Advances in Discriminative
Dependency Parsing

Terry Koo

Dependency Grammar

John ate 1ce cream with Mary

o~ RV XY

John ate 1ce cream with sprinkles

® Syntax represented by head-modifier dependencies

® Applications include machine translation, semantic
role labeling, etc.

A

A

Discriminative rarsing

Structured linear model for parsing (McDonald, 2005):

y*(x;w) = argmax w-P(x,y)
yeY(x)

x is a sentence,)/(x) is the set of possible trees

Structures represented via feature mapping ®(x, y)

Parameters w provide a weight for each feature

Direct maximization is generally intractable

Factorization of Structures

® Assume trees can be factored into parts

S T
/ G

John ate 1ce cream with sprinkles

® Feature decomposition: <I> E qb ; p
rey

Factored Discriminative Parsing

® Factored structured linear model:

y*(x;w) = argmax » w-¢(x,p)
yey(x> pEy

® Tractable for many factorizations

® Three main components:
® Feature mapping: what features appear in @?
® Parameters: how do we estimate w?

® Factorization: which parts p make up y?

Lexicalized Representations

The child attended school yesterday

® Statistical parsers make heavy use of lexicalized features

® Alternate lexical representations?

Lexicalized Representations

The child attended school yesterday
children enjoyed class today
girl attends classes recently

® Statistical parsers make heavy use of lexicalized features

® Alternate lexical representations?

Non-Projective Farsing

John saw a movie vyesterday that he liked

® Non-projective parsing allows crossing dependencies
® Frequent in languages like Czech, Dutch, etc.

® Non-projective parsing = maximum spanning-tree
(McDonald et al., 2005)

Non-Projective Farsing

® Many parameter estimation methods depend on
summations over Y (x)

® Baum-Welch algorithm for Hidden Markov Models
® Conditional Random Fields

® Efficient algorithms exist for many types of structure

® Algorithms for non-projective trees?

Higher-Order Factorizations

e

The child attended school yesterday

® First-order factorization: individual dependencies
® Second-order factorization: pairs of dependencies
® Sibling and Grandchild interactions

® Factorizations with larger sub-structures?

10

Outline

® |Introduction

® Three advances in discriminative dependency parsing:

argmax Z w - (X, p)

yeY(x) pEY
® Simple and effective lexical representations
® Parameter estimation for non-projective parsing
o Efficient third-order dependency parsers

® Conclusion

11

Dependency Parsing Features

i

1 2 3 4 S 6
NNP VBD NN NN IN NNS
John ate 1ce <cream with sprinkles

® Adependency is a pair (h, m), e.g., (2,5)

® Features are () / 1l indicators for words, parts of speech
o ¢1(X,h,m) = [“ate” — “with”]
o ¢2(x,h,m) = [“vBD” ==> “IN” |

A

A

Alternate Lexical Representations

Intermediate lexical representations derived from
unlabeled data: word clusters

Clusters are easily incorporated as features
Improvements in English and Czech parsing
Previous work:

® Brown et al. (1992): clustering algorithm, applied to
language modeling

o Miller et al. (2004): named-entity tagging with word
clusters from the Brown algorithm

13

Brown Algorithm

CEO November October run sprint
chairman president

® Words merged according to contextual similarity
® Paths in the hierarchy represented as bit strings
® Prefixes of bit strings yield clusterings

® Prefix length determines granularity

walk

14

Brown Algorithm

CEO November October run sprint

chairman president

010

® Words merged according to contextual similarity
® Paths in the hierarchy represented as bit strings
® Prefixes of bit strings yield clusterings

® Prefix length determines granularity

walk

15

Brown Algorithm

walk
CEO November October run sprint .

- chairman president - - - -
o010] [oo11]

® Words merged according to contextual similarity

® Paths in the hierarchy represented as bit strings

® Prefixes of bit strings yield clusterings

® Prefix length determines granularity

16

Brown Algorithm

walk
CEO November October run sprint .

‘ZI chairman president El El - -

® Words merged according to contextual similarity
® Paths in the hierarchy represented as bit strings
® Prefixes of bit strings yield clusterings

® Prefix length determines granularity

17

Brown Algorithm

CEO November October] |run sprint
chairman president

® Words merged according to contextual similarity
® Paths in the hierarchy represented as bit strings
® Prefixes of bit strings yield clusterings

® Prefix length determines granularity

walk

18

Brown Algorithm

walk
CEO November October run sprmt .

® Words merged according to contextual similarity
® Paths in the hierarchy represented as bit strings
® Prefixes of bit strings yield clusterings

® Prefix length determines granularity

19

Brown Algorithm

MA

November October m

® Words merged according to contextual similarity

CEO

chairman president

® Paths in the hierarchy represented as bit strings
® Prefixes of bit strings yield clusterings

® Prefix length determines granularity

20

Brown Algorithm

® Examples of clusters from our English experiments

OIOIOIOIOIIO0I I constructed

O1010101011001 1| elucidated Past Participle\/erbs
OI0I0I0IOIIO0O0I I inhaled

OIOIOIOIOIIO0I I rewritten

1001111111100 precious-metal
1001111111100 grain-futures Financial Categories
1001111111100 crude-oil-futures

21

Cluster-based Features

® Feature mappings can include arbitrary information
® Two types of features:
® Baseline features include words and POS

® (Cluster-based feature sets add information from
clusters

22

Cluster-based Features

)

4-bit 4-bit

:

6-bit 6-bit

)

8-bit 8-bit

)

All bits All bits

4-bit

6-bit

8-bit

)
)
)

:
)
)

)
)
)

4-bit

4-bit

6-bit

6-bit

8-bit

)
)
)

All bits

8-bit

All bits

Word/POS

Cluster-based Features

Word/POS

Word/POS

Word/POS

Word/POS

Word/POS

All bits

Word/POS

Word/POS

4-bit

6-bit

8-bit

All bits

24

Cluster-based Features

A X

4-bit | |4-bit| |4-bit

6-bit | |6-bit| |6-bit

Cluster-based Features

A X

A X

POS

4-bit

4-bit

4-bit

4-bit

4-bit

A X

4-bit

POS

4-bit

A X\

4-bit

4-bit

POS

A X

POS

6-bit

6-bit

A X

6-bit

6-bit

6-bit

6-bit

POS

6-bit

A X\

6-bit

6-bit

POS

Cluster-based Features

A X

A X

POS

4-bit

4-bit

A X

4-bit

POS

POS

4-bit

4-bit

4-bit

A X

4-bit

POS

4-bit

A X\

POS

4-bit

POS

A X\

4-bit

4-bit

POS

A X

N

POS

POS

4-bit

POS

6-bit

6-bit

A X

6-bit

POS

POS

A X

6-bit

6-bit

6-bit

6-bit

POS

6-bit

PN

POS

6-bit

POS

A X\

N

6-bit

6-bit

POS

POS

POS

6-bit

27

Feature Pruning

® Cluster-based feature sets were very large
® Eliminate features using word frequency
® Only use the top-800 most frequent words

® (Cluster-based features were not affected

28

A

Experiments

English parsing (Penn Treebank)

Czech parsing (Prague Dependency Treebank)
Brown clustering algorithm (Liang, 2005)

Averaged perceptron training

® Second-order projective parsers (Carreras, 2007)
® First-order max-spanning-tree (McDonald, 2005)

Compare between baseline and cluster-based features

29

Baseline Comparison

Parsing Model Accuracy
McDonald (2006) 21.5
Baseline Features 92.0

® Attachment score on English test set
® Percent of words attached to correct head

® Baseline parser is state of the art

English Parsing Results

Test Set Baseline Cluster-Based
Sec 00 921.8 928 (+1.0)
Sec O 92.5 93.3 (+0.8)
Sec 23 92.0 93.2 (+1.2)
Sec 24 90.9 21.9 (+1.0)

o Attachment score on all English test sets (Sections
00, 01, 23, and 24 of the Penn Treebank)

® Cluster-based features outperform baseline

31

Effect of Training Corpus Size

#Sentences Baseline Cluster-Based
1000 82.0 85.3 (+3.3)
2000 85.0 87.5 (+2.5)
4000 87.9 89.7 (+1.8)
8000 89.7 214 (+1.7)
16000 91.1 92.2 (+1.1)
32000 92.1 93.2 (+1.1)
39832 92.4 93.3 (+0.9)

o Attachment score on English development set

® Part-of-speech tagger trained on reduced dataset

Effect of Training Corpus Size

#Sentences Baseline Cluster-Based
1000 82.0 85.3 (+3.3)
2000 85.0 87.5 (+2.5)
4000 87.9 89.7 (+1.8)
8000 89.7 214 (+1.7)
16000 91.1 92.2 (+1.1)
32000 92.1 93.2 (+1.1)
39832 92.4 93.3 (+0.9)

o Attachment score on English development set

® Part-of-speech tagger trained on reduced dataset

Czech Parsing Results

Baseline

Cluster-Based

Parsing Model

First-order MST
McDonald (2006) second-order

Second-order

84.5
85.2
86. |

86.1 (+1.6)

87.1 (+1.0)

® Attachment score on Czech test set

® Results are similar to English

34

Removal of Direct Lexicalization

Threshold Baseline Cluster-based
100 90.6 (-1.8) 93.1 (-0.2)
800 21.9 (-0.5) 93.3

All words 924 —

o Attachment score on English development set

® (Cluster-based features are far less sensitive

Clusters vs Part-of-Speech Tags

Ignore POS Tags Use POS Tags

Ignore Clusters

Use Clusters

o Attachment score on English development set

® Clusters alone are almost as good as baseline

36

Summary

Lexical statistics are important but sparse
Word clusters as an alternate lexical representation

Clusters incorporated as features for a
discriminative parser

Performance gains over a state-of-the-art baseline

37

Outline

® |Introduction

® Three advances in discriminative dependency parsing:

® Simple and effective lexical representations
® Parameter estimation for non-projective parsing
o Efficient third-order dependency parsers

® Conclusion

38

Non-Projective Inference

® Fundamental inference algorithms that sum over

possible structures:

Structured Model

Inference Algorithm

Hidden Markov Model
Graphical Model

Context-Free Grammar
Projective Dependencies

Non-Projective Dependencies

Forward-Backward
Belief Propagation
Inside-Outside

Inside-Outside
N

® New inference algorithms for non-projective parsing

39

Log-Linear Dependency Parsers

® Distribution over trees in a first-order factorization

Pylxjw)oc [ewotehm
(h,m)€y

® Parsing is a search for the most probable tree
® A popular method for modeling structured data

® Also known as a Conditional Random Field (CRF)

40

Log-Linear Parameter Estimation

® Learn W from labeled data {(X;, ¥;) P

® Maximize (regularized) conditional log-likelihood:

0. L
fLL(W) — _§HWH —I—;IOgP(yi‘Xi;W)

® Gradient-based optimization

o fio(w)and V fi. (W)
® e.g., L-BFGS

Log-Linear Inference Problems

@ fLL (W) requires the partition function:

Z(x;w) = Z H eV ¢ (x:h,m)

Yy (hm)ey

o V fi.(W) requires the marginal probabilities:

P(hym|x;w) = Y Pylxw)

y:(h,m)ey

The Matrix-Tree Theorem

® Originally developed by Kirchhoff (1847)
® Count the number of undirected spanning trees
® Determinant of a specially-constructed matrix
® Extended by Tutte (1984)

® Summations over weighted, rooted, directed
spanning trees

43

The Matrix-Tree Theorem

o Given:
o Directed graph (7
® Edge weights (97;73'

® Root node 7

® Construct a matrix L<T) such that:

|L(f'“)i i Z H €9h,m

Trees Edges in Tree

The Matrix-Tree Theorem

o Given:
® Directed graph (&
® Edge weights (97;7]'

® Root node 7r

® Construct a matrix L(T) such that:

0] =

The Matrix-Tree Theorem

0.5

® Given:
o Directed graph (7
o Edge weights 0; ;
® Root node r

o Construct a matrix L(T) such that:

|L(r)| — 10+2.5 4 ,0.5+2.0

The Partition Function

® A naive method: one invocation per root

® Inefficient: requires 72 determinants

The Partition Function

® A simple method for summing over all roots:

xR John saw Mary

o The modifier of % is the root

The Partition Function

® A simple method for summing over all roots: ‘L(*)

John saw Mary

Y il o

The Partition Function

® A simple method for summing over all roots: ‘L(*)

LE:;) = —e%i.
Fis) _
L() Z 0.

® Determinant of 12 X 1 matrix: O(n")

Multi-Root Dependency Trees

® A simple method for summing over all roots: ‘L(*)

A~ X

R John saw Mary

® Structures with multiple roots are counted

Single-Root Partition Function

® A new matrix for summing over single-root trees:

==L, ; = e’
A\ > 9
e Lij = —e™
1 a1 i 97/ J
Ljj; = €

® Determinant of 12 X 1 matrix: O(n")

~

A

A

Marginal Probabilities

Single-root and multi-root partition functions:

Z(0) = |L Z(6) = |L™
Marginals are derivatives of log partition function:
Olog Z (60
Bkl SRS
001, m
Derivative of log-determinant: 81%%(\)(itk

Inverse of n X n matrix: O(n*)

(x4t

Application to Parsing

® Training a log-linear parser:
® Define edge scores 0}, ,,, = W - @(x, h, m)
® Construct appropriate matrix ZA; or L(*)
o Z(x; W) via matrix determinant
o P(h,m|x;w) via matrix inverse
® Max-margin training for dependency parsers

® Exponentiated Gradient (Collins et al., 2008)

54

Multilingual Parsing Experiments

® Six languages from CoNLL-X shared task
® Three training algorithms:

® Averaged perceptron

® Log-linear models

® Max-margin models

® Projective and non-projective parsing

55

Dutch Parsing Experiments

ITraining Algorithm Projective Training Non-Projective Training

Perceptron 77.2 78.8 (+1.6)
Log-Linear 76.2 79.6 (+3.4)
Max-Margin 76.5 79.7 (+3.2)

® Attachment score on Dutch test set
® 4.93% of dependencies are crossing

® Non-projective training is beneficial for languages
with non-projectivity

Aggregate Multilingual Results

Perceptron 79.1
Log-Linear 79.7 (+0.6)
Max-Margin 79.8 (+0.7)

® Cumulative attachment score over 6 languages:
® Arabic, Dutch, Japanese, Slovene, Spanish, Turkish

® Improvements are statistically significant

57

Summary

® New algorithms for weighted summations over non-
projective dependency trees

® Covering both single-root and multi-root trees
o Efficient O(n?’) algorithms

® An application: log-linear and max-margin parsers

58

Outline

® |Introduction

® Three advances in discriminative dependency parsing:

® Simple and effective lexical representations
® Parameter estimation for non-projective parsing
® Efficient third-order dependency parsers

® Conclusion

59

Higher-Order Parsers

Parsing Approach First-Order ~ Second-Order

McDonald’s Models 90.9 21.5 (+0.6)
Baseline Features 90.8 92.0 (+1.2)
Cluster-Based Features 92.2 93.2 (+1.0)

® Attachment scores on English test set
@ Can we get more by going beyvond second-order?
® How much will it cost to get there?

® Carreras (2007) second-order is already O(n4)

Third-Order Factorizations

® Two axes: Vertical context and Horizontal context

First-Order Parsers

X

h m
dependency

Third-Order Factorizations

® Two axes: Vertical context and Horizontal context

McDonald (2006) Second-Order
s A X
h m h s m

dependency sibling

62

Third-Order Factorizations

® Two axes: Vertical context and Horizontal context

g h m Carreras (2007) Second-Order

grandchild
s A X
h m VS RS

dependency sibling

63

Third-Order Factorizations

® Two axes: Vertical context and Horizontal context

A W Third-Order
g B m 9 h s m

Model |

grandchild grand-sibling
h m h s m

dependency sibling

64

Third-Order Factorizations

® Two axes: Vertical context and Horizontal context

A W Third-Order
g B m 9 h s m

Model 2

grandchild grand-sibling
h m h s m e Amesy

dependency sibling tri-sibling

65

First-Order Parsing Algorithm

® Eisner (2000) algorithm: O(ng)

Complete Span Incomplete Span
A “half-constituent” A dependency

First-Order Parsing Algorithm

® Eisner (2000) algorithm: O(ng)

® Derivation of complete and incomplete spans:

D -3+
- D\ +

h r r+1 m

First-Order Parsing Example

® Eisner (2000) algorithm: O(ng)

R John saw Mary

First-Order Parsing Example

® Eisner (2000) algorithm: O(ng)

-

xR John saw Mary

First-Order Parsing Example

® Eisner (2000) algorithm: O(ng)

xR John saw Mary

First-Order Parsing Example

® Eisner (2000) algorithm: O(ng)

xR John saw Mary

First-Order Parsing Example

® Eisner (2000) algorithm: O(ng)

/ \

xR John saw Mary

First-Order Parsing Example

® Eisner (2000) algorithm: O(ng)

/ \

w John saw Mary

Second-Order Parsing Algorithm

® McDonald (2006) and Eisner (1996): O(ng)

® Introduce a third type of span:

Sibling Span
A pair of adjacent modifiers

-

S T

Second-Order Parsing Algorithm

® McDonald (2006) and Eisner (1996): O(n?’)

® Scores sibling interactions h S m

Second-Order Parsing Algorithm

® McDonald (2006) and Eisner (1996): O(n?’)

® Scores sibling interactions h S m

Second-Order Parsing A/gorithm

® McDonald (2006) and Eisner (1996):

D - 3 l\

h
N=R+
h m h S S m

}
AN

Model O

® Model 0, all grandparents: O(n4)

Complete G-Span Incomplete G-Span
A “half-constituent” A dependency
with its grandparent with its grandparent

g h e g h m

@ Superficially similar to parent annotation in CFGs

78

Model O: Derivations

® Model 0, all grandparents: O(n4)

m\=f®+/ﬂ\
qg h e g h m h m €

= A\ X
g h m g h r h r+1 m

® Grandparent indices propagated to smaller g-spans

® 4 active indices, runtime O(n4)

Model 1

® Model 1, grand-siblings: O(n4)

® Introduce a third type of span:

Sibling G-Span
A pair of adjacent modifiers with their shared head

80

Model 1: Grand—Sibling Scores

® Model 1, grand-siblings: O(n

I - r@ AT
\\\//

® Scores grand-sibling interactions

Model 1: Grand—Sibling Scores

® Model 1, grand-siblings: O(n

I - mB ALY

g h g -

® Scores grand-sibling interactions

Model 1: Derivations

® Model 1, grand-siblings: O(n

\ r@ "D
f<J\ (X

h S m r+1 m

4

7

Model 2

® Model 2, grand-siblings and tri-siblings: O(n4)

® Introduce a fourth type of span:

Incomplete S-Span
A dependency with its next-inner modifier

84

Model 2

® Model 2, grand-siblings and tri-siblings: O(n4)

® Capable of recovering all tri-siblings:

Ao Y

h t S m

® And some grand-siblings:

85

Summary of Parsing Algorithms

Model 0 parses an all-grandchildren factorization
Model 1 parses an all-grand-siblings factorization
Model 2 parses all-tri-siblings and some grand-siblings
All parsers require O(n4) time and O(nd) space
® l|dentical to Carreras (2007) second-order

Models 1 and 2 have optimal runtime

® Total number of third-order parts: O(n4)

86

English and Czech Parsing

Parser English Czech
McDonald (2006) 21.5 85.2
Second-order, Baseline 92.0 86.1
Model | 923.0 87.4

Model 2 92.9 87.4
Second-order, Clusters 93.2 87.1

® Attachment score on the English and Czech test sets

® Third-order comparable to semi-supervised

Summary

® Third-order factorizations can be parsed in O(n4)
® Third-parsers work well in practice
® Possible extensions:

® Recovering word senses or dependency labels

® Increasing context to fourth-order or more

® Using cluster-based features

88

Outline

® Introduction

® Three advances in discriminative dependency parsing:

® Simple and effective lexical representations
® Parameter estimation for non-projective parsing
o Efficient third-order dependency parsers

® Conclusion

89

Conclusions

® Dependency parsing is a simple and effective
framework for syntactic analysis

® Structured linear models provide three opportunities
for improvements

® Feature representations
® Parameter estimation

® Factorization

90

