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Dependency parsing

s John saw Mary

= Syntactic structure represented by head-modifier
dependencies



Projective vs. non-projective structures

S John saw a movie today that he liked

= Non-projective structures allow crossing dependencies
= Frequent in languages like Czech, Dutch, etc.

» Non-projective parsing is max-spanning-tree (McDonald et
al., 2005)



Contributions of this work

= Fundamental inference algorithms that sum over possible
structures:

Model type Inference Algorithm
HMM Forward-Backward
Graphical Model Belief Propagation
PCFG Inside-Outside
Projective Dep. Trees Inside-Outside
Non-projective Dep. Trees 77
= This talk:
m [nside-outside-style algorithms for non-projective dependency
structures

m An application: training log-linear and max-margin parsers

s Independently-developed work: Smith and Smith (2007),
McDonald and Satta (2007)



Overview

= Background

» Matrix- Tree-based inference

= Experiments



Edge-factored structured prediction

A

0 1 2 3
S John saw Mary

= A dependency tree vy is a set of head-modifier dependencies
(McDonald et al., 2005; Eisner, 1996)

= (h,m) is a dependency with feature vector f(x, h, m)

= )(x) is the set of all possible trees for sentence x

y* = argmax » w-f(x,h,m)
yeY(x) (h,m)€ey



Training log-linear dependency parsers

N

" Given a training set {(x;, ;) };{, minimize

C , 3
Liw) = S lwl® = >_log Py: |x:; w)
i=1



Training log-linear dependency parsers

® Given a training set {(x;,v;)}~,, minimize
C , 3
Liw) = SIWIP = 3 log Py x:w)
i=1

= Log-linear distribution over trees

( )

1
Ply|x;w) = —expq Y, w-f(x,h,m);
Z(X7 W) \(h,m)Ey J
Z(x;w) = Y expq » w-f(x,h,m);
yeYV(x) ( (h,m)€y )



Training log-linear dependency parsers

" Gradient-based optimizers evaluate L(w) and g—VLV

Hw) = SIwWIP =3 3 we G hm)

N
—|—ZlogZ(xi;W)

1=1

= Main difficulty: computation of the partition functions



Training log-linear dependency parsers

" Gradient-based optimizers evaluate L(w) and g—VLV

L wey S fxhm)
aw T W () 7m

N
+> Y P —m'|x;w)f(x;, h',m)

i=1 h/ ,m/

s [he marginals are edge-appearance probabilities

P(h—m|x;w) = Z Py |x;w)

yeY(x): (h,m)€y



Generalized log-linear inference

= Vector 6 with parameter 0}, ,,, for each dependency

P(y|x;0)

Z(x;0)

P(h — m|x;0)

1
Z(x;0)

Z exXP {

exp <

yeY(x)

"Eg, Opm =w-f(x,h,m)

’

VY




Applications of log-linear inference

s Generalized inference engine that takes 0 as input

s Different definitions of 8 can be used for log-linear or
max-margin training

) | C Al
W), = argmin 2||W2210gP(yi\Xz-;w)}
w i i=1
.| C o N
Wins = angin |G 1wl Y mgx (B, - sy ()
w i i—=1

» Exponentiated-gradient updates for max-margin models
= Bartlett, Collins, Taskar and McAllester (2004)

= Globerson, Koo, Carreras and Collins (2007)



Overview

= Background

m Matrix- Tree-based inference

= Experiments



Single-root vs. multi-root structures

AN~

xR John Saw Mary ® John saw Mary

= Multi-root structures allow multiple edges from %
» Single-root structures have exactly one edge from %

= [ndependent adaptations of the Matrix-Tree Theorem:
Smith and Smith (2007), McDonald and Satta (2007)



Matrix-Tree Theorem (Tutte, 1984)

= Given:
1. Directed graph G
2. Edge weights 0

3. Anoderind

A matrix L") can be constructed whose determinant is the
sum of weighted spanning trees of GG rooted at r



Matrix-Tree Theorem (Tutte, 1984)

= Given: ®_2|>

1. Directed graph G

2. Edge weights 0

3. Anoderin(@ @

A matrix L") can be constructed whose determinant is the
sum of weighted spanning trees of GG rooted at r

> = exp{2+4}



Matrix-Tree Theorem (Tutte, 1984)

= Given:
1. Directed graph G
2. Edge weights 0 3

3. Anoderin(@

A matrix L") can be constructed whose determinant is the
sum of weighted spanning trees of GG rooted at r

> = exp{2+4} +exp{l+3}



Matrix-Tree Theorem (Tutte, 1984)

= Given:
1. Directed graph G
2. Edge weights 0 3

3. Anoderin(@

A matrix L") can be constructed whose determinant is the
sum of weighted spanning trees of GG rooted at r

Y = exp{2+4}+exp{l+3} = det(L")



Multi-root partition function

,,/\?\‘
II
VR ‘I p

= Edge weights 0, root » = 0

® det(L”)) = non-projective multi-root partition function



Construction of L(©)

" .09 has a simple construction

i(z(?Zn — —&Xp {Hh,m}

on-diagonal: Lffb’)m = ZGXP{Qh,m}

off-diagonal: L

®* The determinant of L(? can be evaluated in O(n?) time



Single-root vs. multi-root structures

AN~

xR John Saw Mary ® John saw Mary

= Multi-root structures allow multiple edges from %
» Single-root structures have exactly one edge from %

= [ndependent adaptations of the Matrix-Tree Theorem:
Smith and Smith (2007), McDonald and Satta (2007)



Single-root partition function

= Naive method for computing the single-root non-projective
partition function




Single-root partition function

= Naive method for computing the single-root non-projective
partition function

» Exclude all root edges except (0, 1)

* Computing n determinants requires O(n*) time



Single-root partition function

= Naive method for computing the single-root non-projective
partition function

g ' N
Il
VR ‘| y

= Exclude all root edges except (0, 2)

* Computing n determinants requires O(n*) time



Single-root partition function

= Naive method for computing the single-root non-projective
partition function

= Exclude all root edges except (0, 3)

» Computing n determinants requires O(n*) time



Single-root partition function

" An alternate matrix L can be constructed such that

A

det(L) is the single-root partition function

A

first row: Ly, = exp{fom}
other rows, on-diagonal: ﬁm,m = Z exp {0hm }
h'=1
other rows, off-diagonal: Eh,m = —exp{fnm}

= Single-root partition function requires O(n?) time



Non-projective marginals

= [he log-partition generates the marginals

Olog Z(x;0) 9 log det (L)
Ph—m|x;0) = T = 90,

B Z 0 lOg det(lAL) 8ih/,m/
h m/ 8l/;h/7m/ aeh,m

AN

0logdet(L) (z_l)T

= Derivative of log-determinant: —

oL

» Complexity dominated by matrix inverse, O(n?)




Summary of non-projective inference

= Partition function: matrix determinant, O(n?)

* Marginals: matrix inverse, O(n?)

A

" Single-root inference: L

" Multi-root inference: L(®)



Overview

= Background

» Matrix- Tree-based inference

= Experiments



Log-linear and max-margin training

= Log-linear training

* ey, &
Wiy = anguin |G Wl = Y- log P xiw)
4 i=1

= Max-margin training

.| C al
Wins = argnin | SIWIE+ 3 max (B, iy (w)
4 i=1



Multilingual parsing experiments

» Six languages from CoNLL 2006 shared task

= Training algorithms: averaged perceptron, log-linear
models, max-margin models

= Projective models vs. non-projective models

= Single-root models vs. multi-root models



Multilingual parsing experiments

Dutch  Projective Non-Projective

(4.93%cd)  Training Training
Perceptron  77.17 (38.83
Log-Linear  76.23 79.55
Max-Margin ~ 76.53 79.69

= Non-projective training helps on non-projective languages



Multilingual parsing experiments

Spanish Projective  Non-Projective

(0.06%cd)  Training Training

Perceptron  31.19 30.02

Log-Linear 81.75 31.57
Max-Margin  31.71 31.93

= Non-projective training doesn't hurt on projective
languages



Multilingual parsing experiments

= Results across all 6 languages (Arabic, Dutch, Japanese,
Slovene, Spanish, Turkish)

Perceptron 79.05
Log-Linear 79.71
Max-Margin  79.82

= Log-linear and max-margin parsers show improvement over
perceptron-trained parsers

= Improvements are statistically significant (sign test)



Summary

= [nside-outside-style inference algorithms for non-projective
structures

= Application of the Matrix-Tree Theorem

= |nference for both multi-root and single-root structures

= Empirical results
= Non-projective training is good for non-projective languages

s Log-linear and max-margin parsers outperform perceptron
parsers



Thanks!

Thanks for listening!



Thanks!



Challenges for future research

» State-of-the-art performance is obtained by higher-order
models (McDonald and Pereira, 2006; Carreras, 2007)

» Higher-order non-projective inference is nontrivial
(McDonald and Pereira, 2006; McDonald and Satta, 2007)

s Approximate inference may work well in practice

= Reranking of k-best spanning trees (Hall, 2007)



