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Abstract

This paper introduces algorithms for non-
projective parsing based on dual decomposi-
tion. We focus on parsing algorithms for non-
projective head automata, a generalization of
head-automata models to non-projective struc-
tures. The dual decomposition algorithms are
simple and efficient, relying on standard dy-
namic programming and minimum spanning
tree algorithms. They provably solve an LP
relaxation of the non-projective parsing prob-
lem. Empirically the LP relaxation is very of-
ten tight: for many languages, exact solutions
are achieved on over 98% of test sentences.
The accuracy of our models is higher than pre-
vious work on a broad range of datasets.

1 Introduction

Non-projective dependency parsing is useful for
many languages that exhibit non-projective syntactic
structures. Unfortunately, the non-projective parsing
problem is known to be NP-hard for all but the sim-
plest models (McDonald and Satta, 2007). There has
been a long history in combinatorial optimization of
methods that exploit structure in complex problems,
using methods such as dual decomposition or La-
grangian relaxation (Lemaréchal, 2001). Thus far,
however, these methods are not widely used in NLP.

This paper introduces algorithms for non-
projective parsing based on dual decomposition. We
focus on parsing algorithms for non-projective head
automata, a generalization of the head-automata
models of Eisner (2000) and Alshawi (1996) to non-
projective structures. These models include non-
projective dependency parsing models with higher-
order (e.g., sibling and/or grandparent) dependency
relations as a special case. Although decoding of full
parse structures with non-projective head automata
is intractable, we leverage the observation that key
components of the decoding can be efficiently com-
puted using combinatorial algorithms. In particular,

1. Decoding for individual head-words can be ac-
complished using dynamic programming.

2. Decoding for arc-factored models can be ac-
complished using directed minimum-weight
spanning tree (MST) algorithms.

The resulting parsing algorithms have the following
properties:

• They are efficient and easy to implement, relying
on standard dynamic programming and MST al-
gorithms.

• They provably solve a linear programming (LP)
relaxation of the original decoding problem.

• Empirically the algorithms very often give an ex-
act solution to the decoding problem, in which
case they also provide a certificate of optimality.

In this paper we first give the definition for non-
projective head automata, and describe the parsing
algorithm. The algorithm can be viewed as an in-
stance of Lagrangian relaxation; we describe this
connection, and give convergence guarantees for the
method. We describe a generalization to models
that include grandparent dependencies. We then in-
troduce a perceptron-driven training algorithm that
makes use of point 1 above.

We describe experiments on non-projective pars-
ing for a number of languages, and in particu-
lar compare the dual decomposition algorithm to
approaches based on general-purpose linear pro-
gramming (LP) or integer linear programming (ILP)
solvers (Martins et al., 2009). The accuracy of our
models is higher than previous work on a broad
range of datasets. The method gives exact solutions
to the decoding problem, together with a certificate
of optimality, on over 98% of test examples for many
of the test languages, with parsing times ranging be-
tween 0.021 seconds/sentence for the most simple
languages/models, to 0.295 seconds/sentence for the



most complex settings. The method compares favor-
ably to previous work using LP/ILP formulations,
both in terms of efficiency, and also in terms of the
percentage of exact solutions returned.

While the focus of the current paper is on non-
projective dependency parsing, the approach opens
up new ways of thinking about parsing algorithms
for lexicalized formalisms such as TAG (Joshi and
Schabes, 1997), CCG (Steedman, 2000), and pro-
jective head automata.

2 Related Work

McDonald et al. (2005) describe MST-based parsing
for non-projective dependency parsing models with
arc-factored decompositions; McDonald and Pereira
(2006) make use of an approximate (hill-climbing)
algorithm for parsing with more complex models.
McDonald and Pereira (2006) and McDonald and
Satta (2007) describe complexity results for non-
projective parsing, showing that parsing for a variety
of models is NP-hard. Riedel and Clarke (2006) de-
scribe ILP methods for the problem; Martins et al.
(2009) recently introduced alternative LP and ILP
formulations. Our algorithm differs in that we do not
use general-purpose LP or ILP solvers, instead using
an MST solver in combination with dynamic pro-
gramming; thus we leverage the underlying struc-
ture of the problem, thereby deriving more efficient
decoding algorithms.

Both dual decomposition and Lagrangian relax-
ation have a long history in combinatorial optimiza-
tion. Our work was originally inspired by recent
work on dual decomposition for inference in graph-
ical models (Wainwright et al., 2005; Komodakis
et al., 2007). However, the non-projective parsing
problem has a very different structure from these
models, and the decomposition we use is very dif-
ferent in nature from those used in graphical mod-
els. Other work has made extensive use of de-
composition approaches for efficiently solving LP
relaxations for graphical models (e.g., Sontag et
al. (2008)). Methods that incorporate combinato-
rial solvers within loopy belief propagation (LBP)
(Duchi et al., 2007; Smith and Eisner, 2008) are
also closely related to our approach. Unlike LBP,
our method has strong theoretical guarantees, such
as guaranteed convergence and the possibility of a
certificate of optimality.

Finally, in other recent work, Rush et al. (2010)
describe dual decomposition approaches for other
NLP problems.

3 Sibling Models

This section describes a particular class of models,
sibling models; the next section describes a dual-
decomposition algorithm for decoding these models.

Consider the dependency parsing problem for a
sentence with n words. We define the index set
for dependency parsing to be I = {(i, j) : i ∈
{0 . . . n}, j ∈ {1 . . . n}, i �= j}. A dependency
parse is a vector y = {y(i, j) : (i, j) ∈ I}, where
y(i, j) = 1 if a dependency with head word i and
modifier j is in the parse, 0 otherwise. We use i = 0
for the root symbol. We define Y to be the set of all
well-formed non-projective dependency parses (i.e.,
the set of directed spanning trees rooted at node 0).
Given a function f : Y �→ R that assigns scores to
parse trees, the optimal parse is

y
∗ = argmax

y∈Y
f(y) (1)

A particularly simple definition of f(y) is f(y) =�
(i,j)∈I y(i, j)θ(i, j) where θ(i, j) is the score for

dependency (i, j). Models with this form are often
referred to as arc-factored models. In this case the
optimal parse tree y∗ can be found efficiently using
MST algorithms (McDonald et al., 2005).

This paper describes algorithms that compute y∗

for more complex definitions of f(y); in this sec-
tion, we focus on algorithms for models that capture
interactions between sibling dependencies. To this
end, we will find it convenient to define the follow-
ing notation. Given a vector y, define

y|i = {y(i, j) : j = 1 . . . n, j �= i}

Hence y|i specifies the set of modifiers to word i;
note that the vectors y|i for i = 0 . . . n form a parti-
tion of the full set of variables.

We then assume that f(y) takes the form

f(y) =
n�

i=0

fi(y|i) (2)

Thus f(y) decomposes into a sum of terms, where
each fi considers modifiers to the i’th word alone.

In the general case, finding y∗ =
argmaxy∈Y f(y) under this definition of f(y)
is an NP-hard problem. However for certain



definitions of fi, it is possible to efficiently compute
argmaxy|i∈Zi

fi(y|i) for any value of i, typically
using dynamic programming. (Here we use Zi to
refer to the set of all possible values for y|i: specifi-
cally, Z0 = {0, 1}n and for i �= 0, Zi = {0, 1}n−1.)
In these cases we can efficiently compute

z
∗ = argmax

z∈Z
f(z) = argmax

z∈Z

�

i

fi(z|i) (3)

where Z = {z : z|i ∈ Zi for i = 0 . . . n} by
simply computing z∗|i = argmaxz|i∈Zi

fi(z|i) for
i = 0 . . . n. Eq. 3 can be considered to be an approx-
imation to Eq. 1, where we have replaced Y with
Z . We will make direct use of this approximation
in the dual decomposition parsing algorithm. Note
that Y ⊆ Z , and in all but trivial cases, Y is a strict
subset of Z . For example, a structure z ∈ Z could
have z(i, j) = z(j, i) = 1 for some (i, j); it could
contain longer cycles; or it could contain words that
do not modify exactly one head. Nevertheless, with
suitably powerful functions fi—for example func-
tions based on discriminative models—z∗ may be a
good approximation to y∗. Later we will see that
dual decomposition can effectively use MST infer-
ence to rule out ill-formed structures.

We now give the main assumption underlying sib-
ling models:

Assumption 1 (Sibling Decompositions) A model
f(y) satisfies the sibling-decomposition assumption
if: 1) f(y) =

�n
i=0 fi(y|i) for some set of functions

f0 . . . fn. 2) For any i ∈ {0 . . . n}, for any value
of the variables u(i, j) ∈ R for j = 1 . . . n, it is
possible to compute

argmax
y|i∈Zi



fi(y|i)−
�

j

u(i, j)y(i, j)





in polynomial time.

The second condition includes additional terms in-
volving u(i, j) variables that modify the scores of
individual dependencies. These terms are benign for
most definitions of fi, in that they do not alter de-
coding complexity. They will be of direct use in the
dual decomposition parsing algorithm.

Example 1: Bigram Sibling Models. Recall that
y|i is a binary vector specifying which words are
modifiers to the head-word i. Define l1 . . . lp to be

the sequence of left modifiers to word i under y|i,
and r1 . . . rq to be the set of right modifiers (e.g.,
consider the case where n = 5, i = 3, and we have
y(3, 1) = y(3, 5) = 0, and y(3, 2) = y(3, 4) = 1:
in this case p = 1, l1 = 2, and q = 1, r1 = 4). In
bigram sibling models, we have

fi(y|i) =
p+1�

k=1

gL(i, lk−1, lk) +
q+1�

k=1

gR(i, rk−1, rk)

where l0 = r0 = START is the initial state, and
lp+1 = rq+1 = END is the end state. The functions
gL and gR assign scores to bigram dependencies to
the left and right of the head. Under this model cal-
culating argmaxy|i∈Zi

�
fi(y|i)−

�
j u(i, j)y(i, j)

�

takes O(n2) time using dynamic programming,
hence the model satisfies Assumption 1.

Example 2: Head Automata Head-automata
models constitute a second important model type
that satisfy the sibling-decomposition assumption
(bigram sibling models are a special case of head
automata). These models make use of functions
gR(i, s, s�, r) where s ∈ S, s� ∈ S are variables in a
set of possible states S, and r is an index of a word
in the sentence such that i < r ≤ n. The function
gR returns a cost for taking word r as the next depen-
dency, and transitioning from state s to s�. A similar
function gL is defined for left modifiers. We define

fi(y|i, s0 . . . sq, t0 . . . tp) =
q�

k=1

gR(i, sk−1, sk, rk) +
p�

k=1

gL(i, tk−1, tk, ll)

to be the joint score for dependencies y|i, and left
and right state sequences s0 . . . sq and t0 . . . tp. We
specify that s0 = t0 = START and sq = tp = END.
In this case we define

fi(y|i) = max
s0...sq ,t0...tp

fi(y|i, s0 . . . sq, t0 . . . tp)

and it follows that argmaxy|i∈Zi
fi(y|i) can be com-

puted in O(n|S|2) time using a variant of the Viterbi
algorithm, hence the model satisfies the sibling-
decomposition assumption.

4 The Parsing Algorithm

We now describe the dual decomposition parsing al-
gorithm for models that satisfy Assumption 1. Con-
sider the following generalization of the decoding



Set u(1)(i, j)← 0 for all (i, j) ∈ I
for k = 1 to K do

y(k) ← argmax
y∈Y

�

(i,j)∈I

�
γ(i, j) + u(k)(i, j)

�
y(i, j)

for i ∈ {0 . . . n},

z(k)
|i ← argmax

z|i∈Zi

(fi(z|i)−
�

j

u(k)(i, j)z(i, j))

if y(k)(i, j) = z(k)(i, j) for all (i, j) ∈ I then

return (y(k), z(k))
for all (i, j) ∈ I,
u(k+1)(i, j)← u(k)(i, j)+αk(z(k)(i, j)−y(k)(i, j))

return (y(K), z(K))

Figure 1: The parsing algorithm for sibling decompos-
able models. αk ≥ 0 for k = 1 . . . K are step sizes, see
Appendix A for details.

problem from Eq. 1, where f(y) =
�

i fi(y|i),
h(y) =

�
(i,j)∈I γ(i, j)y(i, j), and γ(i, j) ∈ R for

all (i, j):1

argmax
z∈Z,y∈Y

f(z) + h(y) (4)

such that z(i, j) = y(i, j) for all (i, j) ∈ I (5)

Although the maximization w.r.t. z is taken over the
set Z , the constraints in Eq. 5 ensure that z = y for
some y ∈ Y , and hence that z ∈ Y .

Without the z(i, j) = y(i, j) constraints, the
objective would decompose into the separate max-
imizations z∗ = argmaxz∈Z f(z), and y∗ =
argmaxy∈Y h(y), which can be easily solved us-
ing dynamic programming and MST, respectively.
Thus, it is these constraints that complicate the op-
timization. Our approach gets around this difficulty
by introducing new variables, u(i, j), that serve to
enforce agreement between the y(i, j) and z(i, j)
variables. In the next section we will show that these
u(i, j) variables are actually Lagrange multipliers
for the z(i, j) = y(i, j) constraints.

Our parsing algorithm is shown in Figure 1. At
each iteration k, the algorithm finds y(k) ∈ Y us-
ing an MST algorithm, and z(k) ∈ Z through sep-
arate decoding of the (n + 1) sibling models. The
u(k) variables are updated if y(k)(i, j) �= z(k)(i, j)

1This is equivalent to Eq. 1 when γ(i, j) = 0 for all (i, j).
In some cases, however, it is convenient to have a model with
non-zero values for the γ variables; see the Appendix. Note that
this definition of h(y) allows argmaxy∈Y h(y) to be calculated
efficiently, using MST inference.

for some (i, j); these updates modify the objective
functions for the two decoding steps, and intuitively
encourage the y(k) and z(k) variables to be equal.

4.1 Lagrangian Relaxation

Recall that the main difficulty in solving Eq. 4 was
the z = y constraints. We deal with these con-
straints using Lagrangian relaxation (Lemaréchal,
2001). We first introduce Lagrange multipliers u =
{u(i, j) : (i, j) ∈ I}, and define the Lagrangian

L(u, y, z) = (6)

f(z) + h(y) +
�

(i,j)∈I
u(i, j)

�
y(i, j)− z(i, j)

�

If L∗ is the optimal value of Eq. 4 subject to the
constraints in Eq. 5, then for any value of u,

L
∗ = max

z∈Z,y∈Y,y=z
L(u, y, z) (7)

This follows because if y = z, the right term in Eq. 6
is zero for any value of u. The dual objective L(u)
is obtained by omitting the y = z constraint:

L(u) = max
z∈Z,y∈Y

L(u, y, z)

= max
z∈Z

�
f(z)−

�

i,j

u(i, j)z(i, j)
�

+ max
y∈Y

�
h(y) +

�

i,j

u(i, j)y(i, j)
�
.

Since L(u) maximizes over a larger space (y may
not equal z), we have that L∗ ≤ L(u) (compare this
to Eq. 7). The dual problem, which our algorithm
optimizes, is to obtain the tightest such upper bound,

(Dual problem) min
u∈R|I|

L(u). (8)

The dual objective L(u) is convex, but not differen-
tiable. However, we can use a subgradient method
to derive an algorithm that is similar to gradient de-
scent, and which minimizes L(u). A subgradient of
a convex function L(u) at u is a vector du such that
for all v ∈ R|I|, L(v) ≥ L(u) + du · (v − u). By
standard results,

du(k) = y
(k) − z

(k)

is a subgradient for L(u) at u = u(k), where z(k) =
argmaxz∈Z f(z)−

�
i,j u(k)(i, j)z(i, j) and y(k) =



argmaxy∈Y h(y) +
�

i,j u(k)(i, j)y(i, j). Subgra-
dient optimization methods are iterative algorithms
with updates that are similar to gradient descent:

u
(k+1) = u

(k) − αkdu(k) = u
(k) − αk(y(k) − z

(k)),

where αk is a step size. It is easily verified that the
algorithm in Figure 1 uses precisely these updates.

4.2 Formal Guarantees

With an appropriate choice of the step sizes αk, the
subgradient method can be shown to solve the dual
problem, i.e.

lim
k→∞

L(u(k)) = min
u

L(u).

See Korte and Vygen (2008), page 120, for details.
As mentioned before, the dual provides an up-

per bound on the optimum of the primal problem
(Eq. 4),

max
z∈Z,y∈Y,y=z

f(z) + h(y) ≤ min
u∈R|I|

L(u). (9)

However, we do not necessarily have strong
duality—i.e., equality in the above equation—
because the sets Z and Y are discrete sets. That
said, for some functions h(y) and f(z) strong du-
ality does hold, as stated in the following:

Theorem 1 If for some k ∈ {1 . . . K} in the al-
gorithm in Figure 1, y(k)(i, j) = z(k)(i, j) for all
(i, j) ∈ I, then (y(k), z(k)) is a solution to the max-
imization problem in Eq. 4.

Proof. We have that f(z(k)) + h(y(k)) =
L(u(k), z(k), y(k)) = L(u(k)), where the last equal-
ity is because y(k), z(k) are defined as the respective
argmax’s. Thus, the inequality in Eq. 9 is tight, and
(y(k), z(k)) and u(k) are primal and dual optimal.

Although the algorithm is not guaranteed to sat-
isfy y(k) = z(k) for some k, by Theorem 1 if it does
reach such a state, then we have the guarantee of an
exact solution to Eq. 4, with the dual solution u pro-
viding a certificate of optimality. We show in the
experiments that this occurs very frequently, in spite
of the parsing problem being NP-hard.

It can be shown that Eq. 8 is the dual of an LP
relaxation of the original problem. When the con-
ditions of Theorem 1 are satisfied, it means that the
LP relaxation is tight for this instance. For brevity

we omit the details, except to note that when the LP
relaxation is not tight, the optimal primal solution to
the LP relaxation could be recovered by averaging
methods (Nedić and Ozdaglar, 2009).

5 Grandparent Dependency Models

In this section we extend the approach to consider
grandparent relations. In grandparent models each
parse tree y is represented as a vector

y = {y(i, j) : (i, j) ∈ I} ∪ {y↑(i, j) : (i, j) ∈ I}

where we have added a second set of duplicate vari-
ables, y↑(i, j) for all (i, j) ∈ I. The set of all valid
parse trees is then defined as

Y = {y : y(i, j) variables form a directed tree,
y↑(i, j) = y(i, j) for all (i, j) ∈ I}

We again partition the variables into n + 1 subsets,
y|0 . . . y|n, by (re)defining

y|i = {y(i, j) : j = 1 . . . n, j �= i}
∪{y↑(k, i) : k = 0 . . . n, k �= i}

So as before y|i contains variables y(i, j) which in-
dicate which words modify the i’th word. In addi-
tion, y|i includes y↑(k, i) variables that indicate the
word that word i itself modifies.

The set of all possible values of y|i is now

Zi = {y|i : y(i, j) ∈ {0, 1} for j = 1 . . . n, j �= i;
y↑(k, i) ∈ {0, 1} for k = 0 . . . n, k �= i;
�

k

y↑(k, i) = 1}

Hence the y(i, j) variables can take any values, but
only one of the y↑(k, i) variables can be equal to 1
(as only one word can be a parent of word i). As be-
fore, we define Z = {y : y|i ∈ Zi for i = 0 . . . n}.

We introduce the following assumption:
Assumption 2 (GS Decompositions)

A model f(y) satisfies the grandparent/sibling-
decomposition (GSD) assumption if: 1) f(z) =�n

i=0 fi(z|i) for some set of functions f0 . . . fn. 2)
For any i ∈ {0 . . . n}, for any value of the variables
u(i, j) ∈ R for j = 1 . . . n, and v(k, i) ∈ R for
k = 0 . . . n, it is possible to compute

argmax
z|i∈Zi

(fi(z|i)−
�

j

u(i, j)z(i, j)−
�

k

v(k, i)z↑(k, i))

in polynomial time.



Again, it follows that we can approxi-
mate y∗ = argmaxy∈Y

�n
i=0 fi(y|i) by

z∗ = argmaxz∈Z
�n

i=0 fi(z|i), by defining
z∗|i = argmaxz|i∈Zi

fi(z|i) for i = 0 . . . n. The
resulting vector z∗ may be deficient in two respects.
First, the variables z∗(i, j) may not form a well-
formed directed spanning tree. Second, we may
have z∗↑(i, j) �= z∗(i, j) for some values of (i, j).

Example 3: Grandparent/Sibling Models An
important class of models that satisfy Assumption 2
are defined as follows. Again, for a vector y|i de-
fine l1 . . . lp to be the sequence of left modifiers to
word i under y|i, and r1 . . . rq to be the set of right
modifiers. Define k∗ to the value for k such that
y↑(k, i) = 1. Then the model is defined as follows:

fi(y|i) =
p+1�

j=1

gL(i, k∗, lj−1, lj)+
q+1�

j=1

gR(i, k∗, rj−1, rj)

This is very similar to the bigram-sibling model, but
with the modification that the gL and gR functions
depend in addition on the value for k∗. This al-
lows these functions to model grandparent depen-
dencies such as (k∗, i, lj) and sibling dependencies
such as (i, lj−1, lj). Finding z∗|i under the definition
can be accomplished in O(n3) time, by decoding the
model using dynamic programming separately for
each of the O(n) possible values of k∗, and pick-
ing the value for k∗ that gives the maximum value
under these decodings.

A dual-decomposition algorithm for models that
satisfy the GSD assumption is shown in Figure 2.
The algorithm can be justified as an instance of La-
grangian relaxation applied to the problem

argmax
z∈Z,y∈Y

f(z) + h(y) (10)

with constraints

z(i, j) = y(i, j) for all (i, j) ∈ I (11)

z↑(i, j) = y(i, j) for all (i, j) ∈ I (12)

The algorithm employs two sets of Lagrange mul-
tipliers, u(i, j) and v(i, j), corresponding to con-
straints in Eqs. 11 and 12. As in Theorem 1, if at any
point in the algorithm z(k) = y(k), then (z(k), y(k))
is an exact solution to the problem in Eq. 10.

Set u(1)(i, j)← 0, v(1)(i, j)← 0 for all (i, j) ∈ I
for k = 1 to K do

y(k) ← argmax
y∈Y

�

(i,j)∈I

y(i, j)θ(i, j)

where θ(i, j) = γ(i, j) + u(k)(i, j) + v(k)(i, j).

for i ∈ {0 . . . n},
z(k)
|i ← argmax

z|i∈Zi

(fi(z|i) −
�

j

u(k)(i, j)z(i, j)

−
�

j

v(k)(j, i)z↑(j, i))

if y(k)(i, j) = z(k)(i, j) = z(k)
↑ (i, j) for all (i, j) ∈ I

then

return (y(k), z(k))
for all (i, j) ∈ I,
u(k+1)(i, j)← u(k)(i, j)+αk(z(k)(i, j)−y(k)(i, j))

v(k+1)(i, j)← v(k)(i, j)+αk(z(k)
↑ (i, j)−y(k)(i, j))

return (y(K), z(K))

Figure 2: The parsing algorithm for grandparent/sibling-
decomposable models.

6 The Training Algorithm

In our experiments we make use of discriminative
linear models, where for an input sentence x, the
score for a parse y is f(y) = w · φ(x, y) where
w ∈ Rd is a parameter vector, and φ(x, y) ∈ Rd

is a feature-vector representing parse tree y in con-
junction with sentence x. We will assume that the
features decompose in the same way as the sibling-
decomposable or grandparent/sibling-decomposable
models, that is φ(x, y) =

�n
i=0 φ(x, y|i) for some

feature vector definition φ(x, y|i). In the bigram sib-
ling models in our experiments, we assume that

φ(x, y|i) =

p+1�

k=1

φL(x, i, lk−1, lk) +

q+1�

k=1

φR(x, i, rk−1, rk)

where as before l1 . . . lp and r1 . . . rq are left and
right modifiers under y|i, and where φL and φR

are feature vector definitions. In the grandparent
models in our experiments, we use a similar defi-
nition with feature vectors φL(x, i, k∗, lk−1, lk) and
φR(x, i, k∗, rk−1, rk), where k∗ is the parent for
word i under y|i.

We train the model using the averaged perceptron
for structured problems (Collins, 2002). Given the
i’th example in the training set, (x(i), y(i)), the per-
ceptron updates are as follows:

• z∗ = argmaxy∈Z w · φ(x(i), y)

• If z∗ �= y(i), w = w+φ(x(i), y(i))−φ(x(i), z∗)



The first step involves inference over the set Z ,
rather than Y as would be standard in the percep-
tron. Thus, decoding during training can be achieved
by dynamic programming over head automata alone,
which is very efficient.

Our training approach is closely related to local
training methods (Punyakanok et al., 2005). We
have found this method to be effective, very likely
because Z is a superset of Y . Our training algo-
rithm is also related to recent work on training using
outer bounds (see, e.g., (Taskar et al., 2003; Fin-
ley and Joachims, 2008; Kulesza and Pereira, 2008;
Martins et al., 2009)). Note, however, that the LP re-
laxation optimized by dual decomposition is signifi-
cantly tighter than Z . Thus, an alternative approach
would be to use the dual decomposition algorithm
for inference during training.

7 Experiments

We report results on a number of data sets. For
comparison to Martins et al. (2009), we perform ex-
periments for Danish, Dutch, Portuguese, Slovene,
Swedish and Turkish data from the CoNLL-X
shared task (Buchholz and Marsi, 2006), and En-
glish data from the CoNLL-2008 shared task (Sur-
deanu et al., 2008). We use the official training/test
splits for these data sets, and the same evaluation
methodology as Martins et al. (2009). For com-
parison to Smith and Eisner (2008), we also re-
port results on Danish and Dutch using their alter-
nate training/test split. Finally, we report results on
the English WSJ treebank, and the Prague treebank.
We use feature sets that are very similar to those
described in Carreras (2007). We use marginal-
based pruning, using marginals calculated from an
arc-factored spanning tree model using the matrix-
tree theorem (McDonald and Satta, 2007; Smith and
Smith, 2007; Koo et al., 2007).

In all of our experiments we set the value K, the
maximum number of iterations of dual decompo-
sition in Figures 1 and 2, to be 5,000. If the al-
gorithm does not terminate—i.e., it does not return
(y(k), z(k)) within 5,000 iterations—we simply take
the parse y(k) with the maximum value of f(y(k)) as
the output from the algorithm. At first sight 5,000
might appear to be a large number, but decoding is
still fast—see Sections 7.3 and 7.4 for discussion.2

2Note also that the feature vectors φ and inner products w ·φ

The strategy for choosing step sizes αk is described
in Appendix A, along with other details.

We first discuss performance in terms of accu-
racy, success in recovering an exact solution, and
parsing speed. We then describe additional experi-
ments examining various aspects of the algorithm.

7.1 Accuracy

Table 1 shows results for previous work on the var-
ious data sets, and results for an arc-factored model
with pure MST decoding with our features. (We use
the acronym UAS (unlabeled attachment score) for
dependency accuracy.) We also show results for the
bigram-sibling and grandparent/sibling (G+S) mod-
els under dual decomposition. Both the bigram-
sibling and G+S models show large improvements
over the arc-factored approach; they also compare
favorably to previous work—for example the G+S
model gives better results than all results reported in
the CoNLL-X shared task, on all languages. Note
that we use different feature sets from both Martins
et al. (2009) and Smith and Eisner (2008).

7.2 Success in Recovering Exact Solutions

Next, we consider how often our algorithms return
an exact solution to the original optimization prob-
lem, with a certificate—i.e., how often the algo-
rithms in Figures 1 and 2 terminate with y(k) = z(k)

for some value of k < 5000 (and are thus optimal,
by Theorem 1). The CertS and CertG columns in Ta-
ble 1 give the results for the sibling and G+S models
respectively. For all but one setting3 over 95% of the
test sentences are decoded exactly, with 99% exact-
ness in many cases.

For comparison, we also ran both the single-
commodity flow and multiple-commodity flow LP
relaxations of Martins et al. (2009) with our mod-
els and features. We measure how often these re-
laxations terminate with an exact solution. The re-
sults in Table 2 show that our method gives exact
solutions more often than both of these relaxations.4

In computing the accuracy figures for Martins et al.

only need to be computed once, thus saving computation.
3The exception is Slovene, which has the smallest training

set at only 1534 sentences.
4Note, however, that it is possible that the Martins et al. re-

laxations would have given a higher proportion of integral solu-
tions if their relaxation was used during training.



Ma09 MST Sib G+S Best CertS CertG TimeS TimeG TrainS TrainG
Dan 91.18 89.74 91.08 91.78 91.54 99.07 98.45 0.053 0.169 0.051 0.109
Dut 85.57 82.33 84.81 85.81 85.57 98.19 97.93 0.035 0.120 0.046 0.048
Por 92.11 90.68 92.57 93.03 92.11 99.65 99.31 0.047 0.257 0.077 0.103
Slo 85.61 82.39 84.89 86.21 85.61 90.55 95.27 0.158 0.295 0.054 0.130
Swe 90.60 88.79 90.10 91.36 90.60 98.71 98.97 0.035 0.141 0.036 0.055
Tur 76.34 75.66 77.14 77.55 76.36 98.72 99.04 0.021 0.047 0.016 0.036

Eng1 91.16 89.20 91.18 91.59 — 98.65 99.18 0.082 0.200 0.032 0.076
Eng2 — 90.29 92.03 92.57 — 98.96 99.12 0.081 0.168 0.032 0.076

Sm08 MST Sib G+S — CertS CertG TimeS TimeG TrainS TrainG
Dan 86.5 87.89 89.58 91.00 — 98.50 98.50 0.043 0.120 0.053 0.065
Dut 88.5 88.86 90.87 91.76 — 98.00 99.50 0.036 0.046 0.050 0.054

Mc06 MST Sib G+S — CertS CertG TimeS TimeG TrainS TrainG
PTB 91.5 90.10 91.96 92.46 — 98.89 98.63 0.062 0.210 0.028 0.078
PDT 85.2 84.36 86.44 87.32 — 96.67 96.43 0.063 0.221 0.019 0.051

Table 1: A comparison of non-projective automaton-based parsers with results from previous work. MST: Our first-
order baseline. Sib/G+S: Non-projective head automata with sibling or grandparent/sibling interactions, decoded via
dual decomposition. Ma09: The best UAS of the LP/ILP-based parsers introduced in Martins et al. (2009). Sm08:
The best UAS of any LBP-based parser in Smith and Eisner (2008). Mc06: The best UAS reported by McDonald
and Pereira (2006). Best: For the CoNLL-X languages only, the best UAS for any parser in the original shared task
(Buchholz and Marsi, 2006) or in any column of Martins et al. (2009, Table 1); note that the latter includes McDonald
and Pereira (2006), Nivre and McDonald (2008), and Martins et al. (2008). CertS/CertG: Percent of test examples
for which dual decomposition produced a certificate of optimality, for Sib/G+S. TimeS/TimeG: Seconds/sentence for
test decoding, for Sib/G+S. TrainS/TrainG: Seconds/sentence during training, for Sib/G+S. For consistency of timing,
test decoding was carried out on identical machines with zero additional load; however, training was conducted on
machines with varying hardware and load. We ran two tests on the CoNLL-08 corpus. Eng1: UAS when testing on
the CoNLL-08 validation set, following Martins et al. (2009). Eng2: UAS when testing on the CoNLL-08 test set.

(2009), we project fractional solutions to a well-
formed spanning tree, as described in that paper.

Finally, to better compare the tightness of our
LP relaxation to that of earlier work, we consider
randomly-generated instances. Table 2 gives results
for our model and the LP relaxations of Martins et al.
(2009) with randomly generated scores on automata
transitions. We again recover exact solutions more
often than the Martins et al. relaxations. Note that
with random parameters the percentage of exact so-
lutions is significantly lower, suggesting that the ex-
actness of decoding of the trained models is a special
case. We speculate that this is due to the high perfor-
mance of approximate decoding with Z in place of
Y under the trained models for fi; the training algo-
rithm described in section 6 may have the tendency
to make the LP relaxation tight.

7.3 Speed

Table 1, columns TimeS and TimeG, shows decod-
ing times for the dual decomposition algorithms.
Table 2 gives speed comparisons to Martins et al.
(2009). Our method gives significant speed-ups over
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Figure 3: The average percentage of head automata that
must be recomputed on each iteration of dual decompo-
sition on the PTB validation set.

the Martins et al. (2009) method, presumably be-
cause it leverages the underlying structure of the
problem, rather than using a generic solver.

7.4 Lazy Decoding

Here we describe an important optimization in the
dual decomposition algorithms. Consider the algo-
rithm in Figure 1. At each iteration we must find

z
(k)
|i = argmax

z|i∈Zi

(fi(z|i)−
�

j

u
(k)(i, j)z(i, j))



Sib Acc Int Time Rand
LP(S) 92.14 88.29 0.14 11.7
LP(M) 92.17 93.18 0.58 30.6

ILP 92.19 100.0 1.44 100.0
DD-5000 92.19 98.82 0.08 35.6
DD-250 92.23 89.29 0.03 10.2

G+S Acc Int Time Rand
LP(S) 92.60 91.64 0.23 0.0
LP(M) 92.58 94.41 0.75 0.0

ILP 92.70 100.0 1.79 100.0
DD-5000 92.71 98.76 0.23 6.8
DD-250 92.66 85.47 0.12 0.0

Table 2: A comparison of dual decomposition with lin-
ear programs described by Martins et al. (2009). LP(S):
Linear Program relaxation based on single-commodity
flow. LP(M): Linear Program relaxation based on
multi-commodity flow. ILP: Exact Integer Linear Pro-
gram. DD-5000/DD-250: Dual decomposition with non-
projective head automata, with K = 5000/250. Upper
results are for the sibling model, lower results are G+S.
Columns give scores for UAS accuracy, percentage of so-
lutions which are integral, and solution speed in seconds
per sentence. These results are for Section 22 of the PTB.
The last column is the percentage of integral solutions on
a random problem of length 10 words. The (I)LP experi-
ments were carried out using Gurobi, a high-performance
commercial-grade solver.

for i = 0 . . . n. However, if for some i, u(k)(i, j) =
u(k−1)(i, j) for all j, then z

(k)
|i = z

(k−1)
|i . In

lazy decoding we immediately set z
(k)
|i = z

(k−1)
|i if

u(k)(i, j) = u(k−1)(i, j) for all j; this check takes
O(n) time, and saves us from decoding with the i’th
automaton. In practice, the updates to u are very
sparse, and this condition occurs very often in prac-
tice. Figure 3 demonstrates the utility of this method
for both sibling automata and G+S automata.

7.5 Early Stopping

We also ran experiments varying the value of K—
the maximum number of iterations—in the dual de-
composition algorithms. As before, if we do not find
y(k) = z(k) for some value of k ≤ K, we choose
the y(k) with optimal value for f(y(k)) as the final
solution. Figure 4 shows three graphs: 1) the accu-
racy of the parser on PTB validation data versus the
value for K; 2) the percentage of examples where
y(k) = z(k) at some point during the algorithm,
hence the algorithm returns a certificate of optimal-
ity; 3) the percentage of examples where the solution
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Figure 4: The behavior of the dual-decomposition parser
with sibling automata as the value of K is varied.

Sib P-Sib G+S P-G+S
PTB 92.19 92.34 92.71 92.70
PDT 86.41 85.67 87.40 86.43

Table 3: UAS of projective and non-projective decoding
for the English (PTB) and Czech (PDT) validation sets.
Sib/G+S: as in Table 1. P-Sib/P-G+S: Projective versions
of Sib/G+S, where the MST component has been re-
placed with the Eisner (2000) first-order projective parser.

returned is the same as the solution for the algorithm
with K = 5000 (our original setting). It can be seen
for K as small as 250 we get very similar accuracy
to K = 5000 (see Table 2). In fact, for this set-
ting the algorithm returns the same solution as for
K = 5000 on 99.59% of the examples. However
only 89.29% of these solutions are produced with a
certificate of optimality (y(k) = z(k)).

7.6 How Good is the Approximation z∗?

We ran experiments measuring the quality of z∗ =
argmaxz∈Z f(z), where f(z) is given by the
perceptron-trained bigram-sibling model. Because
z∗ may not be a well-formed tree with n dependen-
cies, we report precision and recall rather than con-
ventional dependency accuracy. Results on the PTB
validation set were 91.11%/88.95% precision/recall,
which is accurate considering the unconstrained na-
ture of the predictions. Thus the z∗ approximation is
clearly a good one; we suspect that this is one reason
for the good convergence results for the method.

7.7 Importance of Non-Projective Decoding

It is simple to adapt the dual-decomposition algo-
rithms in figures 1 and 2 to give projective depen-
dency structures: the set Y is redefined to be the set



of all projective structures, with the arg max over Y
being calculated using a projective first-order parser
(Eisner, 2000). Table 3 shows results for projec-
tive and non-projective parsing using the dual de-
composition approach. For Czech data, where non-
projective structures are common, non-projective
decoding has clear benefits. In contrast, there is little
difference in accuracy between projective and non-
projective decoding on English.

8 Conclusions

We have described dual decomposition algorithms
for non-projective parsing, which leverage existing
dynamic programming and MST algorithms. There
are a number of possible areas for future work. As
described in section 7.7, the algorithms can be easily
modified to consider projective structures by replac-
ing Y with the set of projective trees, and then using
first-order dependency parsing algorithms in place
of MST decoding. This method could be used to
derive parsing algorithms that include higher-order
features, as an alternative to specialized dynamic
programming algorithms. Eisner (2000) describes
extensions of head automata to include word senses;
we have not discussed this issue in the current pa-
per, but it is simple to develop dual decomposition
algorithms for this case, using similar methods to
those used for the grandparent models. The gen-
eral approach should be applicable to other lexical-
ized syntactic formalisms, and potentially also to de-
coding in syntax-driven translation. In addition, our
dual decomposition approach is well-suited to paral-
lelization. For example, each of the head-automata
could be optimized independently in a multi-core or
GPU architecture. Finally, our approach could be
used with other structured learning algorithms, e.g.
Meshi et al. (2010).

A Implementation Details

This appendix describes details of the algorithm,
specifically choice of the step sizes αk, and use of
the γ(i, j) parameters.

A.1 Choice of Step Sizes

We have found the following method to be effec-
tive. First, define δ = f(z(1)) − f(y(1)), where
(z(1), y(1)) is the output of the algorithm on the first

iteration (note that we always have δ ≥ 0 since
f(z(1)) = L(u(1))). Then define αk = δ/(1 + ηk),
where ηk is the number of times that L(u(k�)) >

L(u(k�−1)) for k� ≤ k. Hence the learning rate drops
at a rate of 1/(1+ t), where t is the number of times
that the dual increases from one iteration to the next.

A.2 Use of the γ(i, j) Parameters

The parsing algorithms both consider a general-
ized problem that includes γ(i, j) parameters. We
now describe how these can be useful. Re-
call that the optimization problem is to solve
argmaxz∈Z,y∈Y f(z) + h(y), subject to a set of
agreement constraints. In our models, f(z) can
be written as f �(z) +

�
i,j α(i, j)z(i, j) where

f �(z) includes only terms depending on higher-
order (non arc-factored features), and α(i, j) are
weights that consider the dependency between i

and j alone. For any value of 0 ≤ β ≤
1, the problem argmaxz∈Z,y∈Y f2(z) + h2(y) is
equivalent to the original problem, if f2(z) =
f �(z) + (1 − β)

�
i,j α(i, j)z(i, j) and h2(y) =

β
�

i,j α(i, j)y(i, j). We have simply shifted the
α(i, j) weights from one model to the other. While
the optimization problem remains the same, the al-
gorithms in Figure 1 and 2 will converge at differ-
ent rates depending on the value for β. In our ex-
periments we set β = 0.001, which puts almost
all the weight in the head-automata models, but al-
lows weights on spanning tree edges to break ties in
MST inference in a sensible way. We suspect this is
important in early iterations of the algorithm, when
many values for u(i, j) or v(i, j) will be zero, and
where with β = 0 many spanning tree solutions y(k)

would be essentially random, leading to very noisy
updates to the u(i, j) and v(i, j) values. We have
not tested other values for β.
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