
Hidden–Variable Models for Discriminative Reranking

Terry Koo
MIT CSAIL

maestro@mit.edu

Michael Collins
MIT CSAIL

mcollins@csail.mit.edu

Abstract
We describe a new method for the repre-
sentation of NLP structures within rerank-
ing approaches. We make use of a condi-
tional log–linear model, with hidden vari-
ables representing the assignment of lexi-
cal items to word clusters or word senses.
The model learns to automatically make
these assignments based on a discrimina-
tive training criterion. Training and de-
coding with the model requires summing
over an exponential number of hidden–
variable assignments: the required sum-
mations can be computed efficiently and
exactly using dynamic programming. As
a case study, we apply the model to
parse reranking. The model gives anF–
measure improvement of≈ 1.25% be-
yond the base parser, and an≈ 0.25%
improvement beyond the Collins (2000)
reranker. Although our experiments are
focused on parsing, the techniques de-
scribed generalize naturally to NLP struc-
tures other than parse trees.

1 Introduction

A number of recent approaches in statistical NLP
have focused onreranking algorithms. In rerank-
ing methods, a baseline model is used to generate a
set of candidate output structures for each input in
training or test data. A second model, which typi-
cally makes use of more complex features than the
baseline model, is then used to rerank the candidates
proposed by the baseline. Reranking approaches
have given improvements in accuracy on a number
of NLP problems including parsing (Collins, 2000;
Charniak and Johnson, 2005), machine translation
(Och and Ney, 2002; Shen et al., 2004), informa-
tion extraction (Collins, 2002), and natural language
generation (Walker et al., 2001).

The success of reranking approaches depends
critically on the choice ofrepresentationused by the

reranking model. Typically, each candidate struc-
ture (e.g., each parse tree in the case of parsing) is
mapped to a feature–vector representation. Previous
work has generally relied on two approaches to rep-
resentation: explicitly hand–crafted features (e.g., in
Charniak and Johnson (2005)) or features defined
through kernels (e.g., see Collins and Duffy (2002)).

This paper describes a new method for the rep-
resentation of NLP structures within reranking ap-
proaches. We build on the intuition that lexical items
in natural language often fall into word clusters (for
example,presidentand chairmanmight belong to
the same cluster) or fall into distinct word senses
(e.g., bank might have two distinct senses). Our
method involves a hidden–variable model, where
the hidden variables correspond to an assignment
of words to either clusters or word–senses. Lexical
items are automatically assigned their hidden values
using unsupervised learning within a discriminative
reranking approach.

We make use of a conditional log–linear model
for our task. Formally, hidden variables within
the log–linear model consist ofglobal assignments,
where a global assignment entails an assignment of
every word in the sentence to some hidden cluster
or sense value. The number of such global assign-
ments grows exponentially fast with the length of
the sentence being processed. Training and decod-
ing with the model requires summing over the ex-
ponential number of possible global assignments, a
major technical challenge in our model. We show
that the required summations can be computed ef-
ficiently and exactly using dynamic–programming
methods (i.e., the belief propagation algorithm for
Markov random fields (Yedidia et al., 2003)) under
certain restrictions on features in the model.

Previous work on reranking has made heavy use
of lexical statistics, but has treated lexical items as
atoms. The motivation for our method comes from
the observation that statistics based on lexical items
are critical, but that these statistics suffer consid-
erably from problems of data sparsity and word–

sense polysemy. Our model has the ability to allevi-
ate data sparsity issues by learning to assign words
to word clusters, and can mitigate problems with
word–sense polysemy by learning to assign lexical
items to underlying word senses based upon con-
textual information. A critical difference between
our method and previous work on unsupervised ap-
proaches to word–clustering or word–sense discov-
ery is that our model is trained using a discriminative
criterion, where the assignment of words to clusters
or senses is driven by the reranking task in question.

As a case study, in this paper we focus on syn-
tactic parse reranking. We describe three model
types that can be captured by our approach. The
first method emulates a clustering operation, where
the aim is to place similar words (e.g.,presidentand
chairman) into the same cluster. The second method
emulates arefinementoperation, where the aim is to
recover distinct senses underlying a single word (for
example, distinct senses underlying the nounbank).
The third definition makes use of an existing ontol-
ogy (i.e., WordNet (Miller et al., 1993)). In this case
the set of possible hidden values for each word cor-
responds to possible WordNet senses for the word.

In experimental results on the Penn Wall Street
Journal treebank parsing domain, the hidden–
variable model gives anF–measure improvement of
≈ 1.25% beyond a baseline model (the parser de-
scribed in Collins (1999)), and gives an≈ 0.25%
improvement beyond the reranking approach de-
scribed in Collins (2000). Although the experiments
in this paper are focused on parsing, the techniques
we describe generalize naturally to other NLP struc-
tures such as strings or labeled sequences. We dis-
cuss this point further in Section 6.1.

2 Related Work

Various machine–learning methods have been used
within reranking tasks, including conditional log–
linear models (Ratnaparkhi et al., 1994; Johnson et
al., 1999), boosting methods (Collins, 2000), vari-
ants of the perceptron algorithm (Collins, 2002;
Shen et al., 2004), and generalizations of support–
vector machines (Shen and Joshi, 2003). There have
been several previous approaches to parsing using
log–linear models and hidden variables. Riezler
et al. (2002) describe a discriminative LFG pars-
ing model that is trained on standard (syntax only)

treebank annotations by treating each tree as a full
LFG analysis with an observedc-structure and hid-
denf -structure. Clark and Curran (2004) present an
alternative CCG parsing approach that divides each
CCG parse into a dependency structure (observed)
and a derivation (hidden). More recently, Matsuzaki
et al. (2005) introduce a probabilistic CFG aug-
mented with hidden information at each nontermi-
nal, which gives their model the ability to tailor it-
self to the task at hand. The form of our model is
closely related to that of Quattoni et al. (2005), who
describe a hidden–variable model for object recog-
nition in computer vision.

The approaches of Riezler et al., Clark and Cur-
ran, and Matsuzaki et al. are similar to our own
work in that the hidden variables are exponential
in number and must be handled with dynamic–
programming techniques. However, they differ from
our approach in the definition of the hidden variables
(the Matsuzaki et al. model is the most similar). In
addition, these three approaches don’t use reranking,
so their features must be restricted to local scope in
order to allow dynamic–programming approaches to
training. Finally, these approaches use a Viterbi ap-
proximation during decoding, something our model
can avoid. See section 6.2 for more discussion.

In some instantiations, our model effectively clus-
ters words into categories. Our approach differs
from standard word clustering in that the cluster-
ing criteria is directly linked to the reranking objec-
tive, whereas previous word–clustering approaches
(e.g. Brown et al. (1992) or Pereira et al. (1993))
have typically leveraged distributional similarity. In
other instantiations, our model establishes word–
sense distinctions. Bikel (2000) has done previous
work on incorporating the WordNet hierarchy into
a generative parsing model; however, this approach
requires data with word–sense annotations whereas
our model deals with word–sense ambiguity through
unsupervised discriminative training.

3 The Hidden–Variable Model

In this section we describe a hidden–variable model
based on conditional log–linear models. Each sen-
tencesi for i = 1 . . . n in our training data has a
set ofni candidate parse treesti,1, . . . , ti,ni , which
are the output of anN–best baseline parser. Each
candidate parse has an associatedF–measure score,

indicating its similarity to the gold–standard parse.
Without loss of generality, we defineti,1 to be the
parse with the highestF–measure for sentencesi.

Given a candidate parse treeti,j , the hidden–
variable model assigns a domain of hidden val-
ues to each word in the tree. For example, the
hidden–value domain for the wordbank could be
{bank1, bank2, bank3} or {NN1, NN2, NN3}. De-
tailed descriptions of the domains we used are given
in Section 4.1. Formally, ifti,j spansm words then
the hidden–value domains for each word are the sets
H1(ti,j), . . . ,Hm(ti,j). A global hidden–value as-
signment, which attaches a hidden value to every
word in ti,j , is writtenh = (h1, . . . , hm) ∈ H(ti,j),
whereH(ti,j) = H1(ti,j)× . . .×Hm(ti,j) is the set
of all possible global assignments forti,j .

We define a feature–based representationΦ such
that Φ(ti,j ,h) ∈ Rd is a vector of feature occur-
rence counts that describes candidate parseti,j with
global assignmenth ∈ H(ti,j). We write Φk for
k = 1 . . . d to denote thekth component of the vec-
tor Φ. Each component of the feature vector is the
count of some substructure within(ti,j ,h). For ex-
ample,Φ12 andΦ101 could be defined as follows:

Φ12(ti,j ,h) =
Number of times the wordthe
occurs with hidden valuethe3
and part of speech tagDT in
(ti,j ,h).

Φ101(ti,j ,h) =
Number of timesCEO1 ap-
pears as the subject ofowns2
in (ti,j ,h)

(1)

We use a parameter vectorΘ ∈ Rd to define a
log–linear distribution over candidate trees together
with global hidden–value assignments:

p(ti,j ,h | si,Θ) =
eΦ(ti,j ,h)·Θ∑

j′,h′∈H(ti,j′) eΦ(ti,j′ ,h′)·Θ

By marginalizing out the global assignments, we ob-
tain a distribution over the candidate parses alone:

p(ti,j | si,Θ) =
∑

h∈H(ti,j)
p(ti,j ,h | si,Θ) (2)

Later in this paper we will describe how to train
the parameters of the model by minimizing the fol-
lowing loss function—which is the negative log–
likelihood of the training data—with respect toΘ:

L(Θ) = −
∑
i

log p(ti,1 | si,Θ)

= −
∑
i

log
∑

h∈H(ti,1) p(ti,1,h | si,Θ)
(3)

saw with

PP(with)

VP(saw)

S(saw)

a telescope

NP(telescope)

the boy

NP(boy)

The man

NP(man)

saw

man

The the

with
boy

telescope

a

Figure 1:A sample parse tree and its dependency tree.

3.1 Local Feature Vectors

Note that the number of possible global assignments
(i.e.,|H(ti,j)|) grows exponentially fast with respect
to the number of words spanned byti,j . This poses
a problem when training the model, or when calcu-
lating the probability of a parse tree through Eq. 2.
This section describes how to address this difficulty
by restricting features to sufficiently local scope. In
Section 3.2 we show that this restriction allows effi-
cient training and decoding of the model.

The restriction to local feature–vectors makes use
of the dependency structure underlying the parse
tree ti,j . Formally, for treeti,j , we define the cor-
responding dependency treeD(ti,j) to be a set of
edges between words inti,j , where(u, v) ∈ D(ti,j)
if and only if there is a head–modifier dependency
between wordsu andv. See Figure 1 for an exam-
ple dependency tree. We restrict the definition of
Φ in the following way1. If w, u and v are word
indices, we introduce single–variable local feature
vectorsφ(ti,j , w, hw) ∈ Rd and pairwise local fea-
ture vectorsφ(ti,j , u, v, hu, hv) ∈ Rd. The global
feature vectorΦ(ti,j ,h) is then decomposed into a
sum over the local feature vectors:

Φ(ti,j ,h) =
∑

1≤w≤m
φ(ti,j , w, hw) +∑

(u,v)∈D(ti,j)
φ(ti,j , u, v, hu, hv)

(4)

Notice that the second sum, over pairwise local
feature vectors, respects the dependency structure
D(ti,j). Section 3.2 describes how this decompo-
sition of Φ leads to an efficient and exact dynamic–
programming approach that, during training, allows
us to calculate the gradient∂L

∂Θ and, during testing,
allows us to find the most probable candidate parse.

In our implementation, each dimension of the lo-
cal feature vectors is an indicator function signaling
the presence of a feature, so that a sum over local
feature vectors in a tree gives the occurrence count

1Note that the restriction on local feature vectors only con-
cerns the inclusion of hidden values; features may still observe
arbitrary structure within the underlying parse treeti,j .

of features in that tree. For instance, define

φ12(ti,j , w, hw) =
r

hw = the3 and treeti,j assigns word
w to part–of–speechDT

z

φ101(ti,j , u, v, hu, hv) =
s

(hu, hv) = (CEO1, owns2)
and treeti,j places(u, v) in
a subject–verb relationship

{

where the notationJPK signifies a0/1 indicator of
predicateP. When summed over the tree, these defi-
nitions ofφ12 andφ101 yield global featuresΦ12 and
Φ101 as given in the previous example (see Eq. 1).

3.2 Training the Model

We now describe how the loss function in Eq. 3 can
be optimized using gradient descent. The gradient
of the loss function is given by:

∂L
∂Θ = −

∑
i

F (ti,1,Θ) +
∑
i,j

p(ti,j | si,Θ)F (ti,j ,Θ)

whereF (ti,j ,Θ) =
∑

h∈H(ti,j)

p(ti,j ,h | si,Θ)
p(ti,j | si,Θ) Φ(ti,j ,h)

is the expected value of the feature vector produced
by parse treeti,j . As we remarked earlier,|H(ti,j)|
is exponential in size so direct calculation of either
p(ti,j | si,Θ) or F (ti,j ,Θ) is impractical. However,
using the feature–vector decomposition in Eq. 4, we
can rewrite the key functions ofΘ as follows:

p(ti,j | si,Θ) = Zi,j∑
j′ Zi,j′

F (ti,j ,Θ) =∑
1 ≤ w ≤ m

hw ∈ Hw(ti,j)

p(ti,j , w, hw)φ(ti,j , w, hw) +

∑
(u, v) ∈ D(ti,j)
hu ∈ Hu(ti,j)
hv ∈ Hv(ti,j)

p(ti,j , u, v, hu, hv)φ(ti,j , u, v, hu, hv)

where p(ti,j , w, hw) and p(ti,j , u, v, hu, hv) are
marginalized probabilities andZi,j is the associated
normalization constant:

Zi,j =
∑

h∈H(ti,j)
eΦ(ti,j ,h)·Θ

p(ti,j , w, x) =
∑

h |hw=x
p(ti,j ,h | si,Θ)

p(ti,j , u, v, x, y) =
∑

h |hu=x,hv=y
p(ti,j ,h | si,Θ)

The three quantities above can be computed with be-
lief propagation (Yedidia et al., 2003), a dynamic–
programming technique that is efficient2 and exact

2The running time of belief propagation varies linearly with
the number of nodes inD(ti,j) and quadratically with the car-
dinality of the largest hidden–value domain.

when the graphD(ti,j) is a tree, which is the case
in our parse reranking model. Having calculated
the gradient in this way, we minimize the loss using
stochastic gradient descent3 (LeCun et al., 1998).

4 Features for Parse Reranking

The previous section described hidden–variable
models for discriminative reranking. We now de-
scribe features for the parse reranking problem. We
focus on the definition of hidden–value domains and
local feature vectors in the reranking model.

4.1 Hidden–Value Domains and Local Features

Each word in a parse tree is given a domain of pos-
sible hidden values by the hidden–variable model.
Models with widely varying behavior can be created
by changing the way these domains are defined. In
particular, in this section we will see how different
definitions of the domains give rise to the three main
model types: clustering, refinement, and mapping
into a pre–built ontology such as WordNet.

As illustration, consider a simple approach that
splits each word into a domain of three word–sense
hidden values (e.g., the wordbankwould yield the
domain{bank1, bank2, bank3}). In this approach,
each word receives a domain of hidden values that
is not shared with any other word. The model is
then able to distinguish several different usages for
each word, emulating a refinement operation. An
alternative approach is to split each word’s part–of–
speech tag into several sub–tags (e.g.,bank would
yield {NN1, NN2, NN3}). This approach assigns the
same domain to many words; for instance, singular
nouns such asbond, market, andbankall receive the
same domain. The behavior of the model then emu-
lates a clustering operation.

Figure 2 shows the single–variable and pairwise
features used in our experiments. The features
are shown with hidden variables corresponding to
word–specific hidden values, such asshares1 or
bought3. In our experiments, we made use of fea-
tures such as those in Figure 2 in combination with
the following four definitions of the hidden–value

3We also performed some experiments using the conjugate
gradient descent algorithm (Johnson et al., 1999). However, we
did not find a significant difference between the performance of
either method. Since stochastic gradient descent was faster and
required less memory, our final experiments used the stochastic
gradient method.

bought yesterday1.5m shares in heavy trading

VBD(bought) PP(in) NP(yesterday)NP(shares)

S(bought)

VP(bought)

PSfrag replacements

Pairwise features generated for (shares1, bought3) =
(shares1, bought3, Dependency: VBD, NP, VP, Right, +Adj, -CC)
(shares1, bought3, Rule: VP→ VBDhead, NPmod, PP, NP)
(shares1, bought3, Gpar Rule: S→ VP→ VBDhead, NPmod, PP, NP)

Single–variable features generated for (shares1) =
(shares1)
(shares1, Word: shares)
(shares1, POS: NN)
(shares1, Word: shares, POS: NN)
(shares1, Highest NT: NP)
(shares1, Word: shares, Highest NT: NP)
(shares1, POS: NN, Highest NT: NP)
(shares1, Word: shares, POS: NN, Highest NT: NP)
(shares1, Up Path: NP, VP, S)
(shares1, Word: shares, Up Path: NP, VP, S)
(shares1, Down Path: NP, NN)
(shares1, Word: shares, Down Path: NP, NN)
(shares1, Head Rule: NP→ CD, CD, NNShead)
(shares1, Word: shares, Head Rule: NP→ CD, CD, NNShead)
(shares1, Mod Rule: VP→ VBDhead, NPmod, PP, NP)
(shares1, Word: shares, Mod Rule: VP→ VBDhead, NPmod, PP, NP)
(shares1, Head Gpar Rule: VP→ NP→ CD, CD, NNShead)
(shares1, Word: shares, Head Gpar Rule: VP→ NP→ CD, CD, NNShead)
(shares1, Mod Gpar Rule: S→ VP→ VBDhead, NPmod, PP, NP)
(shares1, Word: shares, Mod Gpar Rule: S→ VP→ VBDhead, NPmod, PP, NP)

Figure 2: The features used in our model. We
show the single–variable features produced for hidden value
shares1 and the pairwise features produced for hidden values
(shares1, bought3), in the context of the given parse fragment.
Highest NT = highest nonterminal,Up Path = sequence of ances-
tor nonterminals,Down Path = sequence of headed nonterminals,
Head Rule = rules headed by the word,Mod Rule = rule in which
word acts as modifier,Head/Mod Gpar Rule = Head/Mod Rule plus
grandparent nonterminal.

domains (in each case we give the model type that
results from the definition—clustering, refinement,
or pre–built ontology—in parentheses):

Lexical (Refinement) Each word is split into
three sub–values. See Figure 2 for an example of
features generated for this choice of domain.

Part–of–Speech (Clustering) The part–of–
speech tag of each word is split into five sub–values.
In Figure 2, the wordshareswould be assigned
the domain{NNS1, . . . , NNS5}, and the wordbought
would have the domain{VBD1, . . . , VBD5}.

Highest Nonterminal (Clustering) The high-
est nonterminal to which each word propagates as
a headword is split into five sub–values. In Figure 2
the wordboughtyields domain{S1, . . . , S5}, while
in yields{PP1, . . . , PP5}.

Supersense (Pre–Built Ontology) We borrow
the idea of using WordNet lexicographer filenames
as broad “supersenses” from Ciaramita and John-
son (2003). For each word, we split each of its

supersenses into three sub–supersenses. If no su-
persenses are available, we fall back to splitting
the part–of–speech into five sub–values. For ex-
ample,shareshas the supersensesnoun.possession,
noun.act and noun.artifact, which yield the do-
main {noun.possession1, noun.act1, noun.artifact1, . . .
noun.possession3, noun.act3, noun.artifact3}. On the
other hand,in does not have any WordNet super-
senses, so it is assigned the domain{IN1, . . . , IN5}.

4.2 The Final Feature Sets

We created eight feature sets by combining the
four hidden–value domains above with two alterna-
tive definitions of dependency structures: standard
head–modifier dependencies and “sibling dependen-
cies.” When using sibling dependencies, connec-
tions are established between the headwords of ad-
jacent siblings. For instance, the head–modifier
dependencies produced by the tree fragment in
Figure 2 are(bought, shares), (bought, in), and
(bought, yesterday), while the corresponding sibling
dependencies are(bought, shares), (shares, in), and
(in, yesterday).

4.3 Mixed Models

The different hidden–variable models display vary-
ing strengths and weaknesses. We created mixtures
of different models using a weighted average:

log p(ti,j |si) =
M∑

m=1

λm log pm(ti,j |si,Θm)−Z(si)

whereZ(si) is a normalization constant that can be
ignored, as it does not affect the ranking of parses.
The λm weights are determined through optimiza-
tion of parsing scores on a development set.

5 Experimental Results

We trained and tested the model on data from the
Penn Treebank (Marcus et al., 1994). Candidate
parses were produced by anN–best version of the
Collins (1999) parser. Our training data consists of
Treebank Sections 2–21, divided into a training cor-
pus of 35,540 sentences and a development corpus
of 3,676 sentences. In later experiments, we made
use of a secondary development corpus of 1,914 sen-
tences from Section 0. Sections 22–24, containing
5,455 sentences, were held out as the test set.

For each of the eight feature sets described in
Section 4.2, we used the stochastic gradient descent

Section 22 Section 23 Section 24 Total
LR LP LR LP LR LP LR LP

C99 89.12 89.20 88.14 88.56 87.17 87.97 88.19 88.60
MIX 90.43 90.61 89.25 89.69 88.46 89.29 89.41 89.87
C2K 90.27 90.62 89.43 89.97 88.56 89.58 89.46 90.07

MIX+ 90.57 90.79 89.80 90.27 88.78 89.73 89.78 90.29

Table 1:The results on Sections 22–24.LR = Labeled Recall,
LP = Labeled Precision.

method to optimize the parameters of the model. We
created various mixtures of the eight models using
the weighted–average technique described in Sec-
tion 4.3, testing the accuracy of each mixture on the
secondary development set. Our final model was a
mixture of three of the eight possible models: super-
sense hidden values with sibling trees, lexical hid-
den values with sibling trees, and highest nontermi-
nal hidden values with normal head–modifier trees.

Our final tests evaluated four models. The two
baseline models are the Collins (1999) base parser,
C99, and the Collins (2000) reranker,C2K. The first
new model is theMIX model, which is a combina-
tion of the C99 base model with the three models
described above. The second new model,MIX+, is
created by augmentingMIX with features from the
method inC2K. Table 1 shows the results. The
MIX model obtains anF–measure improvement of
≈ 1.25% over theC99 baseline, an improvement that
is comparable to theC2K reranker. TheMIX+ model
yields an improvement of≈ 0.25% beyondC2K.

We tested the significance of 8 comparisons cor-
responding to the results in Table 1 using the sign
test4: we testedMIX vs. C99 on Sections 22, 23, and
24 individually, as well as on Sections 22–24 taken
as a whole; we also testedMIX+ vs. C2K on these 4
test sets. Of the 8 comparisons, all showed signif-
icant improvements at the levelp ≤ 0.01 with the
exception of one test,MIX+ vs.C2K on Section 24.

6 Discussion
6.1 Applying the Model to Other NLP Tasks

In this section, we discuss how hidden–variable
models might be applied to other NLP problems, and
in particular to structures other than parse trees. To

4The input to the sign test is a set of sentences with judge-
ments for each sentence indicating whether model 1 gives a
better parse than model 2, model 2 gives a better parse than
model 1, or models 1 and 2 give equal quality parses. When
using the sign test, for each sentence in question we calculate
theF–measure at the sentence level for the two models being
compared, deriving the required judgement from these scores.

summarize the model, the major components of the
approach are as follows:
• We assume some set of candidate structuresti,j ,

which are to be reranked by the model. Each struc-
tureti,j hasni,j wordsw1, . . . , wni,j , and each word
wk has a setHk(ti,j) of possible hidden values.
• We assume a graphD(ti,j) for eachti,j that de-

fines possible interactions between hidden variables
in the model. We assume some definition of local
feature vectors, which consider either single hidden
variables, or pairs of hidden variables that are con-
nected by an edge inD(ti,j).

The approach can be instantiated in several ways
when applying the model to other NLP tasks. We
have already seen that by changing the definition
of the hidden–value domainsHk(ti,j), we can de-
rive models with widely varying behavior. In ad-
dition, there is no requirement that the hidden vari-
ables only be associated with words in the structure;
the hidden variables could be associated with other
units. For example, in speech recognition hidden
variables could be associated with phonemes rather
than words, and in Chinese word segmentation, hid-
den variables could be associated with individual
characters rather than words.

NLP tasks other than parsing involve structures
ti,j that are not necessarily parse trees. For example,
in speech recognition candidates are simply strings
(utterances); in tagging tasks candidates are labeled
sequences (e.g., sentences labeled with part–of–
speech tag sequences); in machine translation can-
didate structures may be source–language/target–
language pairs, along with alignment structures
specifying the correspondence between words in the
two languages. Sentences and labeled sequences are
in a sense simplifications of the parsing case, where
a natural choice for the underlying graphD(ti,j)
would be anN th order Markov structure, where each
word depends on the previousN words. Machine
translation alignments are a more interesting type of
structure, where the choice ofD(ti,j) might actually
depend on the alignment between the two sentences.

As a final note, there is some flexibility in the
choice ofD(ti,j). In the case thatD(ti,j) is a tree
belief propagation is exact. In the more general case
whereD(ti,j) contains cycles, there are alternative
algorithms that are either exact (Cowell et al., 1999)
or approximate (Yedidia et al., 2003).

6.2 Packed Representations and Locality

One natural extension of our reranker is to adapt it to
candidate parses represented as a packed parse for-
est, so that it can operate on the base parser’s full
output instead of a limitedN -best list. However,
as we described in Section 3.1, our features are lo-
cally scoped with respect to hidden–variable interac-
tions but unrestricted regarding information derived
from the underlying candidate parses, which poses
a problem for the use of packed representations.
For instance, theUp/Down Path features (see Figure
2) enumerate the vertical sequences of nontermi-
nals that extend above and below a given headword.
We could restrict the features to local scope on the
candidate parses, allowing dynamic–programming
to be used to train the model with a packed rep-
resentation. However, even with these restrictions,
finding arg maxt

∑
h p(t,h | s,Θ) is NP–hard, and

the Viterbi approximationarg maxt,h p(t,h | s,Θ)
would have to be used (see Matsuzaki et al. (2005)).

6.3 Empirical Analysis of the Hidden Values

Our model makes no assumptions about the interpre-
tation of the hidden values assigned to words: dur-
ing training, the model simply learns a distribution
over global hidden–value assignments that is useful
in improving the log–likelihood of the training data.
Intuitively, however, we expect that the model will
learn to make hidden–value assignments that are rea-
sonable from a linguistic standpoint. In this section
we describe some empirical observations concern-
ing hidden values assigned by the model.

We established a corpus of parse trees with
hidden–value annotations, as follows. First, we find
the optimal parametersΘ∗ on the training set. For
every sentencesi in the training set, we then use
Θ∗ to find t∗i , the most probable candidate parse un-
der the model. Finally, we useΘ∗ to decodeh∗

i ,
the most probable global assignment of hidden val-
ues, for each parse treet∗i . We created a corpus of
(t∗i ,h

∗
i) pairs for the feature set defined by part–of–

speech hidden–value domains and standard depen-
dency structures. The remainder of this section de-
scribes trends for several of the most common part–
of–speech categories in the corpus.

As a first example, consider the hidden values
for the part–of–speechVB (infinitival verb). In the
majority of cases, words taggedVB either modify a

modal verb taggedMD (e.g., inthe new rate will/MD

be/VB payable) or the infinitival markerto (e.g., inin
an effort to streamline/VB bureaucracy). The statis-
tics of our corpus reflect this distinction. In 11,546
cases of theVB1 hidden value, 10,652 cases mod-
ified to, and 81 cases modified modals taggedMD.
In contrast, in 11,042 cases of theVB2 value, the
numbers were 8,354 and 599 for modification of
modals andto respectively, showing the opposite
preference. This polarization of hidden values al-
lows modifiers to theVB (e.g.,payablein the new
rate will be payable) to be sensitive to whether the
verb is modifying a modal orto.

In a related case, the hidden values for the part–
of–speechTO (corresponding to the wordto) also
show that the model is learning useful structure.
Consider cases whereto heads a clause which may
or may not have a subject (e.g., init expects〈its sales
to remain steady〉 vs. a proposal〈to ease reporting
requirements〉). We find that for hidden valuesTO1

andTO5 together, 946 out of 976 cases have a sub-
ject. In contrast, for the hidden valueTO4, only 29
out of 10,148 cases have a subject. This splitting
of the TO part–of–speech allows modifiers toto, or
words modified byto, to be sensitive to the presence
or absence of a subject in the clause headed byto.

Finally, consider the hidden values for the part–
of–speechNNS (plural noun). In this case, the model
distinguishes contexts where a plural noun acting as
the head of a noun–phrase is or isn’t modified by a
post–modifier (such as a prepositional phrase or rel-
ative clause). For hidden valueNNS3, 12,003 out
of the 12,664 instances in our corpus have a post–
modifier, but for hidden valueNNS5, only 4,099 of
the 39,763 occurrences have a post–modifier. Sim-
ilar contextual effects were observed for other noun
categories such as singular or proper nouns.

7 Conclusions and Future Research

The hidden–variable model is a novel method for
representing NLP structures in the reranking frame-
work. We can obtain versatile behavior from the
model simply by manipulating the definition of the
hidden–value domains, and we have experimented
with models that emulate word clustering, word re-
finement, and mappings from words into an existing
ontology. In the case of the parse reranking task,
the hidden–variable model achieves reranking per-

formance comparable to the reranking approach de-
scribed by Collins (2000), and the two rerankers can
be combined to yield an additive improvement.

Future work may consider the use of hidden–
value domains with mixed contents, such as a do-
main that contains 3 refinement–oriented lexical val-
ues and 3 clustering–oriented part–of–speech val-
ues. These mixed values would allow the hidden–
variable model to exploit interactions between clus-
tering and refinement at the level of words and de-
pendencies. Another area for future research is to
investigate the use of unlabeled data within the ap-
proach, for example by making use of clusters de-
rived from large amounts of unlabeled data (e.g., see
Miller et al. (2004)). Finally, future work may apply
the models to NLP tasks other than parsing.

Acknowledgements

We would like to thank Regina Barzilay, Igor
Malioutov, and Luke Zettlemoyer for their many
comments on the paper. We gratefully acknowl-
edge the support of the National Science Founda-
tion (under grants 0347631 and 0434222) and the
DARPA/SRI CALO project (through subcontract
No. 03-000215).

References
Daniel Bikel. 2000. A statistical model for parsing and word–

sense disambiguation. InProceedings of EMNLP.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jen-
nifer C. Lai, and Robert L. Mercer. 1992. Class–basedn–
gram models of natural language.Computational Linguis-
tics, 18(4):467–479.

Eugene Charniak and Mark Johnson. 2005. Coarse–to–finen–
best parsing and maxent discriminative reranking. InPro-
ceedings of the 43rd ACL.

Massimiliano Ciaramita and Mark Johnson. 2003. Supersense
tagging of unknown nouns in wordnet. InEMNLP 2003.

Stephen Clark and James R. Curran. 2004. Parsing the wsj
using ccg and log–linear models. InACL, pages 103–110.

Michael Collins and Nigel Duffy. 2002. New ranking algo-
rithms for parsing and tagging: Kernels over discrete struc-
tures, and the voted perceptron. InACL 2002.

Michael Collins. 1999. Head–Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University of
Pennsylvania, Philadelphia, PA.

Michael Collins. 2000. Discriminative reranking for natural
language parsing. InProceedings of the 17th ICML.

Michael Collins. 2002. Ranking algorithms for named entity
extraction: Boosting and the voted perceptron. InACL 2002.

Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and
David J. Spiegelhalter. 1999.Probabilistic Networks and
Expert Systems. Springer.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and
Stefan Riezler. 1999. Estimators for stochastic “unification–
based” grammars. InProceedings of the 37th ACL.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998.
Gradient–based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, November.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated corpus
of english: The penn treebank.Computational Linguistics,
19(2):313–330.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2005.
Probabilistic cfg with latent annotations. InACL.

George A. Miller, Richard Beckwith, Christiane Fellbaum,
Derek Gross, and Katherine Miller. 1993. Five papers on
wordnet. Technical report, Stanford University.

Scott Miller, Jethran Guinness, and Alex Zamanian. 2004.
Name tagging with word clusters and discriminative train-
ing. In HLT–NAACL, pages 337–342.

Franz Josef Och and Hermann Ney. 2002. Discriminative train-
ing and maximum entropy models for statistical machine
translation. InProceedings of the 40th ACL, pages 295–302.

Fernando C. N. Pereira, Naftali Tishby, and Lillian Lee. 1993.
Distributional clustering of english words. InProceedings
of the 31st ACL, pages 183–190.

Ariadna Quattoni, Michael Collins, and Trevor Darrell. 2005.
Conditional random fields for object recognition. InNIPS
17. MIT Press.

Adwait Ratnaparkhi, Salim Roukos, and R. Todd Ward. 1994.
A maximum entropy model for parsing. InICSLP 1994.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard S.
Crouch, John T. Maxwell III, and Mark Johnson. 2002.
Parsing the wall street journal using a lexical–functional
grammar and discriminative estimation techniques. InACL.

Libin Shen and Aravind K. Joshi. 2003. An svm–based vot-
ing algorithm with application to parse reranking. In Walter
Daelemans and Miles Osborne, editors,Proceedings of the
7th CoNLL, pages 9–16. Edmonton, Canada.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004. Dis-
criminative reranking for machine translation. InHLT–
NAACL, pages 177–184.

Marilyn A. Walker, Owen Rambow, and Monica Rogati. 2001.
Spot: A trainable sentence planner. InNAACL.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss,
2003. Exploring Artificial Intelligence in the New Millen-
nium, chapter 8: “Understanding Belief Propagation and Its
Generalizations”, pages 239–236. Science & Technology
Books.

