
Towards Multiverse Databases
Alana Marzoev Lara Timbó Araújo† Malte Schwarzkopf Samyukta Yagati

Eddie Kohler‡ Robert Morris M. Frans Kaashoek Sam Madden
MIT CSAIL † MIT CSAIL and Airbnb ‡ Harvard University

Abstract
A multiverse database transparently presents each application
user with a flexible, dynamic, and independent view of shared
data. This transformed view of the entire database contains
only information allowed by a centralized and easily-auditable
privacy policy. By enforcing the privacy policy once, in the
database, multiverse databases reduce programmer burden and
eliminate many frontend bugs that expose sensitive data.

Multiverse databases’ per-user transformations risk expen-
sive queries if applied dynamically on reads, or impractical
storage requirements if the database proactively materializes
policy-compliant views. We propose an efficient design based
on a joint dataflow across “universes” that combines global,
shared computation and cached state with individual, per-user
processing and state. This design, which supports arbitrary
SQL queries and complex policies, imposes no performance
overhead on read queries. Our early prototype supports thou-
sands of parallel universes on a single server.

ACM Reference Format:
Alana Marzoev, Lara Timbó Araújo, Malte Schwarzkopf, Samyukta
Yagati, Eddie Kohler, Robert Morris, M. Frans Kaashoek, and Sam
Madden. 2019. Towards Multiverse Databases. In Workshop on Hot
Topics in Operating Systems (HotOS ’19), May 13–15, 2019, Berti-
noro, Italy. ACM, New York, NY, USA, 8 pages. https://doi.
org/10.1145/3317550.3321425

1 Introduction
Most web services store users’ private, sensitive information
in shared backend stores. Any frontend can access the whole
store, regardless of the application user consuming the results.
Therefore, frontend code is responsible for permission checks
and privacy-preserving transformations that protect users’ data.
This is dangerous and error-prone, and has caused many real-
world bugs in applications like HotCRP [25], WordPress [27],
and Facebook [2, 4]: any omitted or incorrect check can leak

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6727-1/19/05. . . $15.00
https://doi.org/10.1145/3317550.3321425

Application

BobAlice

Bob’s
queries

Alice’s
queries

(a) Today.

Application

PP(bob)PP(alice)

Alice’s
universe

Bob’s
universe

BobAlice

privacy
policy (PP)

(b) Multiverse database.

Figure 1. Currently, web applications’ entire frontend code is
trusted (amber) and can query any backend data (left, (a)). A
multiverse database applies a privacy policy (PP) to generate
transformed, logical per-user databases, in which the untrusted
applications’ queries can only see permissible data (right, (b)).

private data, so the trusted computing base (TCB) effectively
includes the entire application.

It would be safer and easier to specify and transparently
enforce access policies once, at the shared backend store inter-
face. Although state-of-the-art databases have security features
designed for exactly this purpose, such as row-level access
policies and grants of views, these features are too limiting for
many web applications. Application privacy policies are often
data-dependent in ways incompatible with current row- and
column-level access control, or allow the exposure of aggre-
gate or transformed information that access control prevents.
Prior research solutions based on query interposition and infor-
mation flow control are slow, complex, or require impractical
changes to the application programming model (§2).

In this paper, we make the case for multiverse databases, a
flexible, easy-to-use, and performant paradigm that enforces
declarative privacy policies within the store. The database ap-
plies policies for each user, filtering and transforming the base
data to form a user-specific “parallel universe” database that
contains only data that the user is allowed to see (Figure 1).
Application code executing for a user can safely execute any
query against the user’s parallel universe database without
risk of seeing (and perhaps inadvertently leaking) forbidden
data. In essence, multiverse databases limit the TCB to the
privacy policies and the database code enforcing them, defend-
ing against a threat model of inadvertently buggy application
queries and privacy checks.1

1Defending against actively malicious applications would require considering
side-channels, which we omit in this paper.

1

https://doi.org/10.1145/3317550.3321425
https://doi.org/10.1145/3317550.3321425
https://doi.org/10.1145/3317550.3321425

HotOS ’19, May 13–15, 2019, Bertinoro, Italy A. Marzoev, L. Timbó Araújo, M. Schwarzkopf et al.

The security policies for a multiverse database are rooted
in application-specific notions of data visibility. Consider a
class discussion forum (e.g., Piazza [20]) that allows students
to post questions that are anonymous to other students, but
not anonymous to instructors. A multiverse database might
express this privacy policy as follows:

table: Post,
-- user sees public posts and her own anonymous posts in full
-- (`ctx`, a universe-specific context, holds the user's ID)
allow: [WHERE Post.anon = 0,

WHERE Post.anon = 1 AND Post.author = ctx.UID],
-- hide author of anonymous posts unless user is class staff
rewrite: [
{ predicate: WHERE Post.anon = 1 AND Post.class

NOT IN (SELECT class FROM Enrollment
WHERE role = "instructor" AND uid = ctx.UID),

column: Post.author,
replacement: "Anonymous" }],

Given this policy, application code executing on a user’s be-
half can issue arbitrary queries without risking data leakage:
unless the user is on the class staff, all anonymous posts con-
sistently appear to have author “Anonymous” in every query.
When a user issues multiple queries—e.g., one selecting and
one counting a users’ posts—the multiverse database returns
semantically consistent results based on the contents of the
user’s universe. This removes, for example, a real-world incon-
sistency observed in Piazza, where students’ total post count
includes private posts invisible to the user [13]. Since mul-
tiverse databases transparently apply transformations in the
database, application code need not be aware of them and can
assume that it is talking to a conventional database.

Multiverse database privacy policies are general and user-
extensible. Like row-level security [22] and view grants, they
can hide rows and columns from individual users; like role-
based access control, they can apply policies to groups of
users; and like column masks [15], they can transform col-
umn values. But multiverse databases potentially also support
powerful policies beyond the capabilities of existing solu-
tions: for example, we are exploring policies that expose only
differentially-private information about underlying tables.

A key challenge for the multiverse approach is query perfor-
mance and space efficiency with many users. Web applications
require fast reads, and applying policies on all data at query
execution time is therefore unattractive. Applying the poli-
cies to the entire database ahead of time, however, explodes
the space footprint with many users, and requires an update
strategy when the underlying data changes. Fortunately, re-
cent research on dataflow systems provides the key missing
enabler for a multiverse database: dynamic, partially-stateful
dataflows [11]. Stateful dataflow systems scale well when pre-
computing complex functions of dynamically changing data,
and efficiently apply incremental updates. Partial state allows
a dataflow to execute without materializing the full results
and internal dataflow state. This permits selectively deferring
parts of the computation to later read processing, and enables
caching, therefore maintaining fast common-case reads at a

modest, rather than explosive, space overhead. A dynamic
dataflow can add new queries to the existing computation at
runtime, offering the same query flexibility as classic databases
within a streaming, incremental dataflow computation.

We describe a multiverse design that builds on this tech-
nology and realizes multiverse storage as a joint dataflow
computation (§4). It transparently shares computation and
policy-compliant intermediate data between users’ universes,
and relies on partial statefulness to grant the system freedom
to choose what to precompute and cache, and what to compute
on query execution. Initial results with an early prototype are
encouraging (§5), and the multiverse approach and our design
raise interesting questions for future research (§6).

2 Existing approaches
Multiverse database universes, in effect, are per-user views of
the database defined by privacy policies. Databases have relied
on views as a security primitive since at least the 1970s [10,
14], but existing database views cannot substitute for the mul-
tiverse model. Defining views that specific users can access
affords flexibility, but has the drawback that application devel-
opers must understand the view definitions and know which
views to query. Algorithms to restate user queries in terms
of authorized views mitigate this burden, but cannot map
all queries and may spuriously reject queries even though
the views support them [23]. Transparent query rewriting ap-
proaches, by contrast, avoid predefined views. Instead, they
dynamically insert restrictions congruent with access policies
into queries on execution [5, 8, 17]. Both view-based and
query rewriting approaches increase the final query’s complex-
ity, slowing it down (e.g., by 3–10× in Qapla [17]).

Given the lack of performant database mechanisms, re-
searchers have devised other techniques to apply privacy poli-
cies in web applications. General information flow control
(IFC) provides a powerful approach that makes applications
correct by construction [16, 30], but significantly complicates
development. Domain-specific IFC systems can statically re-
ject application code in violation of privacy policies [9] or
extract policy-compliant implementations using program syn-
thesis techniques [21], but couple privacy policies to a single
program, while database techniques allow arbitrary queries.
Other solutions embed multi-valued (“faceted”) execution in
common languages like Scala and Python, resolving data to
concrete, policy-compliant values only on output [28, 29].
This has the advantage of keeping the application code policy-
agnostic, but comes with substantial memory and runtime
overheads, as the execution evaluates all alternative outcomes.

3 The multiverse approach
A multiverse database consists of a base universe, which rep-
resents the database without any read-side privacy policies ap-
plied, and many user universes, which are transformed copies
of the database. Each user universe corresponds to the database
view of a specific principal, typically an end-user authenticated

2

Towards Multiverse Databases HotOS ’19, May 13–15, 2019, Bertinoro, Italy

privacy
policy

base
universe

Alice’s universe Bob’s universe

σ FILTER

∑ SUM

σ FILTER

∑ SUM

Cached results Cached results

Enforce PP Enforce
 PP

(a) Without sharing.

privacy
policy

base
universe

Enforce PP

Alice’s
universe

Bob’s
universe

σ FILTER

∑ SUM

Shared store

results results

(b) With sharing.

Figure 2. A multiverse database realized as a joint dataflow.
For efficiency, universes can share computation and state
(§4.2), as (b) shows for an identical query issued by Alice
and Bob (here, without any group universes).

to a web application. The application code executing for this
principal can only query its user universe, which appears to
the application as a fully-fledged database. This makes multi-
verse databases easy to use—their application query interface
is identical to that of normal databases—but requires maintain-
ing many user universes, a potential performance bottleneck.

Multiverse databases maintain read query performance by
precomputing per-user universes. These transformed databases
have the privacy policies already applied, so queries to them
execute as quickly as if the application applied the policies.
However, precomputation requires storing and maintaining
many user universes. Naïvely duplicating the entire database
for each user would require prohibitive amounts of storage
space, so the multiverse database must precompute only data
that users actually need. Moreover, the multiverse database
must efficiently update user universes’ cached data when the
underlying base universe data changes. In the following, we
focus on how to efficiently apply read-side access policies that
restrict and transform the data cached in user universes. §6
will discuss write access policies that restrict writes to the base
universe; applications cannot write to user universes directly.

4 Making multiverse databases practical
A space- and compute-efficient multiverse database clearly
cannot materialize all user universes in their entirety, and must
support high-performance incremental updates to the user uni-
verses. It therefore requires partially-materialized views that
support high-performance updates. Recent research has pro-
vided this missing key primitive [1, 11, 19]. Specifically, scal-
able, parallel streaming dataflow computing systems now sup-
port partially-stateful and dynamically-changing dataflows [11].
These ideas make an efficient multiverse database possible.

Our multiverse database design combines base-universe ta-
bles, privacy policies, and user universes into a single, joint
dataflow. The database tables are the dataflow’s root vertices,
situated in the base universe (the source of ground truth).
As the base universe is updated, records move through the

dataflow into user universes, where subgraphs compute pri-
vacy policies and cache query results (Figure 2a). On each
edge that crosses the universe boundary, the system interposes
extra enforcement operators: special dataflow vertices that
compute and apply the privacy policy’s effect (e.g., pass, dis-
card, transform) for each record that flows through them. The
multiverse database’s semantic consistency follows from the
fact that enforcement operators for all applicable policies exist
on any dataflow edge that crosses into a user universe. In other
words, if a record written into the base universe flows into a
user universe via multiple independent paths, the multiverse
database enforces the same policies on each path.

When the application queries the multiverse database, it
specifies an authenticated principal’s ID alongside its query,
and the system retrieves results from the matching user uni-
verse. If the system receives a query for the first time, it dynam-
ically extends the user universe’s dataflow with the required
subgraph. Once a query is installed, its vertices remain in the
dataflow; this facilitates caching, although the system can re-
move the query when it is no longer needed. Updates only ever
flow from the base universe into other universes through en-
forcement operators, and information never flows back into the
base universe or “sideways” across different user universes.

4.1 Specifying privacy policies

In principle, our design supports any policy expressible as
an incremental, streaming dataflow computation. This chiefly
requires that the policy be a deterministic function of a given
update’s record data and the database contents. Importantly,
this permits data-dependent policies, which are common: con-
sider, for example, class enrollment in Piazza.

Defining the right policy language is an important part of the
multiverse database design. The policy language must strike a
balance between expressivity and meaningful composition of
policies, as well as ease of correct use for policy writers.

In our current prototype, privacy policies comprise expres-
sions defined in a language similar to the security rules of
Google’s Cloud Firestore [12]. This language includes row
suppression policies (the allow rules in §1’s example) and
column rewrite policies (rewrite) specified on the granularity
of individual tables in the database schema. Policies decide
whether to filter or mutate a record based on a relational predi-
cate over the database contents. The language also supports
group policies, which support role-based access control and
save space and computation, and aggregation policies, which
restrict user universes to seeing certain tables or columns only
in aggregated or differentially-private form. Each policy ex-
pression in this language applies to a single database table T ,
which makes it easy to ensure semantic consistency. Specifi-
cally, the system must add enforcement nodes for all policies
over T that apply to principal p on any path into p’s user uni-
verse that records generated by updates to T can traverse. The
system can determine these placement requirements through
static analysis of the dataflow.

3

HotOS ’19, May 13–15, 2019, Bertinoro, Italy A. Marzoev, L. Timbó Araújo, M. Schwarzkopf et al.

4.2 Sharing state and computation

A key challenge for multiverse databases is limiting the com-
putation required on writes (which risks growing with the
number of system users) and the space required to store user
universes (which risks growing as fast or faster). Fortunately,
the partially-stateful dataflow model can express optimizations
that share computation and cached data between universes. Ex-
pressing the multiverse database as a joint partially-stateful
dataflow is crucial to harnessing these optimizations. In the
following, we showcase some promising optimizations that
we have found to be beneficial, but this list is likely neither
exhaustive nor sufficient for all applications and policies.

Group policies. Applications often have roles that cover mul-
tiple users, such as “students” and “instructors”. These user
groups have their own privacy policies. A group policy might
e.g., allow teaching assistants (TAs) to see anonymous posts
in classes they teach:

group: "TAs",
-- define TA group for each class
membership: SELECT uid, class_id AS GID FROM Enrollment

WHERE role = "TA",
policies: [
-- show anonymous posts to TAs
-- (`ctx` is a group universe context, holds the group ID)
{ table: Post,
allow: WHERE Post.anonymous = 1 AND ctx.GID = Post.class }],

Note that this policy is a data-dependent group template: it
defines one TA group per class (via GID from membership),
i.e., adding a new class to Enrollment creates a new group.

Instead of computing this policy once on the boundary to
each group member’s user universe, the system applies the
privacy policy once for all members. To achieve this, the sys-
tem creates a group universe for each group, and routes inputs
to queries affected by the group policy through this universe.
From the group universe, records flow into each group mem-
ber’s user universe; at that boundary, user-specific policy op-
erators may further restrict an individual’s view, or a union
with another path that applies a complementary user-specific
policy may widen access. Using a group universe requires only
one copy of the enforcement operators for the group’s policies
(rather than as many copies as the group has members), and
shares cached, policy-compliant data in the group universe.

Sharing between queries. Web applications often issue sim-
ilar queries for many users, and these queries share at least
some privacy policies and results. By reasoning about all users’
queries as a joint dataflow, the system can detect such sharing:
when identical dataflow paths exist, they can be merged. All
users and queries share computation in the base universe, so
the system aims to maximize the computation in that universe
by pushing the universe boundary as far “down” the queries’
dataflow as possible while still maintaining correctness. Fig-
ure 2b shows how the system shares filter and sum operators
in an identical query issued for both Alice and Bob. In this
example, a privacy policy (which depends only on data in

the group columns preserved by the sum) can be applied late,
keeping most of the query’s dataflow in the base universe.

Sharing across universes. Often, applications actually issue
identical queries on behalf of many users, such as a query to
retrieve the ten most recent posts to a class. Due to privacy
policies, the queries’ results may vary for different users, but
they often overlap in part (e.g., all public posts). Instead of stor-
ing copies of identical records in many universes, the system
can share these records across universes. It achieves this by
backing logically distinct—but, in query terms, functionally
equivalent—dataflow vertices with a shared physical record
store. If a record reaches a vertex backed by such a store in
universe u, the record’s arrival indicates that u has access to it,
so the system exposes the shared copy to universe u.

Partial materialization. As web applications are read-heavy,
precomputing privacy policies and query results on write pro-
cessing is more efficient than recomputing them on each read.
To save space, however, the multiverse database may choose
to precompute only part of a query (e.g., privacy policies
only). The partially-stateful dataflow model allows the sys-
tem to choose dynamically what results to precompute and
cache, and how much computation to perform during read
query execution. To achieve this, the system can decide which
stateful operators in a given query to materialize, and which
to compute on the fly on reads using the deferred evalua-
tion supported by partially-stateful dataflow (through “up-
queries” [11]). Partially-stateful dataflow also supports evict-
ing records from operators’ state, which helps further restrict
cached results to frequently-read records. The specific choice
of what to materialize may vary according to a query’s popu-
larity, overall system load, and the available memory.

4.3 Dynamic universe creation

At any time, many users of a web application are likely inactive.
During those times, the multiverse database need not maintain
a universe for these users. Instead, it should create and destroy
user universes on demand—e.g., on application-level session
creation and termination. For an interactive user experience,
the creation and destruction of user universes must be fast and
permit other users to concurrently interact with the database.

Partially-stateful dataflow supports downtime-free dataflow
changes, which make this feasible: a new user universe starts
out with empty state and populates itself as queries execute.
This bootstrapping can be fast, as the user universe can often
derive its data efficiently from cached intermediate results in
the base or group universes. Creation and destruction of group
universes relies on the same live dataflow change mechanisms.

4.4 Consistency

Enforcing privacy policies to all records that cross into a user
universe makes the multiverse database semantically consis-
tent: different queries will not expose contradictory results that
are impossible to see with a classic database.

4

Towards Multiverse Databases HotOS ’19, May 13–15, 2019, Bertinoro, Italy

reads/sec writes/sec
Multiverse database 129.7k 3.7k
MySQL (with AP) 1.1k 8.8k
MySQL (without AP) 10.6k 8.8k

Figure 3. Our prototype achieves high read throughput com-
pared to MySQL queries that execute privacy policies inline.
Write throughput is lower than MySQL’s as the multiverse
database does more work on writes.

The actual consistency observed by clients reading from the
multiverse database’s caches at runtime, however, depends on
the guarantees offered by the underlying dataflow implementa-
tion. Dataflow systems can guarantee strong consistency—i.e.,
that updates take effect in all queries at the same logical time
and reads always see a consistent snapshot—using progress
tracking protocols [18]. Global progress tracking requires coor-
dination between parallel processors, which reduces scalability
and may be costly for a multiverse database’s large dataflows.
Uncoordinated, eventually-consistent dataflow scales well [11,
§8.3], but makes no guarantees as to when different universes
and queries see the effects of an update to the base universe.
Hence, data-dependent policies may temporarily expose data
to a user universe in such a regime: a new record might race
with an update that makes a data-dependent policy hide it.

A multiverse database can somewhat restrict coordination,
however: since no client ever combines data from different
user universes, the system can allow state in different user
universes to diverge. Dataflow models that support such local
coordination are an interesting direction for future research.

5 Proof of concept
We have implemented an early prototype multiverse database
based on our design as an extension to Noria [11]. The proto-
type implements row suppression, rewrite, and group policies,
and relies on Noria’s automatic reuse of dataflow operators [11,
§5.1] to realize the sharing described in §4, with exception of
the shared record store. We added about 2,000 lines to Noria’s
Rust implementation and ran experiments at revision 15f0492.

We measure the prototype’s performance for a Piazza-style
class forum and a privacy policy that allows TAs to see anony-
mous posts on a database containing 1M posts and 1,000
classes. For reads, the benchmark repeatedly queries all posts
authored by different users, and write operations insert new
posts into a class. We compare: (a) our prototype with 5,000
active user universes; (b) MySQL running the same workload
with privacy policies inlined in the query; and (c) MySQL
without any privacy policies. Our prototype currently materi-
alizes the full query results in memory, and its base database
tables are stored in RocksDB [24].

Figure 3 shows the results. As expected, reads from the
multiverse database’s precomputed, cached results are fast.
By contrast, evaluating the privacy policy as part of the query
slows down MySQL reads by 9.6× compared to issuing a

straight query; with simpler policies, such as one that merely
filters other users’ anonymous posts, MySQL sees a smaller
slowdown. The write throughput of our prototype is roughly
half of what MySQL supports, and though the precise differ-
ence is largely an implementation artifact, this is an encourag-
ing result. A multiverse database fundamentally must do more
work on writes than MySQL’s inserts, as writes must propagate
through the dataflow. In this experiment, the dataflow fully
updates 5,000 user universes; making some state partial would
increase write throughput at the expense of slower reads.

Finally, we measured process memory use as we increased
the number of active universes from one to 5,000. The memory
footprint increased from 0.5 GB with one universe to 1.1 GB
with 5,000 universes; this 600 MB footprint is about half of
the 1.2 GB needed without group universes. However, this
overhead can be reduced further: for example, a separate mi-
crobenchmark showed that using a shared record store for
identical queries reduces their space footprint by 94%.

These results are encouraging, but a realistic multiverse
database must further reduce memory overhead and efficiently
run millions of user universes across machines. Neither Noria
nor any other current dataflow system support execution of
the huge dataflows that such a deployment requires. In partic-
ular, changes to the dataflow must avoid full traversals of the
dataflow graph for faster universe creation.

6 Discussion and research directions
Our prototype shows that the promise of multiverse databases
is within reach, even for challenging applications with high per-
formance requirements. Flexible, application-specific privacy
policies are expressed within the store, and therefore obeyed
transparently by applications, with an easy query interface and
little to no query execution overhead. Furthermore, though
challenges remain, the partially-stateful dataflow model can
express key optimizations that limit multiverses’ space over-
head. We believe the multiverse model can make even complex
web applications robust to accidental information exposure
and therefore faster to safely build. Moreover, the multiverse
concept suggests interesting directions for future research.

Write authorization policies. Our current prototype only ap-
plies privacy polices to read queries and allows all users to
write to database tables without enforcing any privacy policies.
But applications need write-side policies, too: otherwise users
might, for instance, change their own role. For example, Pi-
azza may need a write policy specifying that only instructors
can enroll other users as instructors or TAs:

table: Enrollment,
-- only allow existing instructors to make other users instructors
write: [{
column: Enrollment.role,
values: ["instructor", "TA"]
predicate: WHERE ctx.UID IN (SELECT uid FROM Enrollment

WHERE role = "instructor"), }]

5

HotOS ’19, May 13–15, 2019, Bertinoro, Italy A. Marzoev, L. Timbó Araújo, M. Schwarzkopf et al.

A multiverse database might apply such write authorization
policies in several ways. The simplest is perhaps to check
permissions when applying writes to tables, just like today’s
databases do. This allows policies that prohibit writes that
users might exploit to raise their privileges, and simple filters
on the data written or current table contents are sufficient to
support policies like the Piazza one. An alternative approach
with more expressive power might feed writes through a pol-
icy dataflow before applying them to the base universe. This
supports write authorization policies dependent on data in
other tables and policies that require complex computation.
Such an approach raises consistency challenges, however: an
eventually-consistent write authorization dataflow might er-
roneously admit writes because the policy evaluation itself
might observe temporarily inconsistent or intermediate state
via data-dependencies. Hence, a write authorization dataflow
may require transactional abstractions that atomically process
updates until they are admitted to the base universe or rejected.

Differentially-private aggregations. A privacy policy may
permit users to run aggregate queries over sensitive records
that they cannot see individually. For example, a medical web
application might allow a user to query the number of patients
with diabetes by ZIP code, even if this user is not authorized
to view individual records:

SELECT COUNT(*) FROM diagnoses
WHERE diagnosis = "diabetes" GROUP BY zip;

The policy might further desire that revealing such aggregates
leaks no information about whether any individual, hidden
patient record is part of the aggregate. A multiverse database
can rewrite any aggregation that matches such a privacy pol-
icy into a differentially-private (DP) aggregation. DP adds
noise to the output to hide the impact of individual records,
and in the multiverse database setting must allow for continu-
ous updates to underlying data. The continuous, event-based
DP algorithm by Chan et al. [7] is suitable for a streaming
dataflow setting, and we implemented a prototype COUNT op-
erator using this algorithm. In microbenchmark experiments,
the operator’s output was within 5% of the true count after
processing about 5,000 updates. Yet, open research questions
remain: for example, how do DP aggregation policies compose
with other policies? Does a DP policy prohibit other, unrelated
queries (e.g., joins)? How should the system handle multiple
DP aggregations over the same table?

User-defined policy operators. Our prototype currently de-
fines privacy policies using SQL expressions. This is sufficient
for common policies, such as matching against a privacy con-
trol list (ACL) stored in a database table. Some applications’
privacy policies, however, may rely on external information
(e.g., an ACL file) or custom behavior (e.g., a user-defined
function). The multiverse database’s policy language ought
to permit such custom functions, but the right API is an open

question: custom operators must satisfy dataflow operator re-
quirements (e.g., determinism), and they must correctly com-
pose with other privacy policies. A domain-specific language
for writing such operators, offering access to a limited API to
external state, might be a promising starting point.

Policy correctness. Both write-side and read-side privacy
policies must be consistent and complete. Developer error
can yield policies with non-obvious internal contradictions,
or with gaps that leak information. For applications that have
large policies consisting of many clauses, checking the policies
by hand is impractical, and automated tools will be required.
Such policy tools should detect impossible (i.e., contradictory),
and incomplete policies (i.e., those not covering all cases). We
believe that developing a sound policy-checker for a multiverse
database, perhaps using ideas similar to Amazon’s SMT-based
policy checker for AWS [3], is an interesting challenge.

Verified policy compilation. The multiverse database’s TCB
includes the privacy policy, as well as the logic that compiles
it into dataflow and injects enforcement operators into queries.
Ideally, these transformations would be formally verified to en-
sure that the final dataflow indeed enforces the privacy policy.
Recent advances in constructing formally-verified just-in-time
compilers [26] may provide some ideas, although the multi-
verse database must also reason about the existing dataflow.
For example, transforming a new policy into a functionally-
correct joint dataflow may require adding new dataflow nodes
into existing queries.

Universe peepholes. Applications sometimes let users as-
sume other users’ identities, but this begets bugs such as Face-
book’s recent access token exposure [6], which allowed users
to view other users’ access tokens via the site’s “View Profile
As” feature. In a multiverse database, it might be tempting
to support such a “View As” feature by temporarily allowing
Bob to access Alice’s universe, but this is dangerous: Alice’s
access tokens are visible inside her universe (and only there)!
Plausible solutions might involve creating a temporary “ex-
tension universe” to Alice’s universe, and applying a privacy
policy that blinds the tokens at that boundary.

7 Conclusion
Multiverse databases are a promising approach that makes
common bugs in today’s web applications harmless. Our initial
results indicate that a large, dynamic, and partially-stateful
dataflow can support practical multiverse databases that are
easy to use and achieve good performance and acceptable
overheads. We are excited to further explore the multiverse
database paradigm and associated research directions.

Acknowledgements
We thank the anonymous reviewers and members of the MIT
PDOS group for helpful comments on earlier versions of
the paper. This work was funded through NSF awards CNS-
1301934, CNS-1704172, and CNS-1704376.

6

Towards Multiverse Databases HotOS ’19, May 13–15, 2019, Bertinoro, Italy

References
[1] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and

Milos Nikolic. “DBToaster: Higher-order Delta Pro-
cessing for Dynamic, Frequently Fresh Views”. In: Pro-
ceedings of the VLDB Endowment 5.10 (June 2012),
pages 968–979.

[2] Warwick Ashford. Facebook photo leak flaw raises se-
curity concerns. URL: https://www.computerweekly.
com/news/2240242708/Facebook-photo-leak-
flaw-raises-security-concerns (visited on 01/04/2019).

[3] John Backes, Pauline Bolignano, Byron Cook, Cather-
ine Dodge, Andrew Gacek, Kasper Luckow, Neha Rungta,
Oksana Tkachuk, and Carsten Varming. “Semantic-
based Automated Reasoning for AWS Access Policies
using SMT”. In: Proceedings of the 18th International
Conference on Formal Methods in Computer-Aided De-
sign (FMCAD). Austin, Texas, USA, Oct. 2018.

[4] Tomer Bar. Notifying our Developer Ecosystem about a
Photo API Bug. URL: https://developers.facebook.
com/blog/post/2018/12/14/notifying-our-
developer - ecosystem - about - a - photo - api -
bug/ (visited on 12/14/2018).

[5] Kristy Browder and Mary Ann Davidson. The virtual
private database in Oracle9iR2. Oracle Technical White
Paper, Oracle Corporation. 2002.

[6] Pedro Canahuati and Guy Rosen. Security Update – Ad-
ditional Technical Details. URL: https://newsroom.
fb.com/news/2018/09/security-update/#details
(visited on 12/14/2018).

[7] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. “Pri-
vate and Continual Release of Statistics”. In: ACM
Transactions on Information and System Security 14.3
(Nov. 2011), 26:1–26:24.

[8] Surajit Chaudhuri, Tanmoy Dutta, and S. Sudarshan.
“Fine Grained Authorization Through Predicated Grants”.
In: Proceedings of the 23rd IEEE International Confer-
ence on Data Engineering (ICDE). Istanbul, Turkey,
Apr. 2007, pages 1174–1183.

[9] Adam Chlipala. “Static Checking of Dynamically-Varying
Security Policies in Database-Backed Applications”.
In: Proceedings of the 9th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI).
Vancouver, British Columbia, Canada, Oct. 2010.

[10] Dorothy E. Denning, Selim G. Akl, Mark Heckman,
Teresa F. Lunt, Matthew Morgenstern, Peter G. Neu-
mann, and Roger R. Schell. “Views for Multilevel Data-
base Security”. In: IEEE Transactions on Software En-
gineering SE-13.2 (Feb. 1987), pages 129–140.

[11] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens,
Lara Timbó Araújo, Martin Ek, Eddie Kohler, M. Frans

Kaashoek, and Robert Morris. “Noria: dynamic, partially-
stateful data-flow for high-performance web applica-
tions”. In: Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI). Carlsbad, California, USA, Oct. 2018,
pages 213–231.

[12] Google, Inc. Cloud Firestore Documentation: Writing
conditions for Cloud Firestore Security Rules. URL:
https://firebase.google.com/docs/firestore/
security/rules-conditions (visited on 01/15/2019).

[13] Matthew Green. Piazza offers anonymous posting, but
does not hide each user’s total number of posts. Dis-
cuss. Twitter post. URL: https://twitter.com/
matthew_d_green/status/925053953330634753
(visited on 03/08/2019).

[14] Patricia P. Griffiths and Bradford W. Wade. “An Autho-
rization Mechanism for a Relational Database System”.
In: ACM Transactions on Database Systems 1.3 (Sept.
1976), pages 242–255.

[15] IBM Knowledge Center. Securing DB2: Creating col-
umn masks. URL: https://www.ibm.com/support/
knowledgecenter/en/SSEPEK_10.0.0/seca/
src/tpc/db2z_createcolumnmask.html (visited
on 01/15/2019).

[16] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan
Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert
Morris. “Information Flow Control for Standard OS
Abstractions”. In: Proceedings of the 21st ACM SIGOPS
Symposium on Operating Systems Principles (SOSP).
Stevenson, Washington, USA, 2007, pages 321–334.

[17] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak
Garg, and Peter Druschel. “Qapla: Policy compliance
for database-backed systems”. In: Proceedings of the
26th USENIX Security Symposium (USENIX Security
17). Vancouver, British Columbia, Canada, Aug. 2017,
pages 1463–1479.

[18] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. In: Pro-
ceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP). Farmington, Pennsylvania,
USA, Nov. 2013, pages 439–455.

[19] Milos Nikolic, Mohammad Dashti, and Christoph Koch.
“How to Win a Hot Dog Eating Contest: Distributed In-
cremental View Maintenance with Batch Updates”. In:
Proceedings of the 2016 ACM SIGMOD International
Conference on Management of Data (SIGMOD). San
Francisco, California, USA, 2016, pages 511–526.

[20] Piazza Technologies, Inc. Piazza. URL: https : / /
piazza.com/ (visited on 01/08/2019).

[21] Nadia Polikarpova, Jean Yang, Shachar Itzhaky, and
Armando Solar-Lezama. “Type-Driven Repair for In-
formation Flow Security”. In: CoRR abs/1607.03445
(2016). arXiv: 1607.03445.

7

https://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
https://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
https://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
https://developers.facebook.com/blog/post/2018/12/14/notifying-our-developer-ecosystem-about-a-photo-api-bug/
https://developers.facebook.com/blog/post/2018/12/14/notifying-our-developer-ecosystem-about-a-photo-api-bug/
https://developers.facebook.com/blog/post/2018/12/14/notifying-our-developer-ecosystem-about-a-photo-api-bug/
https://developers.facebook.com/blog/post/2018/12/14/notifying-our-developer-ecosystem-about-a-photo-api-bug/
https://newsroom.fb.com/news/2018/09/security-update/#details
https://newsroom.fb.com/news/2018/09/security-update/#details
https://firebase.google.com/docs/firestore/security/rules-conditions
https://firebase.google.com/docs/firestore/security/rules-conditions
https://twitter.com/matthew_d_green/status/925053953330634753
https://twitter.com/matthew_d_green/status/925053953330634753
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_10.0.0/seca/src/tpc/db2z_createcolumnmask.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_10.0.0/seca/src/tpc/db2z_createcolumnmask.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_10.0.0/seca/src/tpc/db2z_createcolumnmask.html
https://piazza.com/
https://piazza.com/
http://arxiv.org/abs/1607.03445

HotOS ’19, May 13–15, 2019, Bertinoro, Italy A. Marzoev, L. Timbó Araújo, M. Schwarzkopf et al.

[22] Postgres Global Development Group. PostgreSQL 9.5.15
Documentation: Row Security Policies. URL: https://
www.postgresql.org/docs/9.5/ddl-rowsecurity.
html (visited on 01/14/2019).

[23] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and
Prasan Roy. “Extending Query Rewriting Techniques
for Fine-grained Access Control”. In: Proceedings of
the 2004 ACM SIGMOD International Conference on
Management of Data. Paris, France, 2004, pages 551–
562.

[24] Facebook Open Source. A persistent key-value store
for fast storage environments. Apr. 2018. URL: http:
//rocksdb.org/ (visited on 04/20/2018).

[25] Ben Stock. Search leaks hidden tags. URL: https://
github.com/kohler/hotcrp/issues/135 (visited
on 01/08/2019).

[26] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chli-
pala, and Zachary Tatlock. “Jitk: A Trustworthy In-
Kernel Interpreter Infrastructure”. In: Proceedings of
the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Broomfield, Col-
orado, USA, Oct. 2014.

[27] Wordpress Vulnerability Database. CVE 2016-5835:
Authenticated Revision History Information Disclosure.
URL: https://wpvulndb.com/vulnerabilities/
8519 (visited on 01/04/2019).

[28] Jean Yang, Travis Hance, Thomas H. Austin, Armando
Solar-Lezama, Cormac Flanagan, and Stephen Chong.
“Precise, Dynamic Information Flow for Database-backed
Applications”. In: Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI). Santa Barbara, California,
USA, June 2016, pages 631–647.

[29] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama.
“A Language for Automatically Enforcing Privacy Poli-
cies”. In: Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (POPL). Philadelphia, Pennsylvania, USA,
Jan. 2012, pages 85–96.

[30] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans
Kaashoek. “Improving Application Security with Data
Flow Assertions”. In: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles (OSDI).
Big Sky, Montana, USA, 2009, pages 291–304.

8

https://www.postgresql.org/docs/9.5/ddl-rowsecurity.html
https://www.postgresql.org/docs/9.5/ddl-rowsecurity.html
https://www.postgresql.org/docs/9.5/ddl-rowsecurity.html
http://rocksdb.org/
http://rocksdb.org/
https://github.com/kohler/hotcrp/issues/135
https://github.com/kohler/hotcrp/issues/135
https://wpvulndb.com/vulnerabilities/8519
https://wpvulndb.com/vulnerabilities/8519

	Abstract
	1 Introduction
	2 Existing approaches
	3 The multiverse approach
	4 Making multiverse databases practical
	4.1 Specifying privacy policies
	4.2 Sharing state and computation
	4.3 Dynamic universe creation
	4.4 Consistency

	5 Proof of concept
	6 Discussion and research directions
	7 Conclusion

