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Abstract

This report describes an attempt to improve robustness in automatic speech recognition
by optimizing the extraction of phonetic feature streams independently of the recogni-
tion process. The eventual goal is to use a bank of feature extraction modules which
use specialized signal processing and statistical techniques to reliably extract speech
relevant features from the acoustic signal. In this work, we demonstrate the viability of
using a sparse set of feature streams for a simple connected digit recognition task. We
then illustrate some techniques for improving the reliability of the voicing feature mod-
ule and evaluate several alternatives modules using both clean and noisy data. Finally,
we relate the reliability of extraction for the individual voicing module to the overall
performance of the recognizer by performing recognition experiments on the Aurora 2
database.
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Introduction

One of the main challenges facing automatic speech recognition research is the issue
of robustness to noise and other environmental corruption. While speech recognition
performance by humans tends to degrade gracefully in the presence of noise, even state-
of-the-art automatic speech recognition (ASR) systems tend to fail drastically when
confronted with corrupted speech.

1.1 The problem of mismatch

At the heart of the robustness dilemma lies the problem of mismatch between training
and testing data. Modern ASR systems represent the speech signal as a time series of
spectral feature vectors, vt , which are computed over windowed frames of the time do-
main signal at a fixed frame rate. During training, feature vectors belonging to the same
class, Ci (at the word, syllable, phone, etc. level), are used to estimate the parameters, θi

of the statistical acoustic model for that class. This phase produces, for each class Ci, a
compact probability distribution representation, fi(v;θi), which captures the aggregate
properties of its training data.

Vi = {v|v ∈Ci} −→ θi

During recognition, the test utterance is also converted to a time series of spectral feature
vectors, yt . The likelihood that a feature vector belongs to a particular class Ci, a critical
measure used in all subsequent stages of recognition when determining likelihoods of
words and phrases, is computed by calculating the probability of occurence from the
statistical model for that class, fi(yt ;θi). The key assumption in this framework is that
the distribution of feature vectors in a class will be the same in testing as they were
observed in training.
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However, there are many reasons why this assumption might fail to hold in practice.
The test environment could include additive noise or reverberation that was not present
in during training. The recording microphone or transmission channel might be also be
different from what was used during training. Even speaker variation and differences in
speaking rate, though unrelated to environmental conditions, are sources of mismatch
which cause significant difficulties for most ASR systems.

1.2 Dealing with mismatch

In general, most approaches to dealing with mismatch fall under one of three categories,
which are described in the following sections.

1.2.1 Multi-condition training

This approach attempts to reduce instances of mismatch by including more varied exam-
ples of training data during training. Thus, mismatch due to noise is reduced by training
on data collected in a variety of noisy environments and mismatch due to speaker vari-
ation is reduced by training on data collected from a wide catalogue of speakers.

In some ways, this strategy is attractive because it is not knowledge intensive and re-
quires only the collection of more data. However, since training can never be exhaus-
tive, this approach is not scalable, as there will always be an unseen testing conditions.
Moreover, data collection is often time consuming and expensive, and multi-condition
training typically worsens performance on clean data.

1.2.2 Model adaptation

Model adaptation strategies attempt to change the parameters of the learned acoustic
model to better match the characteristics of the incoming speech. Speaker adaptation
falls under this category, as do many robustness techniques such as Parallel Model Com-
bination [1]. Model adaptation is performed by first estimating the test conditions, then
adapting the model parameters to those conditions. The main drawbacks to model adap-
tation strategies are the heavy computation cost and degradation of performance in sit-
uations where the adaptation parameters are not accurately estimated.

1.2.3 Feature domain compensation

Feature based approaches attempt to address the mismatch problem either by using fea-
tures which are discriminative for speech and largely invariant to other factors, or by
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cleaning the features prior to presenting them to the recognizer. The motivation for
the former approach stems from the observation that frame-level Mel scale Cepstral
Coefficient (MFCC) vectors, which are widely used in ASR systems, are typically not
consistently extracted in the presence of noise or other corruption. Some proposed al-
ternative feature representations that have been demonstrated to be more robust than
MFCCs are the modulation spectrogram [2] and RASTA features [3]. Feature cleaning
techniques include methods like Vector Taylor Series [4] and Algonquin [5].

A related feature domain approach to robustness is the application of missing feature
theory, where the reliability of front end feature components are determined by the es-
timated local signal to noise ratio. Those components of the feature vector that fall
below a certain SNR are deemed missing, and can then be either reconstructed [6] or
marginalized out when computing likelihoods during recognition [7]. The main dif-
ficulty in utilizing missing feature theory in practice remains determining the correct
SNR mask. If, during recognition, the system marks the wrong components as missing,
then serious degradations in accuracy can result from relying on the incorrect portions
of the signal.

1.3 Recognition with independent feature stream
modules

The framework advocated in this work is aligned most closely with the the feature do-
main approaches described in the previous section. Like previous feature based ap-
proaches, we believe in presenting the acoustic modelling layer with a set of features
that are robustly and consistently extracted in all conditions. However, unlike RASTA
and the modulation spectrogram, we ground our choice of features to phonetic or dis-
tinctive features. This is so that we can evaluate the quality of the feature detectors
under different conditions without relying on global word error rate as the sole criteria
for optimality. An additional advantage is that multiple techniques and inputs can be
used calculate each possible feature stream. Finally, the use of phonetic features pro-
vides a way to meaningfully diagnose recognizer failure in new environments. As it
stands now, the feature vectors provided as input to the acoustic models have little di-
agnostic information because the values do not correspond to any intuitive attribute of
the speech signal. At present, we seek to decouple feature set evaluation from the rest
of the recognition process. Our eventual goal is to join feature extraction and acoustic
modeling using a layered architecture which relies on the following principles:

(1) Abstraction. The modelling layer should not affect the features computed. Just
as in networking, the client layer is not concerned with the route that a packet
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takes in the network, neither should the modelling layer be concerned with how a
particular feature stream is computed.

(2) Consistency. For a given underlying speech state, the goal of the feature extraction
layer should be to present the modelling layer with the same value under any
condition.

(3) Redundancy. Multiple processing strategies can and should be used in the feature
extraction layer to provide the most robust estimate of a target feature. For exam-
ple, if video input is present in addition to audio, then lip motion should be used
in addition to, formant motion to get a more accurate estimate of labializtion.

(4) Integrity. Not only should the feature extraction layer attempt to provide the most
consistent and accurate estimate of the target feature, it should also provide in-
formation about the reliability of such an estimate. For example, if the estimated
SNR of the input utterance becomes very low, then certain feature streams such
as frication should be given a low reliability score. When integrated with appro-
priate higher layers, the use of reliability scores will allow recognizers to focus on
more reliable acoustic cues as the signal degrades, and in the worst case, output no
hypothesis in the absence of any reliable streams. The hope is that such a frame-
work will eliminate instances of random noise inputs generating nonsensical word
hypotheses from the recognizer

1.4 Previous work in feature based recognition

Recognition strategies using feature-based modeling have recently gained popularity in
the research community because of their ability to explain articulatory phenomena that
occur in conversational speech. For example, Deng et al. [8] use a hidden state variable
to model and constrain the evolution of articulatory features. Livescu [9] has proposed
an extension to this approach which uses multiple hidden states in a dynamic Bayesian
network to model the relationships between hidden articulatory feature streams. An
alternate strategy proposed by Kirchoff [10] makes estimates of the articulatory features
themselves, then treats these estimates as observed variables for recognition. Similarily,
Metze et al. [11] have demonstrated improvements on read speech using a multi-stream
hidden Markov model (HMM) architecture supported by a set of articulatory feature
detectors.

In the area of distinctive features, Hermansky et al. [12] have described the use of a
connectionist approach, where traditional input feature vectors are first passed through
a neural network to generate posterior probabilities for subword phonetic units, which
are then used as the base features for a conventional recognition system. This is closely
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related to work by Lee et al. [13], [14] who demonstrated a similar approach using
neural networks to compute streams of distinctive feature probabilities for use as the
input to an HMM recognizer.

While all of the works mentioned in this section share the common goal of using speech-
relevant feature streams for improving recognition, the focus has been exclusively on
lowering word error rate while making little attempt at ensuring the fidelity of the
actual features which are computed. At the same time, there have been several ef-
forts by researchers to develop detectors optimized for specific phonetic classes such as
nasals [15], sonorants [16], and stops [17]. Though these works demonstrate detection
performance, they stop short of producing results on actual speech recognition tasks.

1.5 Overview

The organization of the rest of this paper is as follows. Section 2 details the building and
training of a preliminary recognizer which uses a bank of phonetic feature modules to
compute input feature vectors. In Section 3, we describe alternatives to the initially pro-
posed voicing module and compare the performance and consistency of these modules
at the feature level. Next, we present experimental results comparing recognition per-
formance using the different voicing modules in Section 4. Finally, Section 5 contains
conclusions and directions for future work.
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Feature-based recognizer

In order to investigate the benefits of an approach where individual feature detectors can
be independently improved, it was first necessary to build and train a recognizer which
makes use of the outputs of such feature modules rather than traditional spectral feature
vectors. This section details the procedure we followed to build such a recognizer for
the Aurora TI digits task.

2.1 Training individual feature detectors

For this preliminary study, a set of six phonetic features were selected, and individ-
ual feature stream modules were created by training Gaussian mixture model (GMM)
classifiers. The phonetic features used are shown in Table 2.1. The input to each fea-
ture module is a sequence of MFCC derived feature vectors, xt , computed every 10 ms.
The output of each feature stream module is the posterior probability of that particular
feature being present at time t.

Feature Example TIMIT Labels
Frication s, sh, z, ...
Rounding w, ow, uw, ...

Nasal n, m, ng, ...
Liquid/Glide el, l, uw, ...

Burst g, k, p, ...
Voice aa, ae, ah, ...

Table 2.1: Phonetic feature streams and corresponding phone labels used for feature-
based Aurora recognizer
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The feature modules were trained using 410 sentences spoken by 40 speakers taken
from the TIMIT speech database. The speech data was first downsampled to 8 kHz,
then segmented into 10 ms frames. For each feature, F, each frame was labeled as
either +F or -F depending on the identity of the time aligned phonetic label for that
segment of speech. For example, all frames belonging to an /s/ segment were labeled as
+fricative, whereas all frames belonging to an /uw/ segment were labeled as -fricative.

In total, approximately 126,000 frames were used for training. For each feature F, these
binary labeled frames were then used to train two GMMs, p(xt |+F) and p(xt |−F). The
input vectors xt were computed by first concatenating a set of MFCC averages collected
from regions surrounding the time t, then reducing the resulting 80-dimension vector to
50 dimensions using a principal component analysis (PCA) rotation matrix.

During recognition or testing, the posterior probability that feature F is expressed in an
input frame xt can be computed using Bayes rule. Assuming equal priors,

p(+F|xt) =
p(xt |+F)

p(xt |+F)+ p(xt |−F)

Figure 2.1 shows an example of an Aurora utterance together with the feature streams
computed by the MFCC GMM modules. One can see that some modules, such as
voicing and frication appear to produce very credible output streams that correspond
well to what is observed in the speech signal. Others, such as the burst and nasal
modules, appear to be more erratic, contributing high probabilities even in regions where
the feature is likely not present. At this point, no attempt was made to improve the
performance of these initial feature modules.

2.2 Integration of feature streams

The next task was to use the outputs of the feature stream module to build a digit rec-
ognizer suitable for use with the Aurora data. First, all speech data in the clean training
set for the Aurora corpus was parameterized using the feature detection modules into
feature stream probabilities. The output of each feature stream, at time t was concate-
nated into a six dimension vector which was used as the input feature vector to train the
default recognizer included in the Aurora corpus release. In total, eleven whole word
HMM models were trained using the HMM Toolkit (HTK): the digits “zero” through
“nine” and “oh”. Each whole word model consisted of an 18 state HMM, with each
state containing a 6-dimension, three mixture GMM for the emission probability.

It should be noted here that the recognizer architecture used for these experiments is
probably not optimal for the type of inputs being used. Ideally, a more knowledge based
system would be able to make use of the relationships between the different phonetic
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features to better determine appropriate segmentations and word identities. The choice
to use an HMM recognizer in this work was mainly due to time constraints.

2.3 Preliminary recognition results

For testing, we used the ‘testa’ set from the Aurora corpus, which consists of 1001
spoken digit utterances presented under four different noise conditions (subway, babble,
car, and exhibition hall) and eight different SNR levels (Clean, 20dB, 15dB, 10dB, 5dB,
0dB and -5dB). Despite the suboptimality of the recognizer architecture and the extreme
sparsity of the feature vectors used as inputs to the HMM system, we were surprised
to see that the word accuracy rate was fairly high (≈ 87%) when tested on the clean
data. Figure 2.2 shows the recognition accuracy rate of the feature stream recognizer
averaged across 4 different noise conditions. Also shown is the word accuracy rate for
the baseline Aurora recognizer included with the data set.
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Figure 2.2: Comparison of recognition accuracy for Aurora baseline recognizer and
preliminary feature-based recognizer

Although the baseline recognizer clearly outperforms the stream-based recognizer at all
SNR levels, we were not overly discouraged by the performance gap for several reasons.
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First, no attempt was made to optimize individual stream processing modules, and the
example stream outputs displayed in Figure 2.1 indicated that improvement is clearly
needed for some of the modules. Second, compared to the Aurora baseline recognizer,
which uses 39-dimension input vectors that include delta and delta-delta measurements,
the feature-based recognizer uses extremely sparse inputs with no temporal information
from frame to frame. Another factor that favours the baseline Aurora recognizer is the
use of diagonal variance GMMs in the HMM states, which take advantage the uncor-
related dimensions in the MFCC feature vectors. In contrast, the feature stream inputs,
when observed as frame level vectors, have correlated dimensions due to the redundancy
of some phonetic features.

We believe there is much room for improvement in the matched performance of the
preliminary phonetic feature recognizer described, for example by using asynchronous
transition states, including more phonetic feature streams, and improving the individual
feature stream modules. This last direction is the focus of the remainder of this work.
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Feature module improvement

As mentioned in the previous section, one pathway to improving the performance of the
feature-based recognizer is to improve the quality of the feature stream modules. In this
work, we chose to focus on the voicing feature module, as voicing happens to be one of
the more robust cues extracted from the speech signal even under significant corruption
due to additive noise.

Voicing is associated with periodicity in time, and harmonic spectral structure in fre-
quency. There have been many attempts to produce reliable voicing detectors using
purely signal processing based approaches such as harmonic product spectrum, auto-
correlation analysis, and cepstrum analysis [18]. In addition to these techniques, there
have also been some approaches which make use statistical learning algorithms such as
the multiband Bayesian network approach proposed by Saul [16].

In this section, we detail efforts to improve the voicing feature module by utilizing two
temporal signal processing measurements as well as a variation on our initial statistical
GMM module which makes use of non-MFCC measurements.

3.1 Alternative voicing feature modules

3.1.1 Autocorrelation

Autocorrelation is a measure of the similarity of a signal with time shifts of itself. For a
continuous time signal, x(t), the normalized autocorrelation function is

Rxx[k] =
∑∞

n=−∞ x[n]x[n− k]
∑∞

n=−∞ x[n]2
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If x[n] is periodic with period N, Rxx[k] will have peaks at k = mN. The normalizing
term in the denominator of Rxx[k] ensures that all values fall between between 0 and 1.

To create an autocorrelation-based voicing feature module, we computed the short-time
normalized autocorrelation of the signal, Rxx[k,n], using a sliding window of 64 ms,
shifted every 10 ms. The output of the autocorrelation-based voicing module was then
taken as

vautocorr[n] = max
k �=0

Rxx[k,n]

3.1.2 Sinusoid Uncertainty

Recently, Saul et al. proposed a new method for real-time pitch extraction and voicing
detection using a novel sinusoid fitting approach [19]. First the signal is half-wave
rectified to concentrate energy at the fundamental frequency for periodic regions. The
signal is then low pass filtered and passed through a bank of octave spaced filterbanks to
obtain a set of band-limited signals, x j[n]. The premise of this approach is that if x j[n]
are discrete samples of a sinusoid with frequency ω, then it will obey the difference
equation

x j[n] =
1

cosω

[
x j[n−1]+ x j[n+1]

2

]
For a windowed segment of x j[n] between [N−k,N+k], we can determine the minimum
mean square error (MMSE) estimate, ω∗

j , of ω j by minimizing E j(α)

E j(α) =
N+K

∑
n=N−K

[
x j[n]−α

(
x j[n−1]+ x j[n+1]

2

)]2

⇒ α∗
j =

2∑n x j[n](x j[n−1]+ x j[n+1])
∑n(x j[n−1]+ x j[n+1])2

⇒ ω∗
j = cos−1(1/α∗

j)

Thus, at each time step, each band j generates a pitch estimate ω∗
j . The value of ω∗

j with
the smallest error is chosen as the pitch estimate, and the sharpness of the least square
errors fit, ∆µ∗j , is used as a measure of the uncertainty of the pitch estimate.

∆µ∗j =
1

ω∗
j

(
cos2 ω∗

j

sinω∗
j

)[(
1
E j

∂2E j

∂α2

)∣∣∣∣
α=α∗

j

]

The uncertainty measure is a dimensionless quantity that ranges from 0 to infinity, with
smaller values indicating higher confidence in voicing. We scaled this quantity to range
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between 0 and 1 by taking the exponential of the negative of the uncertainty measure.

vsinun[N] = max
j

exp(−∆µ∗j)

Because the original uncertainty measure was negatively correlated with periodicity,
this processing step ensures that vsinun[N] will be positively correlated with voicing.

3.1.3 Alternative Feature GMM

The benefits of the approaches described in the sections 3.1.1 and 3.1.2 are that they
generate measurements which are directly relevant to the acoustic qualities of the fea-
ture stream they are trying to estimate. The disadvantages of the above approaches
alone is that they do not make explicit use of information from neighbouring frames.
Another difficulty is that these purely signal processing based approaches make no use
of available training data, so the quantities computed, while scaled between 0 and 1, do
not represent actual probabilities.

To address these drawbacks, we used the same training method used to train the MFCC
GMM voicing feature detector, but replaced the MFCC inputs with features derived
from the signal autocorrelation and sinusoid uncertainty. At every frame step, t, the
maximum normalized autocorrelation and sinusoid uncertainty from frames surround-
ing t are concatenated to form a 28-dimension vector which is reduced to six dimensions
using a PCA rotation matrix. These six dimension vectors serve to train the alternative
feature GMMs, p(xt |+voice) and p(xt |−voice). The posterior probability of voicing is
then calculated as for the MFCC feature modules.

3.2 Evaluating feature modules using distortion

Initially, we attempted to evaluate the performance of the different voicing modules by
calculating the detection error tradeoff characteristic for each module on a small TIMIT
test set of 100 sentences. The voiced/unvoiced reference was determined from the pho-
netic transcription, and the equal error rate (error rate where the voiced to unvoiced error
rate equals the unvoiced to voiced error rate) was used as a metric for comparison. The
DET curves for the feature detectors evaluated on clean data are shown in Figure 3.1
and the associated equal error rates are shown in Table 3.1. Based on the detection
performance of the modules, we could have concluded that the MFCC GMM approach
was the most accurate followed by the Autocorrelation, Sinusoid Uncertainty, and fi-
nally the Alternative Features GMM. However, we had several concerns about using
the detection performance as a criterion for evaluating the overall quality of the feature
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Figure 3.1: Detection Error Tradeoff curves comparing voicing detection performance
of the different voicing modules

Voicing Feature module Equal Error Rate (%)
MFCC-based GMM 11.14

Autocorrelation 16.78
Sinusoid Uncertainty 18.11

Alternative feature GMM 24.84

Table 3.1: Equal error rates evaluated on a small set of clean TIMIT data



Evaluating feature modules using distortion 15

modules. First, the phonetic transcriptions used for the voicing reference only indicate
the segment boundaries at the phone level and don’t correspond to ground truth where
voicing is concerned. Second, using a binary +/- voicing label quantizes the measure-
ment we are actually seeking, which is a continuous measure of the voicing likelihood.
Finally, unless the equal error rate is very low, global detection error rate does not give
any sense of how closely the output for one utterance matches the same output for the
utterance in noise.

As a second attempt at performing a meaningful evaluation of the different feature mod-
ules, we used a simple distortion measure to determine the consistency of extraction for
a feature stream output under different noise conditions. Because Aurora data is essen-
tially clean data with artificially added noise at different SNR levels, it is possible to
compare the feature module outputs for the same utterance under different noise condi-
tions. Figure 3.2 shows the output of the MFCC GMM voicing module for a particular
utterance at different noise levels. Figure 3.3 shows the outputs of the Alternative Fea-
tures GMM module for the same utterance. The second voicing module appears to have
less discriminative power in separating the voiced and unvoiced frames, but appears to
be more consistent across a range of noise conditions when compared to the MFCC
GMM. This observation can be quantified by using the absolute difference between
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Figure 3.2: Comparison of MFCC GMM output on clean data vs. noisy data

frames for clean and noisy versions of a particular utterance. For feature module i, if the
output feature stream on a clean waveform is vi,c(t), and the output feature stream on
the noisy version of the same waveform is vi,n(t), then the distortion at time t is given
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Figure 3.3: Comparison of Alternative GMM output on clean data vs. noisy data

by
D(t) = |xi,c(t)− xi,n(t)|

Two distortion quantities were measured. First, we computed the average frame distor-
tion for frames where the distortion was ≤ 0.2. Second, we computed the percentage
of overall frames where the distortion was > 0.2, which were labeled as gross errors.
The average frame distortion and frame gross error rate for the four feature modules are
illustrated in Figures 3.4 and 3.5.

Comparing the frame by frame similarity of the different modules under different noise
levels revealed important differences about the behaviour of the modules under noisy
conditions. Even at a relatively modest noise level of 20 dB SNR, the output of the
MFCC GMM feature module exhibited significant distortion. Over 25% of frames were
labeled as gross errors, and for the remaining frames, the average frame distortion was
approximately 6.6%. As the noise level increased, both the gross error rate and frame
distortion increased monotonically. At -5 dB SNR, the gross error rate was 76% and the
average frame distortion was 11.2%.

In contrast, the Alternative GMM exhibited much lower distortion and gross error rates
across all six noise levels. While the sinusoid uncertainty module had the lowest dis-
tortion figures at high SNR levels, the Alternative GMM module had more consistently
lower distortion across all noise levels. At 20 db SNR, 10% of frames were labeled as
gross errors, and for the remaining frames, the average frame distortion was 3.4%. At -5
dB SNR, the gross error rate was 30% and the average frame distortion was 8.4%, both
of which were significantly less than the levels for the MFCC GMM under the same
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conditions.
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Figure 3.4: Average frame distortion across all noise conditions
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Figure 3.5: Percentage of frames labeled as gross errors across all noise conditions



4

Recognition Results

After using distortion to characterize the outputs of the different voicing feature mod-
ules, we performed recognition experiments to identify whether the consistency and
quality of the different voicing modules carried over to differences in recognition per-
formance.

4.1 Comparison for different feature modules

First, we compared recognition performance of the different modules by retraining the
HMM system described in section 2 but with the MFCC GMM voicing module replaced
with the appropriate voicing module. The recognition results averaged over the four
noise conditions are shown in Figure 4.1.

Overall, no significant difference in accuracy were observed, although the recognizer
using the MFCC GMM voicing module appeared to have the lowest performance in all
conditions except clean. Based on these results alone, it was impossible to conclusively
indicate the benefit of one voicing module over another. The similar performance of all
four systems may be due to the effect of the other feature stream modules, which also
experience heavy corruption due to noise. We performed additional oracle experiments
in order to isolate the effect of the voicing module on the recognition task.
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Figure 4.1: Word Accuracy for matched condition
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4.2 Oracle results

In this experiment, we attempted to control the output of the voicing module as the noise
level varied to see if the quality of the voicing module plays a role in improving recogni-
tion accuracy. As observed in Section 3, the MFCC GMM voicing module had the best
voicing detection performance in clean data. To see if detection performance translated
to better recognition accuracy, we assumed perfect consistency for each voicing mod-
ule by using the clean voicing feature stream for recognition at each noise level. The
framework for this experiment is illustrated in Figure 4.2, and the resulting recognition
accuracies are shown in Figure 4.3. As in the previous recognition experiment we found
it difficult to make any kind of meaningful comparison between the four systems due to
the similar recognition performance at all noise levels. This result is likely due to the
influence of the non-voicing module feature streams, which are presented identically to
the four recognition systems.

voicing

burst

nasal

round

glide

frication

burst

Test Utterance Feature Modules

Clean

Noisy f  [n]

f  [n]

f  [n]

f  [n]

f  [n]

f  [n]

v

r

n

g

f

b

Input Feature
Vector

Recognizer

Figure 4.2: Setup for oracle recognition experiment
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Figure 4.3: Word Accuracy for oracle condition
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4.3 Inverse Oracle Results

In the previous experiment we failed to observe significant differences in recognizer
performance despite controlling for the consistency of the voicing module. We hypoth-
esized that a major reason for the indistinguishability of recognition results was due to
significant corruption in the other streams. To control for this factor, we performed an
inverse oracle experiment by feeding clean feature stream data for all modules except
the voicing module. The framework for this experiment is shown in Figure 4.4, and the
recognition results are shown in Figure 4.5.

In this experiment, we observed a marked difference in performance between the four
systems. For the system using the MFCC GMM voicing module, we observed signif-
icant degradation in recognition performance as the SNR level decreased. This degra-
dation occurs despite the fact that only the voicing stream is affected by the noise. We
can conclude that for this experiment, the decrease in recognition accuracy from 87.6%
(clean) down to 21.8% (-5 dB SNR) can be attributed to the inconsistent extraction of
the voicing feature for increasing noise levels. By contrast, the systems making use of
the other three voicing modules are much more resistant to noise, exhibiting no signifi-
cant degradation in accuracy for SNR levels above 10 dB. Overall, the system employ-
ing the Alternative GMM voicing module has the least degradation due to noise, going
from 86.3% accuracy in clean conditions to 66.6% accuracy in -5 dB. We observed
that the recognition results are closely correlated with the distortion results obtained in
Section 3.
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Figure 4.4: Setup for inverse oracle recognition experiment
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Figure 4.5: Word Accuracy for inverse oracle experiment



5

Conclusions and Future Work

Several conclusions can be obtained from this work. First, in building the prelimi-
nary feature-based recognizer, we determined that using a small set of phonetic feature
streams as input to an HMM system can result in surprisingly high (≈ 87%) recognition
accuracy for a constrained digit task in non-noisy environments.

Based on our attempts to optimize the voicing feature module, we found that combining
statistical training with feature-specific measurements can improve consistency for fea-
ture stream extraction. By comparing the voicing detection performance, we also noted
that consistency does not necessarily correspond to good detection.

The recognition experiments and oracle experiments indicated that feature stream cor-
ruption can lead to drastic degradations in recognition accuracy, even when the voicing
stream is perfectly consistent. Furthermore, by performing inverse oracle experiments,
we observed that the inconsistency of the MFCC GMM voicing module output leads to
significant performance degradation in noise, even when the other streams are computed
from clean data. The Alternative GMM voicing module, which had the lowest distortion
metric across the different noise conditions, also had the least degradation in recognition
accuracy in this condition. This result is encouraging as it indicates that we may be able
to improve the overall performance of the recognizer by separately improving the other
feature detectors in a similar manner.

5.1 Future Work

Much future work remains to be done. Although the voicing modules investigated were
more consistent than the MFCC GMM module, they were not designed with any kind
of noise resistance in mind. To that end.
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Moving beyond the voicing feature module, we believe that it is critical to work on
improving the other feature detectors in the same manner as demonstrated here - by
using signal measurements that are directly relevant to the type of feature that is being
computed and combining these measurements with statistical training.

We have mentioned that the HMM framework used for these experiments is likely
not optimal for the features streams being used. Improved recognition results may be
obtained by integrating these feature streams with more appropriate temporal model-
ing structures such as feature based graphical models or DBNs. The phonetic feature
streams may also provide valuable discriminative measurements that could be used in
segment-based recognizers.

We feel that an important extension for any feature stream recognition framework is
to pair the stream outputs with a reliability measure of some sort. As demonstrated
in the oracle experiments, corrupted feature streams can severely degrade recognition
accuracy, so it is useful to know if and when a feature stream is no longer reliable. For
example, a running estimate of SNR can be used to discount the reliability of certain
noise-vulnerable features as the SNR level goes down. Another possibility is to monitor
the modulation rate of the feature module outputs to ensure that the rate of change is
consistent with speech patterns. For example, if a burst detection module is continually
triggered, then the contribution from this module should be discounted.
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