Efficient Third-Order Dependency Parsers

Terry Koo and Michael Collins MIT CSAIL

Dependency Parsing

- Syntax represented by head-modifier dependencies
- Parsing is a search for the highest-scoring tree
 - $y^{\star}(\mathbf{x}) = \underset{y \in \mathcal{Y}(\mathbf{x})}{\operatorname{argmax}} \operatorname{SCORE}(\mathbf{x}, y)$

Factored (Graph-based) Parsing

Vertical Context Third-Order mmS gModel I grandchild grand-sibling mmdependency sibling Horizontal Context

Vertical Context	Factorization	Accuracy	Complexity
	Dep	90.9	$O(n^3)$
g h m g grandchild	Dep+Sib	91.5	$O(n^3)$
	Dep+Sib+Grand	92.0	$O(n^4)$
	Model I	93.0	$O(n^4)$
	Model 2	92.9	$O(n^4)$
h m dependency	h s m sibling	n t s m tri-sibling	
	Horizontal Contex		

First-Order Parser

• Eisner (2000) algorithm: $O(n^3)$

Complete Span A "half-constituent" Incomplete Span A dependency

m

h

First-Order Parser

- Eisner (2000) algorithm: $O(n^3)$
 - Derivation of complete and incomplete spans:

• Eisner (2000) algorithm: $O(n^3)$

• Eisner (2000) algorithm: $O(n^3)$

Second-Order Sibling Parser

• McDonald (2006) and Eisner (1996): $O(n^3)$

Introduce a third type of span:

S

Sibling Span A pair of adjacent modifiers

m

Model 0

• Model 0, all grandparents: $O(n^4)$

Superficially similar to parent annotation in CFGs

Model 0: Derivations

Grandparent indices propagated to smaller g-spans

• 4 active indices, runtime $O(n^4)$

Model 1

- Model 1, grand-siblings: $O(n^4)$
 - Introduce a third type of span:

Sibling G-Span A pair of adjacent modifiers with their shared head

Model 1: Grand-Sibling Scores

• Model 1, grand-siblings: $O(n^4)$

Scores grand-sibling interactions

Model 1: Grand-Sibling Scores

• Model 1, grand-siblings: $O(n^4)$

Scores grand-sibling interactions

Model 1: Derivations

• Model 1, grand-siblings: $O(n^4)$

Model 2

- Model 2, grand-siblings and tri-siblings: $O(n^4)$
 - Introduce a fourth type of span:

Incomplete S-Span A dependency with its next-inner modifier

Model 2: Tri-Sibling Scores

• Model 2, grand-siblings and tri-siblings: $O(n^4)$

Scores tri-sibling interactions

Model 2: Tri-Sibling Scores

• Model 2, grand-siblings and tri-siblings: $O(n^4)$

Scores tri-sibling interactions

Model 2: Grand-Sibling Scores

• Model 2, grand-siblings and tri-siblings: $O(n^4)$

Scores grand-sibling interactions

Model 2: Grand-Sibling Scores

• Model 2, grand-siblings and tri-siblings: $O(n^4)$

Scores grand-sibling interactions

Model 2: Derivations

• Model 2, grand-siblings and tri-siblings: $O(n^4)$

Summary of Parsing Algorithms

- Model 0 parses an all-grandchildren factorization
- Model 1 parses an all-grand-siblings factorization
- Model 2 parses all-tri-siblings and some grand-siblings
- All parsers require $O(n^4)$ time and $O(n^3)$ space
 - Identical to Carreras (2007) second-order
- Models 1 and 2 are asymptotically fast:
 - Number of third-order parts is $\Omega(n^4)$

Parsing Experiments

- English Penn Treebank (Penn2Malt conversion)
- Czech Prague Dependency Treebank
- Averaged perceptron training
- Features based on words and POS tags
- Coarse-to-fine pruning (Carreras et al., 2008)

English and Czech Parsing

Parser	English	Czech
McDonald and Pereira (2006)	91.5	85.2
Koo, Carreras and Collins (2008), Normal	92.0	86. I
Model I	93.0	87.4
Model 2	92.9	87.4
Koo, Carreras and Collins (2008), Semisup	93.2	87.I

• Unlabeled attachment score on the test sets

Third-order is comparable to semi-supervised features

Final Remarks

- Third-order factorizations can be parsed in $O(n^4)$
- Third-parsers work well in practice
- Possible extensions:
 - Recovering word senses or dependency labels
 - Full head automata: e.g, TAG-style parsing (Carreras et al., 2008)
 - Increasing context to fourth-order or more