
Structured Prediction Models
via the Matrix-Tree Theorem

Terry Koo maestro@csail.mit.edu

Amir Globerson gamir@csail.mit.edu

Xavier Carreras carreras@csail.mit.edu

Michael Collins mcollins@csail.mit.edu

MIT Computer Science and Artificial
Intelligence Laboratory

Dependency parsing

John saw Mary*

Syntactic structure represented by head-modifier
dependencies

Projective vs. non-projective structures

saw a movie today that he likedJohn*

Non-projective structures allow crossing dependencies

Frequent in languages like Czech, Dutch, etc.

Non-projective parsing is max-spanning-tree (McDonald et
al., 2005)

Contributions of this work

Fundamental inference algorithms that sum over possible
structures:

Model type Inference Algorithm

HMM Forward-Backward
Graphical Model Belief Propagation
PCFG Inside-Outside
Projective Dep. Trees Inside-Outside
Non-projective Dep. Trees ??

This talk:

Inside-outside-style algorithms for non-projective dependency
structures

An application: training log-linear and max-margin parsers

Independently-developed work: Smith and Smith (2007),
McDonald and Satta (2007)

Overview

Background

Matrix-Tree-based inference

Experiments

Edge-factored structured prediction

1 2 30
sawJohn Mary*

A dependency tree y is a set of head-modifier dependencies
(McDonald et al., 2005; Eisner, 1996)

(h,m) is a dependency with feature vector f(x, h, m)

Y(x) is the set of all possible trees for sentence x

y∗ = argmax
y∈Y(x)

∑
(h,m)∈y

w · f(x, h, m)

Training log-linear dependency parsers

Given a training set {(xi, yi)}N
i=1, minimize

L(w) =
C

2
||w||2 −

N∑
i=1

log P (yi |xi;w)

Training log-linear dependency parsers

Given a training set {(xi, yi)}N
i=1, minimize

L(w) =
C

2
||w||2 −

N∑
i=1

log P (yi |xi;w)

Log-linear distribution over trees

P (y |x;w) =
1

Z(x;w)
exp

 ∑
(h,m)∈y

w · f(x, h, m)

Z(x;w) =

∑
y∈Y(x)

exp

 ∑
(h,m)∈y

w · f(x, h, m)

Training log-linear dependency parsers

Gradient-based optimizers evaluate L(w) and ∂L
∂w

L(w) =
C

2
||w||2 −

N∑
i=1

∑
(h,m)∈yi

w · f(xi, h, m)

C

2
||w||2 +

N∑
i=1

log Z(xi;w)

Main difficulty: computation of the partition functions

Training log-linear dependency parsers

Gradient-based optimizers evaluate L(w) and ∂L
∂w

∂L

∂w
= Cw −

N∑
i=1

∑
(h,m)∈yi

f(xi, h, m)

Cw +
N∑

i=1

∑
h′,m′

P (h′ → m′ |x;w)f(xi, h
′, m′)

The marginals are edge-appearance probabilities

P (h → m |x;w) =
∑

y∈Y(x) : (h,m)∈y

P (y |x;w)

Generalized log-linear inference

Vector θ with parameter θh,m for each dependency

P (y |x; θ) =
1

Z(x; θ)
exp

 ∑
(h,m)∈y

θh,m

Z(x; θ) =

∑
y∈Y(x)

exp

 ∑
(h,m)∈y

θh,m

P (h → m |x; θ) =

1

Z(x; θ)

∑
y∈Y(x) : (h,m)∈y

exp

 ∑
(h,m)∈y

θh,m

E.g., θh,m = w · f(x, h, m)

Applications of log-linear inference

Generalized inference engine that takes θ as input

Different definitions of θ can be used for log-linear or
max-margin training

w∗
LL = argmin

w

[
C

2
||w||2 −

N∑
i=1

log P (yi |xi;w)

]

w∗
MM = argmin

w

[
C

2
||w||2 +

N∑
i=1

max
y

(Ei,y −mi,y(w))

]

Exponentiated-gradient updates for max-margin models

Bartlett, Collins, Taskar and McAllester (2004)

Globerson, Koo, Carreras and Collins (2007)

Overview

Background

Matrix-Tree-based inference

Experiments

Single-root vs. multi-root structures

MarysawJohn* John saw Mary*

Multi-root structures allow multiple edges from *

Single-root structures have exactly one edge from *

Independent adaptations of the Matrix-Tree Theorem:
Smith and Smith (2007), McDonald and Satta (2007)

Matrix-Tree Theorem (Tutte, 1984)

Given:

1. Directed graph G

2. Edge weights θ

3. A node r in G

2

3

1
2

1 4

3

A matrix L(r) can be constructed whose determinant is the
sum of weighted spanning trees of G rooted at r

Matrix-Tree Theorem (Tutte, 1984)

Given:

1. Directed graph G

2. Edge weights θ

3. A node r in G

2

3

1
2

41

3

A matrix L(r) can be constructed whose determinant is the
sum of weighted spanning trees of G rooted at r∑

= exp {2 + 4}+ exp {1 + 3} = det(L(1))

Matrix-Tree Theorem (Tutte, 1984)

Given:

1. Directed graph G

2. Edge weights θ

3. A node r in G

2

3

1

1

3

2

4

A matrix L(r) can be constructed whose determinant is the
sum of weighted spanning trees of G rooted at r∑

= exp {2 + 4}+ exp {1 + 3} = det(L(1))

Matrix-Tree Theorem (Tutte, 1984)

Given:

1. Directed graph G

2. Edge weights θ

3. A node r in G

2

3

1

1

3

2

4

A matrix L(r) can be constructed whose determinant is the
sum of weighted spanning trees of G rooted at r∑

= exp {2 + 4}+ exp {1 + 3} = det(L(1))

Multi-root partition function

10 2 3
John saw Mary*

Edge weights θ, root r = 0

det(L(0)) = non-projective multi-root partition function

Construction of L(0)

L(0) has a simple construction

off-diagonal: L
(0)
h,m = − exp {θh,m}

on-diagonal: L(0)
m,m =

n∑
h′=0

exp {θh,m}

E.g., L
(0)
3,3

10 2 3
John saw Mary*

The determinant of L(0) can be evaluated in O(n3) time

Single-root vs. multi-root structures

MarysawJohn* John saw Mary*

Multi-root structures allow multiple edges from *

Single-root structures have exactly one edge from *

Independent adaptations of the Matrix-Tree Theorem:
Smith and Smith (2007), McDonald and Satta (2007)

Single-root partition function

Näıve method for computing the single-root non-projective
partition function

10 2 3
John saw Mary*

Single-root partition function

Näıve method for computing the single-root non-projective
partition function

10 2 3
John saw Mary*

Exclude all root edges except (0, 1)

Computing n determinants requires O(n4) time

Single-root partition function

Näıve method for computing the single-root non-projective
partition function

10 2 3
John saw Mary*

Exclude all root edges except (0, 2)

Computing n determinants requires O(n4) time

Single-root partition function

Näıve method for computing the single-root non-projective
partition function

10 2 3
John saw Mary*

Exclude all root edges except (0, 3)

Computing n determinants requires O(n4) time

Single-root partition function

An alternate matrix L̂ can be constructed such that
det(L̂) is the single-root partition function

first row: L̂1,m = exp {θ0,m}

other rows, on-diagonal: L̂m,m =
n∑

h′=1

exp {θh,m}

other rows, off-diagonal: L̂h,m = − exp {θh,m}

Single-root partition function requires O(n3) time

Non-projective marginals

The log-partition generates the marginals

P (h → m |x; θ) =
∂ log Z(x; θ)

∂θh,m

=
∂ log det(L̂)

∂θh,m

=
∑

h′,m′

∂ log det(L̂)

∂L̂h′,m′

∂L̂h′,m′

∂θh,m

Derivative of log-determinant:
∂ log det(L̂)

∂L̂
=

(
L̂−1

)T

Complexity dominated by matrix inverse, O(n3)

Summary of non-projective inference

Partition function: matrix determinant, O(n3)

Marginals: matrix inverse, O(n3)

Single-root inference: L̂

Multi-root inference: L(0)

Overview

Background

Matrix-Tree-based inference

Experiments

Log-linear and max-margin training

Log-linear training

w∗
LL = argmin

w

[
C

2
||w||2 −

N∑
i=1

log P (yi |xi;w)

]

Max-margin training

w∗
MM = argmin

w

[
C

2
||w||2 +

N∑
i=1

max
y

(Ei,y −mi,y(w))

]

Multilingual parsing experiments

Six languages from CoNLL 2006 shared task

Training algorithms: averaged perceptron, log-linear
models, max-margin models

Projective models vs. non-projective models

Single-root models vs. multi-root models

Multilingual parsing experiments

Dutch
(4.93%cd)

Projective
Training

Non-Projective
Training

Perceptron 77.17 78.83
Log-Linear 76.23 79.55

Max-Margin 76.53 79.69

Non-projective training helps on non-projective languages

Multilingual parsing experiments

Spanish
(0.06%cd)

Projective
Training

Non-Projective
Training

Perceptron 81.19 80.02
Log-Linear 81.75 81.57

Max-Margin 81.71 81.93

Non-projective training doesn’t hurt on projective
languages

Multilingual parsing experiments

Results across all 6 languages (Arabic, Dutch, Japanese,
Slovene, Spanish, Turkish)

Perceptron 79.05
Log-Linear 79.71

Max-Margin 79.82

Log-linear and max-margin parsers show improvement over
perceptron-trained parsers

Improvements are statistically significant (sign test)

Summary

Inside-outside-style inference algorithms for non-projective
structures

Application of the Matrix-Tree Theorem

Inference for both multi-root and single-root structures

Empirical results

Non-projective training is good for non-projective languages

Log-linear and max-margin parsers outperform perceptron
parsers

Thanks!

Thanks for listening!

Thanks!

Challenges for future research

State-of-the-art performance is obtained by higher-order
models (McDonald and Pereira, 2006; Carreras, 2007)

Higher-order non-projective inference is nontrivial
(McDonald and Pereira, 2006; McDonald and Satta, 2007)

Approximate inference may work well in practice

Reranking of k-best spanning trees (Hall, 2007)

