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ABSTRACT
Programming abstractions to simplify distributed parallel computing have been widely adopted. Yet, intra-
chassis parallelism remains regarded as challenging, despite its often compelling performance advantages over
distribution.

We believe that—especially in the face of increasing architectural diversity inside the chassis [3]—benefits
are to be had from programming a single machine using abstractions similar to those used for programming
distributed systems. Multi-core operating systems have already realized this vision by using message-passing
as a core primitive [1], but we argue that in large-scale parallel data processing, we can go further: in partic-
ular, only requiring the application programmer to write straight-line serial task code, and auto-parallelizing
it transparently using the execution framework, which internally uses optimizations available inside a chassis,
such as shared memory. The particular appeal of this approach lies in its generality: the same application code
seamlessly scales out to clusters of machines.

Recent work on task-parallel programming models has introduced abstractions permitting dynamic adapta-
tion of task-parallel programs to their execution environments [2]. Based on this, we conjecture that expressing
programs as dynamic task graphs achieves the generality we seek. Efficient support for such a model, however,
requires an integration of OS-level and runtime resource management for task placement—which is feasible in
a data-center environment.

Our prototype system achieves comparable performance with a shared-memory implementation of the k-
means clustering algorithm when running inside a multi-core machine, while also scaling beyond the compu-
tational capacity of a single machine, facilitating multi-scale parallelism for the algorithm.

BODY
Existing, easy-to-use distributed programming models are sufficient to enable multi-
scale parallel computation inside and across machines.
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