=xv

p(ai,j,k)

Proof that the node and edge beliefs are equal to the marginal probabil-
ity distributions in the tree case can be found in Appendix A. Finally, the
third output of belief propagation is the normalization constant Zi,j associ-
ated with p(ai,j,k); this constant will play an important role in the efficient
computation of p(j | i, Θ).

2.2 Mechanics of Belief Propagation

The core of belief propagation is the dynamic-programming technique
known as the message passing algorithm, which allows linear-time3 com-
putation of all three outputs of belief propagation: node beliefs, pairwise
beliefs, and normalization factor. In the interests of clarity, we will de-
scribe only the essentials here, leaving the details of a linear-time imple-
mentation and the necessary complexity analysis to Appendix B.

In the message passing algorithm, every node u transmits a message
mu→v ∈ Sv 7→ R to each of its neighbors v, where mu→v(sv) gives an indi-
cation of how strongly node u believes node v should have sense sv. These
messages are determined recursively by the following:

mu→v(sv) =
∑

su∈Su

αu(su)βu,v(su, sv)
∏

w∈N(u)\v

mw→u(su)

so that the message from u to v is a combination of the messages received
from u’s other neighbors. In the case of a tree, the following scheme suf-
fices to calculate the messages: pick an arbitrary root node, then compute
messages from the leaves in towards the root and then from the root back
out to the leaves. Figure 6 depicts this upstream-downstream process.
After all of the messages have been computed, the node beliefs bu and
pairwise beliefs bu,v are given by

bu(su) =
1

zu

αu(su)
∏

v∈N(u)

mv→u(su)

bu,v(su, sv) =
1

zu,v

αu(su)αv(sv)βu,v(su, sv)
∏

s∈N(u)\v

ms→u(su)
∏

t∈N(v)\u

mt→v(sv)

where zu and zu,v are normalizing factors which ensure that

3Time linear in the number of nodes in the tree.
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Figure 6: The steps of the message-passing algorithm on a small example graph. An
arbitrarily chosen root has been colored blue, and the messages are shown as arrows.

∑

su∈Su

bu(su) = 1 and
∑

su∈Su, sv∈Sv

bu,v(su, sv) = 1

We now turn our attention to the third output of belief propagation:
the normalization factor Zi,j. Fortunately, it turns out that

∀u, vzu = zu,v = Zi,j

so that any of the node or pairwise normalization constants can serve as
the tree-wide normalization constant. This equivalence is a side effect of
the proof that tree beliefs are equal to marginal probabilities; see the end
of Appendix A, page 37.

2.3 Computing p and Ep

We use belief propagation as a module within the larger reranking algo-
rithm. The inputs to belief propagation are carefully prepared so that its
outputs give rise to p(j | i, Θ) and Ep[Φ(i, j, k)]. We begin by observing that
the conditional distribution p(k | i, j, Θ) from Section 1 and the distribution
p(ai,j,k) from Section 2.1 both compute the same probability distribution.

Now, recall that our features are restricted to either single word senses
or pairs of senses joined by a dependency. Therefore, we can decompose
the tree-wide feature vector Φ(i, j, k) into a set of node feature vectors
φu(su) and pairwise feature vectors φu,v(su, sv):

Φ(i, j, k) =

(

∑

u

φu(su)

)

+

(

∑

u<v

φu,v(su, sv)

)

Suppose we use this decomposition to define the node and pairwise weight
functions below:

11



αu(su) = eφu(su)·Θ

βu,v(su, sv) = eφu,v(su,sv)·Θ

Then, the probability distribution p(ai,j,k) can be simplified as follows:

p(ai,j,k) =
1

Zi,j

∏

w

eφw(sw)·Θ
∏

u<v

eφu,v(su,sv)·Θ

=
1

Zi,j

e

(

∑

w

φw(sw)

)

·Θ

e

(

∑

u<v

φu,v(su,sv)

)

·Θ

=
1

Zi,j

eΦ(i,j,k)·Θ

and from the equality of p(ai,j,k) and p(k | i, j, Θ) we can derive an alternate
expression for the value of Zi,j:

p(ai,j,k) = p(k | i, j, Θ)

1

Zi,j
eΦ(i,j,k)·Θ =

eΦ(i,j,k)·Θ

∑

k
eΦ(i,j,k)·Θ

Zi,j =
∑

k

eΦ(i,j,k)·Θ

Define Zi =
∑

j Zi,j, and note that our new knowledge about Zi,j gives us
a method for computing p(j | i, Θ) in O(1) time per candidate tree

p(j | i, Θ) =

∑

k
eΦ(i,j,k)·Θ

∑

j′,k′

eΦ(i,j′,k′)·Θ
=

Zi,j

Zi

Now, consider the quantity Ep[Φ(i, j, k)]; we reproduce its definition
below:

Ep[Φ(i, j, k)] =
∑

k

p(k | i, j, Θ)Φ(i, j, k)

We substitute in the equivalent probability distribution p(ai,j,k) and de-
compose the feature vector Φ(i, j, k), simplifying as follows:
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Ep[Φ(i, j, k)] =
∑

ai,j,k

p(ai,j,k)

((

∑

w

φw(sw)

)

+

(

∑

u<v

φu,v(su, sv)

))

=





∑

u<v

∑

ai,j,k

p(ai,j,k)φu,v(su, sv)





Recall that φw(sw) is only sensitive to the word sense sw. If we break the set
of possible assignments ai,j,k into equivalence classes for which the sense
sw is the same, the value of φw(sw) will remain constant within each equiv-
alence class. This observation gives rise to the following simplification:

∑

w

∑

ai,j,k

p(ai,j,k)φw(sw) =
∑

w

∑

xw∈Sw

φw(sw)
∑

ai,j,k | sw=xw

p(ai,j,k)

=
∑

w

∑

xw∈Sw

φw(sw)bw(sw)

and similar reasoning applies to the pairwise feature vectors:

∑

u<v

∑

ai,j,k

p(ai,j,k)φu,v(sw) =
∑

u<v

∑

xu∈Su, xv∈Sv

φu,v(su, sv)
∑

ai,j,k | su=xu, sv=xv

p(ai,j,k)

=
∑

u<v

∑

xu∈Su, xv∈Sv

φu,v(su, sv)bu,v(su, sv)

Therefore, if there are n nodes in the tree, the expected feature vector Ep

can be computed in O(n) time with the following expression:

Ep[Φ(i, j, k)] =





∑

w

∑

xw∈Sw

φw(sw)bw(sw)



+





∑

u<v

∑

xu∈Su, xv∈Sv

φu,v(su, sv)bu,v(su, sv)





2.4 Summary

In summary, we have seen how restricting features to pairs of senses al-
lows us to apply the belief propagation algorithm, a powerful dynamic-
programming technique. Whereas a naive algorithm would require time
exponential in the size of the dependency trees, belief propagation re-
quires only linear time. The flowchart in Figure 7 updates Figure 4 to show
how belief propagation replaces several items in the high-level algorithm.
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Probability of Tree

Gradient of Loss Function

Parameters

Expected Feature Vector

... ...

...

...

Belief Propagation

...
...

...
Ep

∂L
∂Θ

Θ p
p(j | i, Θ)

φu

φu

φu

φu

φu,v

φu,v

φu,v

φu,v

αuαuαuαu

βu,vβu,vβu,vβu,v

bubububu

bu,vbu,vbu,v bu,v

Zi,j

Zi,j

Zi,j

Zi,j

Figure 7: A revised version of the flowchart in Figure 4 that depicts use of belief prop-
agation in the implementation of the reranking algorithm. Note that some high-level
elements from the original flowchart have been faded out and overwritten with belief
propagation items. Although these high-level elements have been replaced they still exist
abstractly, implicitly defined by the belief propagation machinery which replaces them.
For instance, the feature vector Φ has been decomposed into smaller feature vectors φu

and φu,v . The conditional distribution p is represented by the beliefs bu and bu,v. The
distribution p is represented by the weight functions αu and βu,v .

3 Stochastic Gradient Descent

Another source of inefficiency in the high-level description of Section 1
is in the use of gradient descent. In every round of standard gradient
descent, a line search is required to determine how far along the gradient
the parameters Θ should be adjusted. Every point tested by this line search
requires a pass over the training set to determine the value of L(Θ) at
that point, and completing just a single round of gradient descent would
require several passes over the training set.

Since plain gradient descent is prohibitively expensive, we use a form
of stochastic gradient descent. We iterate through the training examples,
and for each example we calculate the gradient arising from that example
alone. The parameters are then perturbed in the direction of the gradient,
where the distance along the gradient is determined by a learning rate η.
The learning rate is a decaying quantity given by

η =
a0

1 + ct

where t is the number of examples which have been used so far and a0 and
c are parameters of stochastic gradient descent.
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4 Data Sets

The data sets consist of parsed output produced by the Collins (1999)
parser on the Penn Treebank, with an average of roughly 30 candidate
parses per sentence. Section 23 is held out as a final test set, and the re-
mainder of the sentences were divided into a training corpus of 35,540
sentences and a development-test corpus of 3,676 sentences.

These training, devtest, and final test corpuses are the same which were
used to produce the Collins (2000) boosting reranker. In order to measure
how much improvement our own reranker can provide beyond the boost-
ing reranker, lists of the features that the boosting reranker used during
training, development testing, and final testing were obtained. There were
a total of 11,673 distinct boosting features with an average of roughly 40
features per tree. The next section discusses how we used these features
in combination with our own reranker.

5 Incorporating Other Rankings

In the preceding descriptions of the reranking algorithm, we have always
discussed the reranker as a stand-alone entity. However, we have found it
useful to integrate our reranker with the rankings of other models. The fol-
lowing two subsections describe how we integrate the rankings of the base
parser and the (Collins 2000) boosting reranker with our own reranker.

5.1 Integrating the Base Parser

The base parser produces an initial ranking over the candidate parses with
its probability model. Although our reranker replaces that initial ranking,
by no means is the ranking completely discarded; our aim in reranking
is to supplement, rather than supplant, the original base model. We es-
tablish a special per-tree feature which φlogp(i, j), which contains the log-
probability assigned by the base parser to tree ti,j. This feature is assigned
a parameter θlogp, and our probability model is adjusted to include this new
feature as follows:

p(j | i, Θ, θlogp) =
eφlogp(i,j)θlogp

∑

k
eΦ(i,j,k)·Θ

∑

j′
eφlogp(i,j′)θlogp

∑

k′

eΦ(i,j′,k′)·Θ

Unlike the normal features, however, we do not optimize the parame-
ter θlogp during stochastic gradient descent. Our reasoning is that the po-
larity of the log-probability feature will change frequently from example
to example. In examples where the base parser’s ranking is correct, the
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gradient ∂Li

∂θlogp
will be strongly positive, but when the base parser makes a

mistake, the gradient ∂Li

∂θlogp
will be strongly negative. Since φlogp(i, j) is such

a powerful feature, our belief is that the back-and-forth oscillations in the
value of θlogp would strongly hinder the training process. Therefore, in our
experiments we initialize θlogp to a static value before training and keep it
constant throughout. The value of θlogp which we used in our final testing
was chosen through validation on the development data set.

5.2 Integrating the Boosting Reranker

The original motivation behind making use of WordNet was to improve
upon the performance obtained by the (Collins 2000) boosting reranker. In
order to make the comparison as fair as possible, we incorporate the fea-
tures chosen by the boosting reranker into our own reranker. Like the base
parser’s log-probability, the boosting reranker’s features are per-tree fea-
tures which are insensitive to word senses. Let Φboost(i, j) give the boosting
feature vector for tree ti,j, and let Θboost be the matched vector of parame-
ters. We incorporate the boosting features into our probability model as
follows:

p(j | i, Θ, Θboost, θlogp) =
eφlogp(i,j)θlogpeΦboost(i,j)·Θboost

∑

k
eΦ(i,j,k)·Θ

∑

j′
eφlogp(i,j′)θlogpeΦboost(i,j′)·Θboost

∑

k′

eΦ(i,j′,k′)·Θ

and the gradient ∂Li

∂Θboost
is given by

∂Li

∂Θboost

= −Φboost(i, 1) +
∑

j

Φboost(i, j)p(j | i, Θ, Θboost, θlogp)

We attempted to integrate the boosting features in two ways. First, we
altered our stochastic gradient descent algorithm to train both sets of pa-
rameters together; that is, for every example xi, the algorithm performed:

Θ ← Θ− η(tn + i)
∂Li

∂Θ

Θboost ← Θboost − ηboost(tn + i)
∂Li

∂Θboost

Note that we applied different learning rates to each parameter vector. We
conducted experiments where set of parameters was trained in isolation,
and it was clear that the boosting features performed best with a more
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aggressive learning rate than the newer features4. Therefore, when opti-
mizing both sets of parameters simultaneously, we decided to keep the
learning rates separate.

Unfortunately, selecting parameters for the two learning rates proved
to be a difficult task. Simply reusing the learning rates that worked best
for each set of features in isolation produced poor results; no doubt in-
teractions between the two feature sets were invalidating the old learning
rates. However, with two independent learning rates, exploring the pos-
sible space of learning rate parameters became prohibitively expensive.

Accordingly, we turned to a second, simpler integration method. We
trained each reranker in isolation and then combined the two rankings
with a weighted average. Therefore, when testing our probability model
was effectively

p(j | i, Θ, Θboost, θlogp) =
eφlogp(i,j)θlogpeCboostΦboost(i,j)·Θ

∗

boost
∑

k
eCΦ(i,j,k)·Θ∗

∑

j′
eφlogp(i,j′)θlogpeCboostΦboost(i,j′)·Θ

∗

boost
∑

k′

eCΦ(i,j′,k′)·Θ∗

where Θ∗ and Θ∗
boost are the optimized parameters from the isolated training

runs, and C and Cboost are the parameters of the weighted average. The
particular Θ∗, Θ∗

boost, C, and Cboost that we used in our final testing were
chosen by validation on the development data set.

6 Feature Sets

We trained and tested our reranker using several different feature sets.
All of our feature sets, however, make use of WordNet (Miller et al. 1993)
and have the same basic composition. The remainder of this section first
describes the basic structure of our feature sets, then discusses some of
the issues with this basic model, and finishes by explaining how our fea-
ture sets addressed these issues through various extensions upon the basic
model.

6.1 Basic Feature Composition

Each feature set is divided into two kinds of features: single-sense fea-
tures that are aimed at establishing a prior probability distribution over
word sense assignments, and pairwise features that attempt to capture
head-modifier relationships between word senses. Often, however, there
may not be any word sense available; currently, we only retrieve Word-
Net synsets for nouns, and some nouns (especially proper names) do not

4In fact, even among the various types of new features we experimented with (these
are described further in Section 6), each feature set required a different learning rate.

17



appear in WordNet. Therefore, when we fail to obtain a word sense, we
simply substitute the bare word for the missing sense and treat the node
as having a single word sense. Each node feature is a tuple consisting of
four elements:

Word The bare word at that node.

Sense The word sense assigned to the word.

POS The part-of-speech tag of the word.

Label The nonterminal label that the word re-
ceives as it modifies its target; i.e. the la-
bel of the highest nonterminal to which
this word propagates as a headword.

Including the word as well as the sense gives our reranker a handle on
the prior probability distribution over each word’s word senses, and the
other information can provide additional clues. For instance, the part
of speech tag specifies plurality of nouns, which can sometimes aid in
word sense disambiguation; consider “sense” versus “senses”: the plu-
ral is more likely to take on the sense of “the five senses” or “word senses”
whereas the singular is more likely to take on the sense of “common sense”
or “sense of security”.

However, these 4-tuples can be quite specific, so we implement several
levels of backoff. In particular, for every node u and word sense su, we
produce the following node features:

φu(su) =



































































(

Wordu, su, POSu, Labelu
)

(

Wordu, su, POSu,
)

(

Wordu, su, Labelu
)

(

Wordu, su,
)

(

su, POSu, Labelu
)

(

su, POSu

)

(

su, Labelu
)

Note that in the case where the word sense is nonexistent, we would only
generate the last three of the node features listed above. Moving on, the
pairwise features are tuples consisting of the following elements:
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Modifier Sense The word sense of the modifier in the de-
pendency relationship.

Modifier POS The part-of-speech tag of the modifier.

Head Sense The word sense of the head in the depen-
dency relationship.

Head POS The part-of-speech tag of the head.

Production Label The nonterminal label of the constituent
produced by this head-modifier interac-
tion.

Modifier Label The nonterminal label of the head.

Head Label The nonterminal label of the modifier.

Dominates Conjunction True if the head dominates a word with
POS tag CC.

Adjacency True if the modifier’s constituent neigh-
bors the head’s constituent.

Left/Right Whether the modifier is on the left or
right of the head.

The triple of nonterminal labels provides information about the kind of
dependency. For instance, a subject-verb relationship would be reflected
by the triple

(

PLbl, MLbl, HLbl
)

=
(

S, NP, VP
)

while the argument of a transitive verb might produce the triple (VP, NP,
VB). However, the location information provided by the Adjacency and
Left/Right features are necessary to further determine the type of depen-
dency relationship. For instance, in the sentence “Yesterday the market
fell two points,” the triple (S, NP, VP) describes the temporal modifica-
tion between “Yesterday” and “fell” as well as the subject-verb interaction
between “market” and “fell”, and in the sentence “The market fell two
points yesterday,” the triple (VP, NP, VB) ambiguously refers to either a
verb-argument dependency or a temporal modification. To resolve these
ambiguities, we can consult the adjacency element: the subject-verb and
verb-argument dependencies produce +ADJ, while the temporal modi-
fiers produce -ADJ.
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The Dominates Conjunction feature can resolve other ambiguous triples.
For example, the phrases “boys and girls” and “satellite communications”
would both yield the triple (NP, NP, NP). However, in the former case, the
dependency is a coordination between two like nouns, while in the latter
case, the dependency is a restrictive modification of one noun by another.
Using the Dominates Conjunction element, we can distinguish between
the two: the coordination would produce +CC, while the modification
would produce -CC.

Even more so than the node features, the pairwise features can be overly
specific, so we use backed-off features to combat data sparseness. We first
remove the two part of speech tags, and then we remove the three binary-
valued elements. We also generate features where the either the head or
modifier sense is removed, leaving only the part of speech tag. Thus, the
full set of features generated by each pairwise word sense interaction is:

φu,v(su, sv) =



































































(

su, POSu, sv, POSv, PLbl, MLbl, HLbl, ±CC, ±ADJ, L/R
)

(

su, sv, PLbl, MLbl, HLbl, ±CC, ±ADJ, L/R
)

(

su, sv, PLbl, MLbl, HLbl
)

(

su, POSv, PLbl, MLbl, HLbl, ±CC, ±ADJ, L/R
)

(

su, POSv, PLbl, MLbl, HLbl
)

(

POSu, sv, PLbl, MLbl, HLbl, ±CC, ±ADJ, L/R
)

(

POSv, sv, PLbl, MLbl, HLbl
)

6.2 Issues with the Basic Model

First of all, there is the issue of choosing which senses to use when pro-
ducing features. WordNet provides an index which maps words to sets
of senses; we call these immediately-available senses the “literal” word
senses for a word. Unfortunately, these literal senses are much too fine-
grained to use, even with the use of the backed-off features. Consider the
word “chocolate”, to which WordNet assigns the following three senses:

(1) A beverage prepared from cocoa, milk, and sugar, as in “hot choco-
late”,

(2) A solid substance made from roasted ground cacao beans, as in “choco-
late bar” or “chocolate chips”, and

(3) A deep brown color.

The literal senses are clearly informative, but they provide far too much
specificity, given the limited limited size of our training set. It is difficult
to imagine features using literal senses being much more informative than
plain lexicalized features.
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John man

the old

treated

respect

with

Figure 8: A dependency tree for the sentence “John treated the old man with respect.”

Our intuition is that the important information lies somewhere above
these lowest-level senses. While the knowledge that “chocolate” can re-
fer to a chocolate-based beverage, chocolate-based food, and chocolate-
colored color is almost useless, knowing that “chocolate” can refer to a
beverage, solid food, or color in general is quite powerful. Two of the
following subsections describe our attempts to recover this kind of knowl-
edge through WordNet supersenses and hypernyms.

Another issue, and unfortunately one which we have only begun to
address recently, is the interposition of function words at key points in the
dependency tree. Most notably, the headword of a prepositional phrase
is the preposition. Consider Figure 8, which displays a dependency tree
containing a PP-attachment ambiguity.

Note that the preposition “with” interposes between its noun argu-
ment “respect” and the potential targets “treated” and “man”. The func-
tion word “with” will only be assigned a single sense, and as we explained
in Section 1 our features are restricted to pairs of neighboring word senses.
Therefore, in our model the PP argument is unable to have any effect on
the attachment preference of the prepositional phrase; the prepositional
phrase “with respect” in Figure 8 would be treated no differently than the
phrases “with arthritis” or “with aspirin”. Many studies (Ratnaparkhi and
Roukos 1994; Collins and Brooks 1995) have shown that the PP argument
is essential in resolving PP-attachment ambiguities. Consider that the

We explored two possibilities for resolving this problem. First, we ran
preliminary experiments in which each preposition was given two word
senses. Variation of this binary word sense allowed a measure of infor-
mation to pass through the preposition, so that the PPargument could af-
fect the attachment preferences to some degree. Our experiments showed
that this method offered some increase in performance; however, the gains
were by no means large. Recently, we have tried a second approach that
involves transforming the dependency tree to bring the PPargument into
direct contact with its attachment site. We describe these efforts in the last
subsection.
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noun.Tops noun.act noun.animal
noun.artifact noun.attribute noun.body

noun.cognition noun.communication noun.event
noun.feeling noun.food noun.group

noun.location noun.motive noun.object
noun.person noun.phenomenon noun.plant

noun.possession noun.process noun.quantity
noun.relation noun.shape noun.state

noun.substance noun.time

Table 1: A listing of the 26 WordNet noun lexicographer filenames, which we use as
“supersenses.”

6.3 Supersenses

As we mentioned earlier, one of the issues with our basic feature model
is the overspecified nature of literal word senses. One method by which
we access higher-level information is through the use of WordNet “super-
senses.”

Every WordNet sense is processed from source material in a lexicog-
rapher file. WordNet noun senses originate from 26 such files, which are
organized along general semantic boundaries; their filenames are given in
Table 1. We use these lexicographer filenames as “supersenses”, an idea
we borrow from (Johnson and Ciaramita 2003).

For every word, we first retrieve its literal senses, and from each sense
we derive its supersense, discarding the original senses. For example, the
noun “crate” has two literal senses: a box-like object (“a wooden crate”),
or the quantity held in a crate (“a crate of toys”), which give rise to the
supersenses noun.artifact and noun.quantity . However, note that
this process can reduce the number of senses the word is assigned. For
instance, the noun “car” has five literal senses, but all five are members of
noun.artifact , so we treat “car” as having only a single word sense.

The advantage of the supersense features is that the small number of
supersenses yield a small number of features, making for more depend-
able training and generalization. However, the same coarseness which
makes the supersenses train and generalize well also means that there is
less information available in them.

6.4 Hypernyms

A second way in which we access higher-level information is through the
use of WordNet hypernymy. Beyond the word to sense index and the su-
persenses, WordNet contains a great deal of information about the rela-
tionships between word senses. Noun hypernymy is a WordNet relation
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1 : chocolate[7]

brown[6]

chromatic_color[5]

color[4]

visual_property[3]

property[2]

attribute[1]

abstraction[0]

2 : chocolate[4]

food[3]

solid[2]

substance[1]

food[2]

fluid[2]

entity[0]

3 : cocoa[4]

beverage[3]

liquid[3]

Figure 9: A depiction of the hypernym graph that arises from the literal senses of the
word “chocolate.”

which organizes noun senses according to the hierarchical5 “is-a” relation-
ship; for instance, “brown” is a hypernym of “chocolate” because choco-
late is-a brown color.

By repeatedly following hypernym pointers, a series of gradually broader
senses can be established, starting from the overspecified literal senses to
a set of 9 top-level6 hypernyms (see Figure 9 for an example). We be-
lieve that useful word sense information lies somewhere between the two

5 Actually, WordNet hypernymy does not define a true hierarchy, as some senses may
have more than one hypernym; for instance, the hypernyms of “wheeled vehicle” are
“vehicle” and “container”. For simplicity, however, we will continue to refer to hyper-
nymy as a hierarchical relationship.

6Note that these top-level hypernyms are not the same as the supersenses described
above; the supersenses derive from the 26 noun lexicographer filenames, and are not
necessarily related to the hypernymy structure.
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John man

the old

treated

with−respect

Figure 10: A PP-ambiguous dependency in which the preposition has been merged
with its noun argument.

extremes of granularity; however, locating the exact depth of the useful
region is tricky, as not all hypernym paths are the same length.

Rather than attempt to specify the useful depth, then, we simply pro-
duce features for all possibly hypernyms, and leave it to the learning method
to sort out which hypernyms are useful. To give a specific example, con-
sider the word “chocolate”, which has three senses: “chocolate (bever-
age)”, “chocolate (solid food)”, and “chocolate (color)”. For the solid food
sense, we would produce features for “chocolate (solid food)”, “food”,
“solid”, “substance”, and “entity”; and likewise for the other two senses.
However, note that in our reranking model, the word “chocolate” would
still have only three word senses, but each of these senses would carry
features for all of its hypernyms.

The drawback of generating features for all hypernyms is of course an
explosion in the number of features. When we generate pairwise features,
we must not only process all pairs of word senses, but for each pair of
senses, we must create features for all possible pairs of the hypernyms of
the two senses involved, compounding the two quadratic costs.

6.5 Tree Transformations

As we have mentioned, one of the drawbacks of our current model is that
function words often interpose in critical junctions of the dependency tree.
Therefore, we have begun work on a method for transforming the depen-
dency trees so that function words are merged with their arguments. The
senses of the merged node would be conjunctions of the function word
and the senses of its argument.

For example, Figure 10 shows how this transformation technique would
alter the dependency tree from Figure 8. The supersenses of “with-respect”
would be given as:

“with-noun.cognition ” “with-noun.state ”
“with-noun.act ” “with-noun.feeling ”
“with-noun.attribute ”
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and

in

growth growth

in−Britain

and

markets

Far Eastern

Britain

and Europe

in and Europe in−markets

Far Eastern

p

Figure 11: Dependency trees for the prepositional phrase “[growth] in Britain and Eu-
rope, and in Far Eastern markets” before and after transformations. The dependency
arcs are colored according to whether the dependency originally modified a preposition
or noun; note that after the transformation, some of the children of “in-Britain” originally
modified “Britain” while others originally modified “in”.

With this definition of the senses, the pairwise features that arise from
the dependency between “with-respect” and “treated” or the dependency
between “with-respect” and “man” would capture interactions between
the senses of “respect” and the senses of “treated” or “man”, as well as the
preposition “with”. Therefore, the reranking model would be able to learn
to disambiguate this PP-attachment ambiguity.

The general idea behind these tree transformations is simple, but in a
full implementation, there many tricky details that need to be addressed,
and there is often no clear technique for resolving them. For instance, al-
though the noun and preposition share the same node, we should still doc-
ument the dependency between the preposition and its argument. There-
fore, we define the node feature set of a merged node as containing all of
the features that would normally arise from the two nodes when separate.
Returning to the example of Figure 10, the node features of “with-respect”
would include all the normal node features of “with” and “respect”, as
well as all of the normal pairwise features arising from the dependency
between “with” and “respect”.

By the same token, however, we should also preserve the features that
would normally arise between the preposition and its other neighbors,
as well as the features that would normally arise between the noun ar-
gument and its other neighbors. For example, consider the dependency
trees shown in Figure 11, which depict a complex prepositional phrase be-
fore and after transformations are applied. From the dependency between
“growth” and “in-Britain”, we should produce the pairwise features that
arise from the senses of “growth” and “in” as well as those from “growth”
and “in-Britain”. Similarly, from the dependency between “in-Britain”
and “Europe”, we should produce the pairwise features that arise from
the senses of “Britain” and “Europe”, as well as those from “in-Britain”
and “Europe”. However, note that we should not produce features derived
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According_to−estimates

some

estimates

some

to

According

Figure 12: Dependency trees for the prepositional phrase “According to some esti-
mates” both before and after transformations.

from “growth” and “Britain” or “in” and “Europe”, as these dependencies
do not exist in the untransformed tree. The coloration of the dependency
arcs in Figure 11 reflects whether the noun or preposition should be used
in the production of these preserved features.

A last issue is how we deal with cascaded prepositions, such as the
example in Figure 12. Our current approach is to merge all chains of
preposition nodes, concatenating the text of the prepositions and treat-
ing them as a single preposition. Note that this approach would discard
the preposition-to-preposition dependencies in the original tree and alter
the preposition-to-noun features. In the example in Figure 12, we would
discard the pairwise features arising from “According” and “to”, and in-
stead of producing pairwise features for “to” and “estimates”, we would
produce features for “According-to” and “estimates”.

Finally, although we have consistently used prepositional phrases as
examples, these tree transformations can easily be applied to other inter-
posing function words. Figure 13 shows some other transformations that
could prove useful. Our work with tree transformations is still in its early
stages, and we have no experimental results to report.

7 Results and Discussion

This section describes our experimental results and discusses their impli-
cations. We report development test results for the hypernym and super-
sense feature sets; as the supersense features outperformed the hypernym
features, we only evaluated the supersense features in our final tests. Our
experiments fall into two categories: reranking tests, which measure the
additive improvement of the new reranker over the base parser, and com-
bined reranking tests, which measure the additive improvement of the
new reranker over the Collins (2000) boosting reranker. The remainder of
this section presents our experimental results for both kinds of tests, and
concludes with a discussion the deficiencies of our reranking model that
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Figure 13: Dependency trees depicting transformations which operate on possessive
markers and verbal auxiliaries such as the infinitival “to” and modal verbs. Each trans-
formation removes an intervening functional word, allowing the meaningful words to
interact directly. The text of the phrases are “it expects sales to remain steady”, “the
SEC’s high-profile pursuit”, and “The SEC will probably vote on the proposal”.

could be alleviated to yield better performance.

7.1 Reranking Tests

The point of comparison for the reranking tests was the logp baseline,
which is simply the score of the base parser by itself. Accordingly, for a
fair comparison, we integrated the base parser’s ranking with our reranker
as described in Section 5.1.

In tests on the development set, the hypernym feature set achieved
an improvement of ≈ 0.685% over the logp baseline. The supersense
features, on the other hand, achieved an improvement of ≈ 0.972% past
baseline, a significant gain. Figure 14 shows the scores achieved by both
hypernym and supersense features as training progressed.
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Figure 14: The development-set scores of the hypernym (h) and supersense (s ) features
are graphed versus the number of passes over the training set.

Given the generality of the supersense categories, we expected the su-
persense features to generalize well and were supported by our tests on
the development set. The inclusion of backed-off features turned out to be
crucial; without backoff, the supersense features achieve only a ≈ 0.77%
improvement over baseline, dropping by a factor of about 1/5. Figure 15
graphs the performance of the backed-off and non-backed-off features.

Nevertheless, the supersense feature set achieved an improvement of
only ≈ 0.5% over baseline on the section 23 test set. We attribute at least
some of this drop to overspecialization of the model toward the devel-
opment set. We hope to avoid such problems in the future by using a
multi-way averaging scheme; we would train and optimize several dif-
ferent rerankers on different development sets, and combine their output
using a weighted average.

A somewhat unexpected result was the relative absence of overtrain-
ing in the hypernym features. The entire hypernym feature space contains
over 30 million features, while the training set spans only about a million
trees. Nevertheless, the hypernym features managed to achieve and main-
tain nontrivial gains. One possible explanation could be that the reranking
algorithm has a tendency to assign more weight to frequent features. Since
the high-level hypernyms appear most frequently, they take control of the
hypernym feature set, and the hypernym feature set effectively migrates
toward a supersense-like feature set.

7.2 Combined Reranking Tests

In our combined reranking tests, we compared our scores to the boost
baseline, which is the score of the base parser augmented by the (Collins
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Figure 15: The development-set scores of the the backed-off supersense features (s2 )
and non-backed-off features (s ) are graphed for every pass over the training set.

2000) boosting reranker. In order to measure the true additive improve-
ment, we integrated the boosting reranker and base parser’s rankings with
our reranker, as described in Sections 5.1 and 5.2.

As was remarked earlier, we discovered that training both sets of pa-
rameters in conjunction failed to produce good results. However, by using
a weighted combination of new and old rerankers, we were able to obtain
small improvements. For the supersense features, the optimal weighting
yielded a development set improvement of≈ 0.153% past the boost base-
line. Unfortunately, this improvement did not carry over to the final test
results.

7.3 Deficiencies of the Reranking Model

One of the biggest deficiencies of our current reranking model is that our
feature sets currently only assign noun word senses. This restriction was
originally imposed in order to keep the implementation simple. However,
it has become apparent that word senses for other parts of speech should
also be used.

The power of our hidden variable model is in its ability to model sense-
to-sense interactions, yet when the model is restricted to noun senses only,
there are few sense-to-sense interactions. Noun-noun dependencies occur
in only a handful of situations: noun-noun restrictive modification (as in
“satellite communications”), appositions, and conjunctions. These noun-
noun interactions are typically quite short-range, near the leaves of the
parse tree, and therefore they have only a small effect on the correctness
of a parse.

If we included verb senses, we would greatly increase the amount
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of sense-to-sense interaction. Moreover, verb-noun interactions typically
span a larger region of the parse tree, being closer to the core structure
of a parse; therefore, we can expect to make stronger gains by learning
verb-noun interactions.

In addition, if we apply the tree transformations described in Section
6.5, we could also derive noun-noun dependencies from instances of prepo-
sitional phrase modification. These interactions are longer range and usu-
ally quite ambiguous, so we could also stand to gain much from using tree
transformations.

Another deficiency of our reranker arises from the predominance of
proper nouns in the Wall Street Journal corpus. Naturally, WordNet can-
not be expected to provide coverage of these proper nouns. In fact, the
use of WordNet on proper nouns can sometimes cause misleading sense
interactions. For example, consider “Apple Computer, Inc.”, in which the
fruit sense of “Apple” would be assigned. Another kind of confusion is ex-
emplified by the name “John”, which WordNet gives the senses of “slang
for toilet”, “king of England”, “apostle”, and “part of the bible” (i.e. the
gospel according to John). We might address this difficulty by making
use of a named-entity tagger, or even by abstaining from assigning word
senses to proper nouns at all.

The example of “John” also points out another drawback of using Word-
Net: the frequent occurrence of rare or irrelevant “outlier” senses. For
example, one of the senses of “investment” is “a covering of an organ or
organism”, and the senses of “man” include “Isle of Man” and “board
game piece” (e.g. chess man). Although our reranking model should be
able to learn to avoid these outlier senses, confusions are still possible, and
there is no reason to heap so much responsibility on the reranker.

One way to overcome this issue might be to establish a prior proba-
bility distribution on the word sense assignments with an independent
word sense disambiguation system. Priors could also be inferred from the
WordNet sense ordering7, although this approach could be more noisy. An
alternative approach would be to use an unsupervised word-clustering
method on a large corpus of parsed output from the same domain; words
would be clustered based on the distribution of neighboring words in the
dependency tree. The clusters formed with this technique would only re-
flect those word senses which appear in the domain, thereby eliminating
the troublesome outlier senses.

8 Conclusion

*** more conclusion to come later ***

7WordNet orders its word sense index according to how frequently each sense is as-
signed to a word in various semantically-tagged corpora. However, these counts are not
always available, so not all word senses will be ordered.
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- mention how the lack of noun-noun interactions is making most head-
modifier interactions devoid of word-sense “action”

- pp-attachment amb problem
In the future, we may experiment with hypernym features that use

depth thresholding, producing features only for hypernyms which are
within a certain distance from the top level. A proper threshold could keep
the number of features at a manageable level, while retaining the benefits
of hypernym features. Our hope is that the reduction of the feature space
would lead to more effective training, allowing better performance than
the unrestricted hypernym features.
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Figure 16: Depictions of the shape of Tu/v in some sample graphs.

Appendix

A Equivalence of Tree Beliefs and Marginal Prob-

abilities

For the purposes of our proof, we define the following notation. Let T
denote the entire tree, and for every edge (u, v), let Tu/v denote the subtree
of T that is rooted at u and that lies “behind” v (i.e. if we were to divide
T into two connected components by cutting edge (u, v), then Tu/v is the
component which contains u; see Figure 16 for some visual examples).
Note that ∀v∀s, t ∈ N(v), Ts/v ∩ Tt/v = {}, or else we could show a cycle in
T .

We define the function a such that for any set of nodes S, a(S) enumer-
ates through all word sense assignments to the nodes in S. We define a

over trees as well; a(T ) and a(Tu/v) enumerate through sense assignments
to the nodes of these subtrees. Under this new notation, the marginal prob-
abilies for each node and pair of nodes can now be given by:

pu(xu) =
1

Zi,j

∑

a(T ) | su=xu

∏

w∈T

αw(sw)
∏

(u′,v′)∈T

βu′,v′(su′, sv′)

pu,v(xu, xv) =
1

Zi,j

∑

a(T ) | su=xu,sv=xv

∏

w∈T

αw(sw)
∏

(u′,v′)∈T

βu′,v′(su′, sv′)

We also define partial normalization constants:

Z(Tu/v) =
∑

a(Tu/v)

∏

w∈Tu/v

αw(sw)
∏

(u′,v′)∈Tu/v

βu′,v′(su′ , sv′)

Z(Tu/v | su = xu) =
∑

a(Tu/v) | su=xu

∏

w∈Tu/v

αw(sw)
∏

(u′,v′)∈Tu/v

βu′,v′(su′, sv′)

where Z(Tu/v) gives the normalization constant for the subtree Tu/v, and
Z(Tu/v | su = xu) gives the normalization constant for subtree Tu/v when
sense su is fixed to the particular value xu.
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It is worthwhile to explore some of the properties of these partial nor-
malization constants before we continue. First, note that the normalization
constant Z(Tu/v) can be built up out of partially-fixed normalization con-
stants Z(Tu/v | su = xu) as follows:

Z(Tu/v) =
∑

xu∈Su

Z(Tu/v | su = xu)

The result above also holds when more than one word sense is being fixed

Z(Tu/v) =
∑

xu∈Su, xw∈Sw

Z(Tu/v | su = xu, sw = xw)

and in general, when a subset S of the nodes has their word senses fixed,
then

Z(Tu/v) =
∑

a(S)

Z(Tu/v | a(S))

In addition, the product between the normalization constants for any two
disjoint subtrees Tu/v and Ts/t yields a normalization constant for the union
of the two subtrees:

Z(Tu/v)Z(Ts/t) =





∑

a(Tu/v)

∏

w∈Tu/v

αw(sw)
∏

(u′,v′)∈Tu/v

βu′,v′(su′, sv′)









∑

a(Ts/t)

∏

r∈Ts/t

αr(sr)
∏

(s′,t′)∈Ts/t

βs′,t′(ss′, st′)





=
∑

a(Tu/v)

∑

a(Ts/t)









∏

w∈Tu/v

αw(sw)
∏

(u′,v′)∈Tu/v

βu′,v′(su′, sv′)

∏

r∈Ts/t

αr(sr)
∏

(s′,t′)∈Ts/t

βs′,t′(ss′, st′)









=
∑

a(Tu/v∪Ts/t)

∏

w∈(Tu/v∪Ts/t)

αw(sw)
∏

(u′,v′)∈(Tu/v∪Ts/t)

βu′,v′(su′, sv′)

= Z

(

Tu/v ∪ Ts/t

)

We can draw an interesting conclusion from the above. Recall that for any
node v, ∀s, t ∈ N(v), Ts/v ∩ Tt/v = {}; that is, all neighboring subtrees
are disjoint. Therefore, we can construct the tree normalization constant
Z(Tu/v) by piecing together smaller normalization constants with node
and edge weights.

Z(Tu/v) =
∑

xu∈Su

αu(xu)
∏

w∈N(u)\v

∑

xw∈Sw

βu,w(xu, xw)Z(Tw/u | sw = xw)

and a natural extension is that for any node u, we can compute the nor-
malization constant for the entire tree by combining the tree normalization
constants for all of the subtrees neighboring u:
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∀u, Z(T ) =
∑

xu∈Su

αu(xu)
∏

w∈N(u)

∑

xw∈Sw

βu,w(xu, xw)Z(Tw/u | sw = xw)

We now continue with our proof that tree beliefs equal marginal prob-
abilities. For convenience, we reproduce the recursive formula defining
the messages:

mu→v(sv) =
∑

su∈Su

αu(su)βu,v(su, sv)
∏

w∈N(u)\v

mw→u(su)

The key intuition in our proof is to think of the messages mu→v as
dynamic-programming subproblems, where each message mu→v is related
to the normalization factor Z(Tu/v). The exact relation is given by predicate
P below:

P (mu→v) ≡







mu→v(sv) =
∑

xu∈Su

βu,v(xu, sv)Z(Tu/v | su = xu)







and the following proof shows that P holds for messages produced by the
message-passing algorithm.

Proof by Induction

Base Case The messages emanating from the leaves of T are the base case
of the induction. For a leaf ℓ and its parent p, P (mℓ→p) holds trivially.
Since the only neighbor of a leaf node is its parent, N(ℓ) \ p = {} and
Z(Tℓ/p | sℓ = xℓ) = αℓ(xℓ). Therefore,

mℓ→p(sp) =
∑

sℓ∈Sℓ

αℓ(sℓ)βℓ,p(sℓ, sp)
∏

v∈N(ℓ)\p

mv→ℓ(sℓ)

=
∑

sℓ∈Sℓ

αℓ(sℓ)βℓ,p(sℓ, sp)

=
∑

xℓ∈Sℓ

βℓ,p(xℓ, sp)Z(Tℓ/p | sℓ = xℓ)

so that P (mℓ→p) holds.

Inductive Case We prove the property P (mu→v), and our inductive as-
sumption is that ∀w 6= v, P (mw→u) holds. We argue that this is a fair
inductive assumption, since the messages mw→u, w 6= v are exactly
those messages which would be required to compute mu→v in the
message passing algorithm (as laid out in Section 2.2). We begin by
writing out the formula for mu→v(sv), substituting in our inductive
assumptions:
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mu→v(sv) =
∑

xu∈Su

αu(xu)βu,v(xu, sv)
∏

w∈N(u)\v

∑

xw∈Sw

βw,u(xw, xu)Z(Tw/u | sw = xw)

We define F (w, xw) = βw,u(xw, xu)Z(Tw/u | sw = xw) and rewrite the
above as follows:

mu→v(sv) =
∑

xu∈Su

αu(xu)βu,v(xu, sv)
∏

w∈N(u)\v

∑

xw∈Sw

F (w, xw)

Next, we rearrange the product over sums
∏

w∈N(u)\v

∑

xw∈Sw
F (w, xw)

into a sum over products:

∏

w∈N(u)\v

∑

xw∈Sw

F (w, xw)

=

















(

F (w1, x
1
w1

) +F (w1, x
2
w1

) + . . .+ F (w1, x
|Sw1

|
w1 )

)

(

F (w2, x
1
w2

) +F (w2, x
2
w2

) + . . .+ F (w2, x
|Sw2

|
w2

)
)

...
(

F (wM , x1
w1

) +F (wM , x2
wM

) + . . .+ F (wM , x
|SwM

|
wM )

)

















=





























(

F (w1, x
1
w1

) F (w2, x
1
w2

) . . . F (wM , x1
wM

)
)

+
(

F (w1, x
1
w1

) F (w2, x
1
w2

) . . . F (wM , x2
wM

)
)

+
...

(

F (w1, x
2
w1

) F (w2, x
1
w2

) . . . F (wM , x1
wM

)
)

+
...

(

F (w1, x
|Sw1

|
w1 ) F (w2, x

|Sw2
|

w2 ) . . . F (wM , x
|SwM

|
wM )

)

+





























=
∑

a(N(u)\v)

∏

w∈N(u)\v

F (w, sw)

Applying this rearrangement to our original expression allows the
following simplifications:

mu→v(sv) =
∑

xu∈Su

αu(xu)βu,v(xu, sv)
∑

a(N(u)\v)

∏

w∈N(u)\v

βw,u(sw, xu)Z(Tw/u | sw)

=
∑

xu∈Su

βu,v(xu, sv)
∑

a(N(u)\v)

Z





⋃

w′∈N(u)\v

Tw′/u

∣

∣

∣

∣

∣

∣

a(N(u) \ v)





αu(xu)
∏

w∈N(u)\v

βw,u(sw, xu)
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=
∑

xu∈Su

βu,v(xu, sv)
∑

a(N(u)\v)

Z(Tu/v | a(N(u) \ v), su = xu)

=
∑

xu∈Su

βu,v(xu, sv)Z(Tu/v | su = xu)

Therefore, P (mu→v) holds.

Now, using the definition in proposition P , we can prove that the node
beliefs are equal to the marginal probabilities:

bu(xu) =
1

zu

αu(xu)
∏

v∈N(u)

mv→u(su)

=
1

zu
αu(xu)

∏

v∈N(u)

∑

xv∈Sv

βv,u(xv, xu)Z(Tv/u | sv = xv)

=
1

zu
αu(xu)

∑

a(N(u))

∏

v∈N(u)

βv,u(xv, xu)Z(Tv/u | sv = xv)

=
1

zu

∑

a(N(u))

Z





⋃

w∈N(u)

Tw/u

∣

∣

∣

∣

∣

∣

a(N(u)), su = xu



αu(xu)
∏

v∈N(u)

βv,u(xv, xu)

=
1

zu

∑

a(N(u))

Z (T | a(N(u)), su = xu)

=
1

zu

Z (T | su = xu) (∗)

=
1

zu

∑

a(T ) | su=xu

∏

w∈T

αw(sw)
∏

(u′,v′)∈T

βu′,v′(su′ , sv′) = pu(xu)

and similar reasoning can be applied to the pairwise beliefs:

bu,v(xu, xv) =
1

zu,v

αu(xu)αv(xv)βu,v(xu, xv)
∏

s∈N(u)\v

ms→u(su)
∏

t∈N(v)\u

mt→v(sv)

=
1

zu,v
βu,v(xu, xv)



αu(xu)
∏

s∈N(u)\v

∑

xs∈Ss

βs,u(xs, xu)Z(Ts/u | ss = xs)







αv(xv)
∏

t∈N(v)\u

∑

xt∈St

βt,v(xt, xv)Z(Tt/v | st = xt)





=
1

zu,v

βu,v(xu, xv)



αu(xu)
∑

a(N(u)\v)

∏

s∈N(u)\v

βs,u(xs, xu)Z(Ts/u | ss = xs)







αv(xv)
∑

a(N(v)\u)

∏

t∈N(v)\u

βt,v(xt, xv)Z(Tt/v | st = xt)
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=
1

zu,v
βu,v(xu, xv)Z(Tu/v | su = xu)Z(Tv/u | sv = xv)

=
1

zu,v
Z(T | su = xu, sv = xv) (∗)

=
1

zu,v

∑

a(T ) | su=xu,sv=xv

∏

w∈T

αw(sw)
∏

(u′,v′)∈T

βu′,v′(su′, sv′) = pu,v(xu, xv)

Incidentally, the above also proves that the node and pairwise normal-
ization constants are equal to the tree-wide normalization constant Zi,j.
Consider the lines marked (∗) above, and note that

∑

xu∈Su

bu(xu) = 1 ⇒ zu =
∑

xu∈Su

Z(T | su = xu) = Z(T ) = Zi,j

∑

xu∈Su, xv∈Sv

bu,v(xu, xv) = 1 ⇒ zu,v =
∑

xu∈Su, xv∈Sv

Z(T | su = xu, sv = xv) = Z(T ) = Zi,j

B Computing Messages and Beliefs in Linear Time

We show that given node and pairwise potentials αu and βu,v, belief propa-
gation can create messages and beliefs in time linear in the size of the tree.
Let n be the number of nodes in the tree, and let the constant S = max |Su|,
bound the size of the word-sense domains. We reproduce below the recur-
sive formula defining the messages:

mu→v(sv) =
∑

su∈Su

αu(su)βu,v(su, sv)
∏

w∈N(u)\v

mw→u(su)

Recall that we create the messages in each tree by first computing mes-
sages from the leaves inward to the root, and then from the root outward to
the leaves (see Figure 6 on page 11). We call the first set of messages (leaves
to root) upstream messages and the second set (root to leaves) downstream
messages.

Now, suppose we wish to compute the upstream message from node u
to its parent p. This message mu→p(sp) will have |Sp| ≤ S dimensions, and
for each dimension we must take a summation over |Su| ≤ S products of
the |N(u)| − 1 messages which arrive from u’s children. After multiply-
ing in the weights αu and βu,p and completing the summations, the entire
message will require O(|N(u)|S2) time.

As we compute this upstream message, however, we save each product
of child messages in a “message product” array mpu(su) that is attached to
the node. That is, we set

mpu(su) =
∏

c∈N(u)\p

mc→u(su)
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We will save a lot of time by reusing these computations later on. Of
course, these message product arrays use up an additional O(nS) space.
However, note that the messages, node beliefs, and pairwise beliefs al-
ready require O(nS), O(nS), and O(nS2) space respectively, so incurring
an additional O(nS) space cost is acceptable.

Now, we compute the downstream messages. We begin at the root
node r and compute the downstream message to a child node u. Again,
there are |Su| ≤ S dimensions and a summation over |Sr| ≤ S terms.
However, instead of directly computing the product of messages, we reuse
the stored values in the message product array, dividing them by the single
held-out message:

∏

c∈N(r)\u

mc→r(sr) =
mpr(sr)

mu→r(sr)

When we compute the downstream messages from a non-root node u to
its child c, we augment u’s stored message products with the downstream
message received from u’s parent p, and then we reuse the message prod-
ucts as before; that is:

mpu(su) ← mpu(su)mp→u(su)
∏

v∈N(u)\c

mv→u(su) =
mpu(su)

mc→u(su)

Therefore, we can compute each required message product in O(1) time,
so that an entire downstream message can be computed in O(S2) time.

However, each node u has O(|N(u)|) downstream messages to create,
and thus taking care of node u’s entire quota of downstream messages
requires O(|N(u)|S2) time.

Thus, every node u (except the root) must compute a single upstream
message at a cost of O(|N(u)|S2), and every node u (except the leaves)
must compute O(|N(u)|) downstream messages at a cost of O(S2) each.
The total cost of computing all messages, therefore, is bounded by

2
∑

u

O(|N(u)|S2) = O

(

S2
∑

u

|N(u)|

)

The summation
∑

u |N(u)| counts each edge twice, once for each endpoint;
therefore,

∑

u |N(u)| = O(n), and the total time required to compute all
messages is O(nS2).

Note that at the finish of the message passing algorithm, for every node
u, the message product array mpu contains the product of all incoming
messages: when we compute the upstream messages, we initialize mpu as
the product of all child messages, and when we compute the downstream
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messages, we mpu to include the parent message. We will exploit this
property below.

We compute the normalizing constants and beliefs by defining inter-
mediate terms

Bu(su) = αu(su)mpu(su)

Bu,v(su, sv) = αu(su)αv(sv)βu,v(su, sv)

(

mpu(su)

mv→u(su)

)(

mpv(sv)

mu→v(sv)

)

and using them to create the normalization constants and beliefs:

zu =
∑

su∈Su

Bu(su)

zu,v =
∑

su∈Su, sv∈Sv

Bu,v(su, sv)

bu(su) =
1

zu

Bu(su)

bu,v(su, sv) =
1

zu,v

Bu,v(su, sv)

Computing each Bu requires O(S) time and computing each Bu,v re-
quires O(S2) time; preparing all of the intermediate terms requires O(nS+
nS2) = O(nS2) time. Next, each zu requires O(S) time and each zu,v re-
quires O(S2) time; all of them together require another O(S2) time. Finally,
the node and pairwise beliefs require only O(1) additional computation
per belief, for a total of O(n). Therefore, after the creation of the messages,
normalization constants and beliefs can be computed with an additional
O(nS2) time.

In conclusion, given node and pairwise weights αu and βu,v, the belief
propagation algorithm can create node and pairwise beliefs bu and bu,v,
together with the associated normalization constants zu and zu,v, in O(nS2)
time.
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