
[]
Advances in Discriminative

Dependency Parsing

Terry Koo

1

Dependency Grammar

Syntax represented by head-modifier dependencies

Applications include machine translation, semantic
role labeling, etc.

sprinkles

John ate ice cream with

with

Mary

John ate ice cream

2

Discriminative Parsing

Structured linear model for parsing (McDonald, 2005):

 is a sentence, is the set of possible trees

Structures represented via feature mapping

Parameters provide a weight for each feature

Direct maximization is generally intractable

y!(x;w) = argmax
y∈Y(x)

w · Φ(x, y)

x Y(x)

w

Φ(x, y)

3

Factorization of Structures

Assume trees can be factored into parts

Feature decomposition:

sprinkleswithJohn ate ice cream

Φ(x, y) =
∑

p∈y

φ(x, p)

4

Factored Discriminative Parsing

Factored structured linear model:

Tractable for many factorizations

Three main components:

Feature mapping: what features appear in ?

Parameters: how do we estimate ?

Factorization: which parts make up ?y

w

p

φ

y!(x;w) = argmax
y∈Y(x)

∑

p∈y

w · φ(x, p)

5

Lexicalized Representations

Statistical parsers make heavy use of lexicalized features

Alternate lexical representations?

childThe attended school yesterday

6

Lexicalized Representations

Statistical parsers make heavy use of lexicalized features

Alternate lexical representations?

child
children
girl

student

The attended
enjoyed
attends
skipped

school
class
classes

kindergarten

yesterday
today
recently
frequently

7

Non-Projective Parsing

Non-projective parsing allows crossing dependencies

Frequent in languages like Czech, Dutch, etc.

Non-projective parsing = maximum spanning-tree
(McDonald et al., 2005)

likedyesterday heJohn saw a thatmovie

8

Non-Projective Parsing

Many parameter estimation methods depend on
summations over

Baum-Welch algorithm for Hidden Markov Models

Conditional Random Fields

Efficient algorithms exist for many types of structure

Algorithms for non-projective trees?

Y(x)

9

First-order factorization: individual dependencies

Second-order factorization: pairs of dependencies

Sibling and Grandchild interactions

Factorizations with larger sub-structures?

Higher-Order Factorizations

yesterdayattended schoolThe child

10

Outline

Introduction

Three advances in discriminative dependency parsing:

Simple and effective lexical representations

Parameter estimation for non-projective parsing

Efficient third-order dependency parsers

Conclusion

argmax
y∈Y(x)

∑

p∈y

w · φ(x, p)

11

Dependency Parsing Features

A dependency is a pair , e.g.,

Features are indicators for words, parts of speech

 “ate” “with”

 “VBD” “IN”

(h, m)

φ1(x, h,m) =
φ2(x, h,m) =

[

5

John ate with sprinklescream
NNSNNP INNN

ice
NNVBD
4321 6

(2, 5)

[
]

]

0/1

12

Alternate Lexical Representations

Intermediate lexical representations derived from
unlabeled data: word clusters

Clusters are easily incorporated as features

Improvements in English and Czech parsing

Previous work:

Brown et al. (1992): clustering algorithm, applied to
language modeling

Miller et al. (2004): named-entity tagging with word
clusters from the Brown algorithm

13

Brown Algorithm

Words merged according to contextual similarity

Paths in the hierarchy represented as bit strings

Prefixes of bit strings yield clusterings

Prefix length determines granularity

October
president

walk
run sprint

chairman
CEO November

14

Brown Algorithm

Words merged according to contextual similarity

Paths in the hierarchy represented as bit strings

Prefixes of bit strings yield clusterings

Prefix length determines granularity

October
president

walk
run sprint

chairman
CEO November

010

0
01

15

Brown Algorithm

Words merged according to contextual similarity

Paths in the hierarchy represented as bit strings

Prefixes of bit strings yield clusterings

Prefix length determines granularity

October
president

walk
run sprint

chairman
CEO November

010
11

011000
0010 0011

100 101

16

Brown Algorithm

Words merged according to contextual similarity

Paths in the hierarchy represented as bit strings

Prefixes of bit strings yield clusterings

Prefix length determines granularity

October
president

walk
run sprint

chairman
CEO November

010
11

011000
0010 0011

100 101

17

Brown Algorithm

Words merged according to contextual similarity

Paths in the hierarchy represented as bit strings

Prefixes of bit strings yield clusterings

Prefix length determines granularity

October
president

walk
run sprint

chairman
CEO November

0... 1...

18

Brown Algorithm

Words merged according to contextual similarity

Paths in the hierarchy represented as bit strings

Prefixes of bit strings yield clusterings

Prefix length determines granularity

October
president

walk
run sprint

chairman
CEO November

010
11

011000
0010 0011

100 101

19

Brown Algorithm

Words merged according to contextual similarity

Paths in the hierarchy represented as bit strings

Prefixes of bit strings yield clusterings

Prefix length determines granularity

October
president

walk
run sprint

chairman
CEO November

10...
11...

01...00...

20

Brown Algorithm

Examples of clusters from our English experiments

010101010110011 constructed
010101010110011 elucidated
010101010110011 inhaled
010101010110011 rewritten

1001111111100 precious-metal
1001111111100 grain-futures
1001111111100 crude-oil-futures

Past Participle Verbs

Financial Categories

21

Cluster-based Features

Feature mappings can include arbitrary information

Two types of features:

Baseline features include words and POS

Cluster-based feature sets add information from
clusters

22

Cluster-based Features

4−bit

8−bit 8−bit

6−bit

4−bit

All bits All bits

6−bit

23

Cluster-based Features

4−bit

All bits All bits

6−bit

8−bit 8−bit

6−bit

4−bit4−bit

All bits

4−bit

6−bit

8−bit Word/POS

Word/POS

Word/POS

Word/POS

All bits

Word/POS

Word/POS

Word/POS

Word/POS

8−bit

6−bit

24

Cluster-based Features

4−bit

6−bit 6−bit 6−bit

4−bit4−bit

25

Cluster-based Features

6−bit

POS 4−bit 4−bit

POS4−bit 4−bit

POS4−bit 4−bit

POS 6−bit6−bit

POS6−bit6−bit

POS6−bit

4−bit

6−bit 6−bit 6−bit

4−bit4−bit

26

Cluster-based Features

4−bit

POSPOS 6−bit

POS POS 6−bit

POS POS6−bit

POS POS4−bit

POS POS4−bit

POS POS

6−bit

POS 4−bit 4−bit

POS4−bit 4−bit

POS4−bit 4−bit

POS 6−bit6−bit

POS6−bit6−bit

POS6−bit

4−bit

6−bit 6−bit 6−bit

4−bit4−bit

27

Feature Pruning

Cluster-based feature sets were very large

Eliminate features using word frequency

Only use the top-800 most frequent words

Cluster-based features were not affected

28

Experiments

English parsing (Penn Treebank)

Czech parsing (Prague Dependency Treebank)

Brown clustering algorithm (Liang, 2005)

Averaged perceptron training

Second-order projective parsers (Carreras, 2007)

First-order max-spanning-tree (McDonald, 2005)

Compare between baseline and cluster-based features

29

Baseline Comparison

Attachment score on English test set

Percent of words attached to correct head

Baseline parser is state of the art

Parsing Model Accuracy

 McDonald (2006) 91.5

Baseline Features 92.0

30

English Parsing Results

Attachment score on all English test sets (Sections
00, 01, 23, and 24 of the Penn Treebank)

Cluster-based features outperform baseline

Test Set Baseline Cluster-Based

Sec 00 91.8 92.8 (+1.0)

Sec 01 92.5 93.3 (+0.8)

Sec 23 92.0 93.2 (+1.2)

Sec 24 90.9 91.9 (+1.0)

31

Effect of Training Corpus Size

#Sentences Baseline Cluster-Based

1000 82.0 85.3 (+3.3)

2000 85.0 87.5 (+2.5)

4000 87.9 89.7 (+1.8)

8000 89.7 91.4 (+1.7)

16000 91.1 92.2 (+1.1)

32000 92.1 93.2 (+1.1)

39832 92.4 93.3 (+0.9)

Attachment score on English development set

Part-of-speech tagger trained on reduced dataset

32

#Sentences Baseline Cluster-Based

1000 82.0 85.3 (+3.3)

2000 85.0 87.5 (+2.5)

4000 87.9 89.7 (+1.8)

8000 89.7 91.4 (+1.7)

16000 91.1 92.2 (+1.1)

32000 92.1 93.2 (+1.1)

39832 92.4 93.3 (+0.9)

Effect of Training Corpus Size

Attachment score on English development set

Part-of-speech tagger trained on reduced dataset

33

Czech Parsing Results

Attachment score on Czech test set

Results are similar to English

Parsing Model Baseline Cluster-Based

 First-order MST 84.5 86.1 (+1.6)

 McDonald (2006) second-order 85.2

 Second-order 86.1 87.1 (+1.0)

34

Removal of Direct Lexicalization

Attachment score on English development set

Cluster-based features are far less sensitive

Threshold Baseline Cluster-based

100 90.6 (-1.8) 93.1 (-0.2)

800 91.9 (-0.5) 93.3 (-0.0)

All words 92.4 (-0.0)

35

Clusters vs Part-of-Speech Tags

Attachment score on English development set

Clusters alone are almost as good as baseline

Ignore POS Tags Use POS Tags

Ignore Clusters 86.7 92.4

Use Clusters 91.8 93.3

36

Summary

Lexical statistics are important but sparse

Word clusters as an alternate lexical representation

Clusters incorporated as features for a
discriminative parser

Performance gains over a state-of-the-art baseline

37

Outline

Introduction

Three advances in discriminative dependency parsing:

Simple and effective lexical representations

Parameter estimation for non-projective parsing

Efficient third-order dependency parsers

Conclusion

argmax
y∈Y(x)

∑

p∈y

w · φ(x, p)

38

Non-Projective Inference

Fundamental inference algorithms that sum over
possible structures:

New inference algorithms for non-projective parsing

Structured Model Inference Algorithm

Hidden Markov Model Forward-Backward
Graphical Model Belief Propagation

Context-Free Grammar Inside-Outside
Projective Dependencies Inside-Outside

Non-Projective Dependencies ???

39

Log-Linear Dependency Parsers

Distribution over trees in a first-order factorization

Parsing is a search for the most probable tree

A popular method for modeling structured data

Also known as a Conditional Random Field (CRF)

P (y | x;w) ∝
∏

(h,m)∈y

ew·φ(x,h,m)

40

Log-Linear Parameter Estimation

Learn from labeled data

Maximize (regularized) conditional log-likelihood:

Gradient-based optimization

 and

e.g., L-BFGS

w

fLL(w) = −C

2
‖w‖2 +

n∑

i=1

log P (yi | xi;w)

w0

w1 w2

fLL(w) ∇fLL(w)

{(xi, yi)}n
i=1

41

Log-Linear Inference Problems

 requires the partition function:

 requires the marginal probabilities:

Z(x;w) =
∑

y

∏

(h,m)∈y

ew·φ(x,h,m)

P (h, m | x;w) =
∑

y : (h,m)∈y

P (y | x;w)

fLL(w)

∇fLL(w)

42

The Matrix-Tree Theorem

Originally developed by Kirchhoff (1847)

Count the number of undirected spanning trees

Determinant of a specially-constructed matrix

Extended by Tutte (1984)

Summations over weighted, rooted, directed
spanning trees

43

Given:

Directed graph

Edge weights

Root node

Construct a matrix such that:

The Matrix-Tree Theorem

L(r)

r

G

Edges in TreeTrees

∣∣L(r)
∣∣ =

∑ ∏
eθh,m

θ1,2

θ1,3
θ2,3

θ3,2

2

3

1

θi,j

44

L(r)

Given:

Directed graph

Edge weights

Root node

Construct a matrix such that:

The Matrix-Tree Theorem

G

r

2

3

1
0.5

1.0
2.0

2.5

∣∣L(r)
∣∣ =

θi,j

45

L(r)

Given:

Directed graph

Edge weights

Root node

Construct a matrix such that:

The Matrix-Tree Theorem

G

r

0.5

1.0
2.0

2.5

2

3

1

∣∣L(r)
∣∣ = e1.0+2.5 + e0.5+2.0

θi,j

46

The Partition Function

A naive method: one invocation per root

Inefficient: requires determinants

John Marysaw

sawJohn Mary

MarysawJohn

n

47

The Partition Function

A simple method for summing over all roots:

The modifier of is the root

John Marysaw*

*
48

The Partition Function

A simple method for summing over all roots:
∣∣L(∗)∣∣

John Marysaw*

49

The Partition Function

A simple method for summing over all roots:

Determinant of matrix:

∣∣L(∗)∣∣

L(∗) =

n× n O(n3)

L(∗)
i,j = −eθi,j

L(∗)
j,j =

∑

i

eθi,j

50

Multi-Root Dependency Trees

A simple method for summing over all roots:

Structures with multiple roots are counted

John saw Mary*

∣∣L(∗)∣∣

51

Single-Root Partition Function

A new matrix for summing over single-root trees:

Determinant of matrix: n× n O(n3)

L̂ = L̂i,j = −eθi,j

L̂1,j = eθ∗,j

L̂j,j =
∑

i !=∗
eθi,j

52

Marginal Probabilities

Single-root and multi-root partition functions:

Marginals are derivatives of log partition function:

Derivative of log-determinant:

Inverse of matrix: n× n O(n3)

Z(θ) =
∣∣L(∗)∣∣Z(θ) =

∣∣L̂
∣∣

P (h→ m;θ) =
∂ log Z(θ)

∂θh,m

∂ log |X|
∂X =

(
X−1

)T

53

Application to Parsing

Training a log-linear parser:

Define edge scores

Construct appropriate matrix or

 via matrix determinant

 via matrix inverse

Max-margin training for dependency parsers

Exponentiated Gradient (Collins et al., 2008)

θh,m = w · φ(x, h,m)

L̂ L(∗)

P (h, m | x;w)

Z(x;w)

54

Multilingual Parsing Experiments

Six languages from CoNLL-X shared task

Three training algorithms:

Averaged perceptron

Log-linear models

Max-margin models

Projective and non-projective parsing

55

Dutch Parsing Experiments

Attachment score on Dutch test set

4.93% of dependencies are crossing

Non-projective training is beneficial for languages
with non-projectivity

Training Algorithm Projective Training Non-Projective Training

Perceptron 77.2 78.8 (+1.6)

Log-Linear 76.2 79.6 (+3.4)

Max-Margin 76.5 79.7 (+3.2)

56

Aggregate Multilingual Results

Cumulative attachment score over 6 languages:

Arabic, Dutch, Japanese, Slovene, Spanish, Turkish

Improvements are statistically significant

Training Algorithm Overall Results

Perceptron 79.1 (+0.0)

Log-Linear 79.7 (+0.6)

Max-Margin 79.8 (+0.7)

57

Summary

New algorithms for weighted summations over non-
projective dependency trees

Covering both single-root and multi-root trees

Efficient algorithms

An application: log-linear and max-margin parsers

O(n3)

58

Outline

Introduction

Three advances in discriminative dependency parsing:

Simple and effective lexical representations

Parameter estimation for non-projective parsing

Efficient third-order dependency parsers

Conclusion

argmax
y∈Y(x)

∑

p∈y

w · φ(x, p)

59

Higher-Order Parsers

Attachment scores on English test set

Can we get more by going beyond second-order?

How much will it cost to get there?

Carreras (2007) second-order is already O(n4)

Parsing Approach First-Order Second-Order

McDonald’s Models 90.9 91.5 (+0.6)

Baseline Features 90.8 92.0 (+1.2)

Cluster-Based Features 92.2 93.2 (+1.0)

60

Third-Order Factorizations

h m
dependency

First-Order Parsers

Two axes: Vertical context and Horizontal context

61

Third-Order Factorizations

Two axes: Vertical context and Horizontal context

h m
dependency

h ms
sibling

McDonald (2006) Second-Order

62

Third-Order Factorizations

Two axes: Vertical context and Horizontal context

h m
dependency

g h m
grandchild

h ms
sibling

Carreras (2007) Second-Order

63

Third-Order Factorizations

Two axes: Vertical context and Horizontal context

h m
dependency

g h m
grandchild

g h ms
grand-sibling

h ms
sibling

Third-Order
Model 1

64

Third-Order Factorizations

Two axes: Vertical context and Horizontal context

h m
dependency

g h m
grandchild

g h ms
grand-sibling

h mst
tri-sibling

h ms
sibling

Third-Order
Model 2

65

First-Order Parsing Algorithm

Eisner (2000) algorithm:

Complete Span
A “half-constituent”

h e h m

Incomplete Span
A dependency

O(n3)

66

First-Order Parsing Algorithm

Eisner (2000) algorithm:

Derivation of complete and incomplete spans:

+=

h h mm ee

+=

hh m mr r+1

O(n3)

67

First-Order Parsing Example

Eisner (2000) algorithm: O(n3)

MarysawJohn*
68

First-Order Parsing Example

Eisner (2000) algorithm: O(n3)

MarysawJohn*
69

First-Order Parsing Example

Eisner (2000) algorithm: O(n3)

John Marysaw*
70

First-Order Parsing Example

Eisner (2000) algorithm: O(n3)

John Marysaw*
71

First-Order Parsing Example

Eisner (2000) algorithm: O(n3)

John Marysaw*
72

First-Order Parsing Example

Eisner (2000) algorithm: O(n3)

John Marysaw*
73

Second-Order Parsing Algorithm

McDonald (2006) and Eisner (1996):

Introduce a third type of span:

Sibling Span
A pair of adjacent modifiers

ms

O(n3)

74

Second-Order Parsing Algorithm

McDonald (2006) and Eisner (1996):

Scores sibling interactions

O(n3)

= +

hh mm ss

h s m

75

Second-Order Parsing Algorithm

McDonald (2006) and Eisner (1996):

Scores sibling interactions

O(n3)

= +

hh mm ss

h s m

76

Second-Order Parsing Algorithm

McDonald (2006) and Eisner (1996): O(n3)

+=

h h mm ee

= +

hh mm ss

+=

mms s r r+1

77

Model 0

Model 0, all grandparents:

Superficially similar to parent annotation in CFGs

Complete G-Span
A “half-constituent”
with its grandparent

Incomplete G-Span
A dependency

with its grandparent

O(n4)

g h e g h m

78

Model 0: Derivations

Model 0, all grandparents:

Grandparent indices propagated to smaller g-spans

4 active indices, runtime

O(n4)

+=

gg hhh mme e

= +

gg h hh mm r r+1

O(n4)
79

Model 1

Model 1, grand-siblings:

Introduce a third type of span:

O(n4)

Sibling G-Span
A pair of adjacent modifiers with their shared head

h ms

80

Model 1: Grand-Sibling Scores

Model 1, grand-siblings:

Scores grand-sibling interactions

O(n4)

+=

gg h hh mm ss

h s mg

81

Model 1: Grand-Sibling Scores

Model 1, grand-siblings:

Scores grand-sibling interactions

O(n4)

+=

gg h hh mm ss

h s mg

82

Model 1: Derivations

Model 1, grand-siblings: O(n4)

+=

gg hhh mme e

+=

gg h hh mm ss

+=

hh hm ms s r r+1

83

Model 2

Model 2, grand-siblings and tri-siblings:

Introduce a fourth type of span:

O(n4)

Incomplete S-Span
A dependency with its next-inner modifier

h ms

84

Model 2

Model 2, grand-siblings and tri-siblings:

Capable of recovering all tri-siblings:

And some grand-siblings:

O(n4)

h s mg

h s mt

85

Summary of Parsing Algorithms

Model 0 parses an all-grandchildren factorization

Model 1 parses an all-grand-siblings factorization

Model 2 parses all-tri-siblings and some grand-siblings

All parsers require time and space

Identical to Carreras (2007) second-order

Models 1 and 2 have optimal runtime

Total number of third-order parts:

O(n4) O(n3)

O(n4)

86

English and Czech Parsing

Attachment score on the English and Czech test sets

Third-order comparable to semi-supervised

Parser English Czech

McDonald (2006) 91.5 85.2

Second-order, Baseline 92.0 86.1

Model 1 93.0 87.4

Model 2 92.9 87.4

Second-order, Clusters 93.2 87.1

87

Summary

Third-order factorizations can be parsed in

Third-parsers work well in practice

Possible extensions:

Recovering word senses or dependency labels

Increasing context to fourth-order or more

Using cluster-based features

O(n4)

88

Outline

Introduction

Three advances in discriminative dependency parsing:

Simple and effective lexical representations

Parameter estimation for non-projective parsing

Efficient third-order dependency parsers

Conclusion

argmax
y∈Y(x)

∑

p∈y

w · φ(x, p)

89

Conclusions

Dependency parsing is a simple and effective
framework for syntactic analysis

Structured linear models provide three opportunities
for improvements

Feature representations

Parameter estimation

Factorization

90

