Advances in Discriminative Dependency Parsing

Dependency Grammar

- Syntax represented by head-modifier dependencies
- Applications include machine translation, semantic role labeling, etc.

Discriminative Parsing

- Structured linear model for parsing (McDonald, 2005): $y^*(\mathbf{x}; \mathbf{w}) = \underset{y \in \mathcal{Y}(\mathbf{x})}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{\Phi}(\mathbf{x}, y)$
- \mathbf{x} is a sentence, $\mathcal{Y}(\mathbf{x})$ is the set of possible trees
- Structures represented via feature mapping ${f \Phi}({f x},y)$
- Parameters w provide a weight for each feature
- Direct maximization is generally intractable

Factored Discriminative Parsing

Factored structured linear model:

$$y^*(\mathbf{x}; \mathbf{w}) = \operatorname*{argmax}_{y \in \mathcal{Y}(\mathbf{x})} \sum_{p \in y} \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}, p)$$

Tractable for many factorizations

- Three main components:
 - Feature mapping: what features appear in ϕ ?
 - **Parameters:** how do we estimate w?
 - Factorization: which parts p make up y?

Lexicalized Representations

Statistical parsers make heavy use of lexicalized features

Alternate lexical representations?

Non-Projective Parsing

- Non-projective parsing allows crossing dependencies
- Frequent in languages like Czech, Dutch, etc.
- Non-projective parsing = maximum spanning-tree (McDonald et al., 2005)

Non-Projective Parsing

- Many parameter estimation methods depend on summations over $\mathcal{Y}(\mathbf{x})$
 - Baum-Welch algorithm for Hidden Markov Models
 - Conditional Random Fields
- Efficient algorithms exist for many types of structure
- Algorithms for non-projective trees?

Higher-Order Factorizations

- First-order factorization: individual dependencies
- Second-order factorization: pairs of dependencies
 - Sibling and Grandchild interactions
- Factorizations with larger sub-structures?

Conclusion

Dependency Parsing Features

123456NNPVBDNNNNINNNSJohnateicecreamwithsprinkles

• A dependency is a pair (h,m), e.g., (2,5)

 $\bullet\,$ Features are $0/1\,{\rm indicators}$ for words, parts of speech

•
$$\phi_1(\mathbf{x}, h, m) = \llbracket \text{"ate"} \longrightarrow \text{"with"} \rrbracket$$

• $\phi_2(\mathbf{x}, h, m) = \llbracket \text{"VBD"} \longrightarrow \text{"IN"} \rrbracket$

Alternate Lexical Representations

- Intermediate lexical representations derived from unlabeled data: word clusters
- Clusters are easily incorporated as features
- Improvements in English and Czech parsing
- Previous work:
 - Brown et al. (1992): clustering algorithm, applied to language modeling
 - Miller et al. (2004): named-entity tagging with word clusters from the Brown algorithm

- Words merged according to contextual similarity
- Paths in the hierarchy represented as bit strings
 - Prefixes of bit strings yield clusterings
 - Prefix length determines granularity

Words merged according to contextual similarity

- Paths in the hierarchy represented as bit strings
 - Prefixes of bit strings yield clusterings
 - Prefix length determines granularity

- Words merged according to contextual similarity
- Paths in the hierarchy represented as bit strings
 - Prefixes of bit strings yield clusterings
 - Prefix length determines granularity

Words merged according to contextual similarity

- Paths in the hierarchy represented as bit strings
 - Prefixes of bit strings yield clusterings
 - Prefix length determines granularity

- Words merged according to contextual similarity
- Paths in the hierarchy represented as bit strings
 - Prefixes of bit strings yield clusterings
 - Prefix length determines granularity

Words merged according to contextual similarity

- Paths in the hierarchy represented as bit strings
 - Prefixes of bit strings yield clusterings
 - Prefix length determines granularity

Brown Algorithm

- Words merged according to contextual similarity
- Paths in the hierarchy represented as bit strings
 - Prefixes of bit strings yield clusterings
 - Prefix length determines granularity

Brown Algorithm

Examples of clusters from our English experiments

01010101010011 constructed 01010101010011 elucidated 01010101010011 inhaled 01010101010011 rewritten

Past Participle Verbs

100111111100 precious-metal
100111111100 grain-futures
1001111111100 crude-oil-futures

Financial Categories

- Feature mappings can include arbitrary information
- Two types of features:
 - Baseline features include words and POS
 - Cluster-based feature sets add information from clusters

Feature Pruning

- Cluster-based feature sets were very large
- Eliminate features using word frequency
 - Only use the top-800 most frequent words
 - Cluster-based features were not affected

Experiments

- English parsing (Penn Treebank)
- Czech parsing (Prague Dependency Treebank)
- Brown clustering algorithm (Liang, 2005)
- Averaged perceptron training
 - Second-order projective parsers (Carreras, 2007)
 - First-order max-spanning-tree (McDonald, 2005)
- Compare between baseline and cluster-based features

Baseline Comparison

Parsing Model	Accuracy
McDonald (2006)	91.5
Baseline Features	92.0

- Attachment score on English test set
 - Percent of words attached to correct head
- Baseline parser is state of the art

English Parsing Results

Test Set	Baseline	Cluster-Based
Sec 00	91.8	92.8 <mark>(+1.0)</mark>
Sec 01	92.5	93.3 <mark>(+0.8)</mark>
Sec 23	92.0	93.2 <mark>(+1.2)</mark>
Sec 24	90.9	91.9 <mark>(+1.0)</mark>

Attachment score on all English test sets (Sections 00, 01, 23, and 24 of the Penn Treebank)

Cluster-based features outperform baseline

Effect of Training Corpus Size

#Sentences	Baseline	Cluster-Based
1000	82.0	85.3 (+3.3)
2000	85.0	87.5 <mark>(+2.5)</mark>
4000	87.9	89.7 <mark>(+1.8)</mark>
8000	89.7	91.4 <mark>(+1.7)</mark>
16000	91.1	92.2 (+1.1)
32000	92.I	93.2 (+1.1)
39832	92.4	93.3 <mark>(+0.9)</mark>

Attachment score on English development set

Part-of-speech tagger trained on reduced dataset

Effect of Training Corpus Size

#Sentences	Baseline	Cluster-Based
1000	82.0	85.3 (+3.3)
2000	85.0 🖊	87.5 (+2.5)
4000	87.9 🖊	89.7 (+1.8)
8000	89.7 🖊	91.4 (+1.7)
16000	91.1 🖊	92.2 (+1.1)
32000	92.1 🖊	93.2 (+1.1)
39832	92.4	93.3 <mark>(+0.9)</mark>

Attachment score on English development set

Part-of-speech tagger trained on reduced dataset

Czech Parsing Results

Parsing Model	Baseline	Cluster-Based
First-order MST	84.5	86.1 <mark>(+1.6)</mark>
McDonald (2006) second-order	85.2	
Second-order	86. I	87.1 <mark>(+1.0)</mark>

Results are similar to English

Removal of Direct Lexicalization

Threshold	Baseline	Cluster-based
100	90.6 <mark>(-1.8)</mark>	93.1 <mark>(-0.2)</mark>
800	91.9 <mark>(-0.5)</mark>	93.3
All words	92.4	

Attachment score on English development set

Cluster-based features are far less sensitive

Clusters vs Part-of-Speech Tags

	Ignore POS Tags	Use POS Tags
Ignore Clusters	86.7	92.4
Use Clusters	91.8	93.3

Attachment score on English development set

Clusters alone are almost as good as baseline
Summary

- Lexical statistics are important but sparse
- Word clusters as an alternate lexical representation
- Clusters incorporated as features for a discriminative parser
- Performance gains over a state-of-the-art baseline

Conclusion

Non-Projective Inference

Fundamental inference algorithms that sum over possible structures:

Structured Model	Inference Algorithm
Hidden Markov Model	Forward-Backward
Graphical Model	Belief Propagation
Context-Free Grammar	Inside-Outside
Projective Dependencies	Inside-Outside
Non-Projective Dependencies	???

New inference algorithms for non-projective parsing

Log-Linear Dependency Parsers

Distribution over trees in a first-order factorization

$$P(y | \mathbf{x}; \mathbf{w}) \propto \prod_{(h,m) \in y} e^{\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}, h, m)}$$

Parsing is a search for the most probable tree

A popular method for modeling structured data

Also known as a Conditional Random Field (CRF)

Log-Linear Parameter Estimation

- Learn **w** from labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- Maximize (regularized) conditional log-likelihood: $f_{\text{LL}}(\mathbf{w}) = -\frac{C}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^n \log P(y_i | \mathbf{x}_i; \mathbf{w})$

- Gradient-based optimization • $f_{\text{LL}}(\mathbf{w})$ and $\nabla f_{\text{LL}}(\mathbf{w})$
 - e.g., L-BFGS

Log-Linear Inference Problems

• $f_{\rm LL}(\mathbf{w})$ requires the partition function:

$$Z(\mathbf{x};\mathbf{w}) = \sum_{y} \prod_{(h,m)\in y} e^{\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x},h,m)}$$

• $\nabla f_{\text{LL}}(\mathbf{w})$ requires the marginal probabilities:

$$\frac{P(h, m \mid \mathbf{x}; \mathbf{w})}{y: (h, m) \in y} = \sum_{\substack{y: (h, m) \in y}} P(y \mid \mathbf{x}; \mathbf{w})$$

- Originally developed by Kirchhoff (1847)
 - Count the number of undirected spanning trees
 - Determinant of a specially-constructed matrix
- Extended by Tutte (1984)
 - Summations over weighted, rooted, directed spanning trees

- Given:
 - ullet Directed graph G
 - Edge weights $heta_{i,j}$
 - Root node r
- Construct a matrix $L^{(r)}$ such that:

The Partition Function

A simple method for summing over all roots:

The modifier of * is the root

Single-Root Partition Function

A new matrix for summing over single-root trees:

Marginal Probabilities

• Single-root and multi-root partition functions: $Z(\theta) = |\hat{L}|$ $Z(\theta) = |L^{(*)}|$

Marginals are derivatives of log partition function:

$$P(h \to m; \theta) = \frac{\partial \log Z(\theta)}{\partial \theta_{h,m}}$$

• Derivative of log-determinant: $\frac{\partial \log |X|}{\partial X} = (X^{-1})^T$

• Inverse of $n \times n$ matrix: $O(n^3)$

Application to Parsing

Training a log-linear parser:

- Define edge scores $\theta_{h,m} = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x},h,m)$
- ullet Construct appropriate matrix \hat{L} or $L^{(*)}$
- $Z(\mathbf{x}; \mathbf{w})$ via matrix determinant
- $P(h, m \mid \mathbf{x}; \mathbf{w})$ via matrix inverse
- Max-margin training for dependency parsers
 - Exponentiated Gradient (Collins et al., 2008)

Multilingual Parsing Experiments

- Six languages from CoNLL-X shared task
- Three training algorithms:
 - Averaged perceptron
 - Log-linear models
 - Max-margin models
- Projective and non-projective parsing

Dutch Parsing Experiments

Training Algorithm	Projective Training	Non-Projective Training
Perceptron	77.2	78.8 <mark>(+1.6)</mark>
Log-Linear	76.2	79.6 <mark>(+3.4)</mark>
Max-Margin	76.5	79.7 <mark>(+3.2)</mark>

- Attachment score on Dutch test set
- 4.93% of dependencies are crossing
- Non-projective training is beneficial for languages with non-projectivity

Aggregate Multilingual Results

Training Algorithm	Overall Results	
Perceptron	79. I	
Log-Linear	79.7 <mark>(+0.6)</mark>	
Max-Margin	79.8 <mark>(+0.7)</mark>	

Cumulative attachment score over 6 languages:

- Arabic, Dutch, Japanese, Slovene, Spanish, Turkish
- Improvements are statistically significant

Summary

- New algorithms for weighted summations over nonprojective dependency trees
 - Covering both single-root and multi-root trees
 - Efficient $O(n^3)$ algorithms
- An application: log-linear and max-margin parsers

Conclusion

Higher-Order Parsers

Parsing Approach	First-Order	Second-Order
McDonald's Models	90.9	91.5 <mark>(+0.6)</mark>
Baseline Features	90.8	92.0 (+1.2)
Cluster-Based Features	92.2	93.2 <mark>(+1.0)</mark>

- Attachment scores on English test set
- Can we get more by going beyond second-order?
- How much will it cost to get there?
 - Carreras (2007) second-order is already $O(n^4)$

Two axes: Vertical context and Horizontal context

Carreras (2007) Second-Order

Two axes: Vertical context and Horizontal context

dependency

m

grand-sibling

mS sibling

Third-Order Model I

Two axes: Vertical context and Horizontal context

First-Order Parsing Algorithm

• Eisner (2000) algorithm: $O(n^3)$

Complete Span A "half-constituent" Incomplete Span A dependency

First-Order Parsing Algorithm

- Eisner (2000) algorithm: $O(n^3)$
 - Derivation of complete and incomplete spans:

*

John

saw

Mary

• McDonald (2006) and Eisner (1996): $O(n^3)$

Introduce a third type of span:

Sibling Span A pair of adjacent modifiers

• McDonald (2006) and Eisner (1996): $O(n^3)$

• McDonald (2006) and Eisner (1996): $O(n^3)$

• McDonald (2006) and Eisner (1996): $O(n^3)$

Model 0

• Model 0, all grandparents: $O(n^4)$

Superficially similar to parent annotation in CFGs

Model 0: Derivations

Grandparent indices propagated to smaller g-spans
4 active indices, runtime O(n⁴)

Model 1

- Model 1, grand-siblings: $O(n^4)$
 - Introduce a third type of span:

Sibling G-Span

A pair of adjacent modifiers with their shared head

Model 1: Grand-Sibling Scores

• Model 1, grand-siblings: $O(n^4)$

Model 1: Grand-Sibling Scores

• Model 1, grand-siblings: $O(n^4)$

Scores grand-sibling interactions

Model 1: Derivations

• Model 1, grand-siblings: $O(n^4)$

Model 2 • Model 2, grand-siblings and tri-siblings: $O(n^4)$ Introduce a fourth type of span: Incomplete S-Span A dependency with its next-inner modifier h S m

Summary of Parsing Algorithms

- Model 0 parses an all-grandchildren factorization
- Model 1 parses an all-grand-siblings factorization
- Model 2 parses all-tri-siblings and some grand-siblings
- All parsers require $O(n^4)$ time and $O(n^3)$ space
 - Identical to Carreras (2007) second-order
- Models 1 and 2 have optimal runtime
 - Total number of third-order parts: $O(n^4)$

English and Czech Parsing

Parser	English	Czech
McDonald (2006)	91.5	85.2
Second-order, Baseline	92.0	86. I
Model I	93.0	87.4
Model 2	92.9	87.4
Second-order, Clusters	93.2	87.I

- Attachment score on the English and Czech test sets
- Third-order comparable to semi-supervised

Summary

- Third-order factorizations can be parsed in $O(n^4)$
- Third-parsers work well in practice
- Possible extensions:
 - Recovering word senses or dependency labels
 - Increasing context to fourth-order or more
 - Using cluster-based features

Conclusion

Conclusions

- Dependency parsing is a simple and effective framework for syntactic analysis
- Structured linear models provide three opportunities for improvements
 - Feature representations
 - Parameter estimation
 - Factorization