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ABSTRACT

We consider reinforcement learning in input-driven environments, where an exoge-
nous, stochastic input process affects the dynamics of the system. Input processes
arise in many applications, including queuing systems, robotics control with distur-
bances, and object tracking. Since the state dynamics and rewards depend on the
input process, the state alone provides limited information for the expected future
returns. Therefore, policy gradient methods with standard state-dependent baselines
suffer high variance during training. We derive a bias-free, input-dependent base-
line to reduce this variance, and analytically show its benefits over state-dependent
baselines. We then propose a meta-learning approach to overcome the complexity
of learning a baseline that depends on a long sequence of inputs. Our experimental
results show that across environments from queuing systems, computer networks,
and MuJoCo robotic locomotion, input-dependent baselines consistently improve
training stability and result in better eventual policies.

1 INTRODUCTION

Deep reinforcement learning (RL) has emerged as a powerful approach for sequential decision-making
problems, achieving impressive results in domains such as game playing (Mnih et al., 2015; Silver
et al., 2017) and robotics (Levine et al., 2016; Schulman et al., 2015a; Lillicrap et al., 2015). This paper
concerns RL in input-driven environments. Informally, input-driven environments have dynamics
that are partially dictated by an exogenous, stochastic input process. Queuing systems (Kleinrock,
1976; Kelly, 2011) are an example; their dynamics are governed by not only the decisions made
within the system (e.g., scheduling, load balancing) but also the arrival process that brings work (e.g.,
jobs, customers, packets) into the system. Input-driven environments also arise naturally in many
other domains: network control and optimization (Winstein & Balakrishnan, 2013; Mao et al., 2017),
robotics control with stochastic disturbances (Pinto et al., 2017), locomotion in environments with
complex terrains and obstacles (Heess et al., 2017), vehicular traffic control (Belletti et al., 2018; Wu
et al., 2017), tracking moving targets, and more (see Figure 1).

We focus on model-free policy gradient RL algorithms (Williams, 1992; Mnih et al., 2016; Schulman
et al., 2015a), which have been widely adopted and benchmarked for a variety of RL tasks (Duan
et al., 2016; Wu & Tian, 2017). A key challenge for these methods is the high variance in the gradient
estimates, as such variance increases sample complexity and can impede effective learning (Schulman
et al., 2015b; Mnih et al., 2016). A standard approach to reduce variance is to subtract a “baseline”
from the total reward (or “return”) to estimate the policy gradient (Weaver & Tao, 2001). The most
common choice of a baseline is the value function — the expected return starting from the state.

Our main insight is that a state-dependent baseline — such as the value function — is a poor choice
in input-driven environments, whose state dynamics and rewards are partially dictated by the input
process. In such environments, comparing the return to the value function baseline may provide
limited information about the quality of actions. The return obtained after taking a good action may
be poor (lower than the baseline) if the input sequence following the action drives the system to
unfavorable states; similarly, a bad action might end up with a high return with an advantageous
input sequence. Intuitively, a good baseline for estimating the policy gradient should take the specific
instance of the input process — the sequence of input values — into account. We call such a baseline
an input-dependent baseline; it is a function of both the state and the entire future input sequence.

We formally define input-driven Markov decision processes, and we prove that an input-dependent
baseline does not introduce bias in standard policy gradient algorithms such as Advantage Actor

1



Published as a conference paper at ICLR 2019

(a) (b) (c) (d) (e)

720P

TimeN
et

w
or

k 
ba

nd
w

id
th

Server 1Server 2 Server k

Load 
balancer

TimeJo
b 

si
ze

Figure 1: Input-driven environments: (a) load-balancing heterogeneous servers (Harchol-Balter & Vesilo, 2010)
with stochastic job arrival as the input process; (b) adaptive bitrate video streaming (Mao et al., 2017) with
stochastic network bandwidth as the input process; (c) Walker2d in wind with a stochastic force (wind) applied
to the walker as the input process; (d) HalfCheetah on floating tiles with the stochastic process that controls
the buoyancy of the tiles as the input process; (e) 7-DoF arm tracking moving target with the stochastic target
position as the input process. Environments (c)–(e) use the MuJoCo physics simulator (Todorov et al., 2012).

Critic (A2C) (Mnih et al., 2016) and Trust Region Policy Optimization (TRPO) (Schulman et al.,
2015a), provided that the input process is independent of the states and actions. We derive the optimal
input-independent baseline and a simpler one to work with in practice; this takes the form of a
conditional value function — the expected return given the state and the future input sequence.

Input-dependent baselines are harder to learn than their state-dependent counterparts; they are high-
dimensional functions of the sequence of input values. To learn input-dependent baselines efficiently,
we propose a simple approach based on meta-learning (Finn et al., 2017; Vilalta & Drissi, 2002). The
idea is to learn a “meta baseline” that can be specialized to a baseline for a specific input instantiation
using a small number of training episodes with that input. This approach applies to applications in
which an input sequence can be repeated during training, e.g., applications that use simulations or
experiments with previously-collected input traces for training (McGough et al., 2017).

We compare our input-dependent baseline to the standard value function baseline for the five tasks
illustrated in Figure 1. These tasks are derived from queuing systems (load balancing heteroge-
neous servers (Harchol-Balter & Vesilo, 2010)), computer networks (bitrate adaptation for video
streaming (Mao et al., 2017)), and variants of standard continuous control RL benchmarks in
the MuJoCo physics simulator (Todorov et al., 2012). We adapted three widely-used MuJoCo
benchmarks (Duan et al., 2016; Clavera et al., 2018a; Heess et al., 2017) to add a stochastic in-
put element that makes these tasks significantly more challenging. For example, we replaced
the static target in a 7-DoF robotic arm target-reaching task with a randomly-moving target that
the robot aims to track over time. Our results show that input-dependent baselines consistently
provide improved training stability and better eventual policies. Input-dependent baselines are
applicable to a variety of policy gradient methods, including A2C, TRPO, PPO, robust adver-
sarial RL methods such as RARL (Pinto et al., 2017), and meta-policy optimization such as
MB-MPO (Clavera et al., 2018b). Video demonstrations of our experiments are available at
https://sites.google.com/view/input-dependent-baseline/.

2 PRELIMINARIES

Notation. We consider a discrete-time Markov decision process (MDP), defined by
(S,A,P, ρ0, r, γ), where S ⊆ Rn is a set of n-dimensional states,A ⊆ Rm is a set ofm-dimensional
actions, P : S ×A× S → [0, 1] is the state transition probability distribution, ρ0 : S → [0, 1] is the
distribution over initial states, r : S ×A → R is the reward function, and γ ∈ (0, 1) is the discount
factor. We denote a stochastic policy as π : S × A → [0, 1], which aims to optimize the expected
return η(π) = Eτ [

∑∞
t=0 γ

tr(st, at)], where τ = (s0, a0, ...) is the trajectory following s0 ∼ ρ0,
at ∼ π(at|st), st+1 ∼ P(st+1|st, at). We use Vπ(st) = Eat,st+1,at+1,...

[∑∞
l=0 γ

lr(st+l, ar+l)|st
]

to define the value function, and Qπ(st, at) = Est+1,at+1,...

[∑∞
l=0 γ

lr(st+l, ar+l)|st, at
]

to define
the state-action value function. For any sequence (x0, x1, ...), we use x to denote the entire sequence
and xi:j to denote (xi, xi+1, ..., xj).

Policy gradient methods. Policy gradient methods estimate the gradient of expected return with
respect to the policy parameters (Sutton et al., 2000; Kakade, 2002; Gu et al., 2017). To train a policy
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Figure 2: Load balancing over two servers. (a) Job sizes follow a Pareto distribution and jobs arrive as a Poisson
process; the RL agent observes the queue lengths and picks a server for an incoming job. (b) The input-dependent
baseline (blue) results in a 50× lower policy gradient variance (left) and a 33% higher test reward (right) than
the standard, state-dependent baseline (green). (c) The probability heatmap of picking server 1 shows that using
the input-dependent baseline (left) yields a more precise policy than using the state-dependent baseline (right).

πθ parameterized by θ, the Policy Gradient Theorem (Sutton et al., 2000) states that

∇θη(πθ) = Es∼ρπ
a∼πθ

[∇θ log πθ(a|s)Qπθ (s, a)] , (1)

where ρπ(s) =
∑∞
t=0 [γ

t Pr(st = s)] denotes the discounted state visitation frequency. Practical
algorithms often use the undiscounted state visitation frequency (i.e., γ = 1 in ρπ), which can make
the estimation slightly biased (Thomas, 2014).

Estimating the policy gradient using Monte Carlo estimation for the Q function suffers from high
variance (Mnih et al., 2016). To reduce variance, an appropriately chosen baseline b(st) can be
subtracted from the Q-estimate without introducing bias (Greensmith et al., 2004). The policy gradi-
ent estimation with a baseline in Equation (1) becomes Eρπ,πθ [∇θ log πθ(a|s) (Qπθ (s, a)− b(s))].
While an optimal baseline exists (Greensmith et al., 2004; Wu et al., 2018), it is hard to estimate and
often replaced by the value function b(st) = Vπ(st) (Sutton & Barto, 2017; Mnih et al., 2016).

3 MOTIVATING EXAMPLE

We use a simple load balancing example to illustrate the variance introduced by an exogenous input
process. As shown in Figure 2a, jobs arrive over time and a load balancing agent sends them to one
of two servers. The jobs arrive according to a Poisson process, and the job sizes follow a Pareto
distribution. The two servers process jobs from their queues at identical rates. On each job arrival,
the load balancer observes state st = (q1, q2), denoting the queue length at the two servers. It then
takes an action at ∈ {1, 2}, sending the job to one of the servers. The goal of the load balancer is to
minimize the average job completion time. The reward corresponding to this goal is rt = −τ × j,
where τ is the time elapsed since the last action and j is total number of enqueued jobs.

In this example, the optimal policy is to send the job to the server with the shortest queue (Daley,
1987). However, we find that a standard policy gradient algorithm, A2C (Mnih et al., 2016), trained
using a value function baseline struggles to learn this policy. The reason is that the stochastic sequence
of job arrivals creates huge variance in the reward signal, making it difficult to distinguish between
good and bad actions. Consider, for example, an action at the state shown in Figure 2a. If the arrival
sequence following this action consists of a burst of large jobs (e.g., input sequence 1 in Figure 2a),
the queues will build up, and the return will be poor compared to the value function baseline (average
return from the state). On the other hand, a light stream of jobs (e.g., input sequence 2 in Figure 2a)
will lead to short queues and a better-than-average return. Importantly, this difference in return has
little to do with the action; it is a consequence of the random job arrival process.

We train two A2C agents (Mnih et al., 2016), one with the standard value function baseline and
the other with an input-dependent baseline tailored for each specific instantiation of the job arrival
process (details of this baseline in §4). Since the the input-dependent baseline takes each input
sequence into account explicitly, it reduces the variance of the policy gradient estimation much more
effectively (Figure 2b, left). As a result, even in this simple example, only the policy learned with
the input-dependent baseline comes close to the optimal (Figure 2b, right). Figure 2c visualizes the
policies learned using the two baselines. The optimal policy (pick-shortest-queue) corresponds to a
clear divide between the chosen servers at the diagonal.

In fact, the variance of the standard baseline can be arbitrarily worse than an input-dependent baseline:
we refer the reader to Appendix A for an analytical example on a 1D grid world.
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4 REDUCING VARIANCE FOR INPUT-DRIVEN MDPS

We now formally define input-driven MDPs and derive variance-reducing baselines for policy gradient
methods in environments with input processes.
Definition 1. An input-driven MDP is defined by (S,A,Z,Ps,Pz, ρs0, ρz0, r, γ), where Z ⊆ Rk
is a set of k-dimensional input values, Ps(st+1|st, at, zt) is the transition kernel of the states,
Pz(zt+1|z0:t) is the transition kernel of the input process, ρz0(z0) is the distribution of the initial
input, r(st, at, zt) is the reward function, and S, A, ρs0, γ follow the standard definition in §2.

(a)

(b)

st-1 st st+1

zt-1 zt zt+1

at-1 at at+1

st-1 st st+1

zt-1 zt zt+1

at-1 at at+1

(a) MDP ωt	=	(st,	zt)

(b) POMDP ωt	=	st
Figure 3: Graphical model of
input-driven MDPs.

An input-driven MDP adds an input process, z = (z0, z1, · · · ), to
a standard MDP. In this setting, the next state st+1 depends on
(st, at, zt). We seek to learn policies that maximize cumulative ex-
pected rewards. We focus on two cases, corresponding to the graphical
models shown in Figure 3:
Case 1: zt is a Markov process, and ωt = (st, zt) is observed at time
t. The action at can hence depend on both st and zt.
Case 2: zt is a general process (not necessarily Markov), and ωt = st
is observed at time t. The action at hence depends only on st.

In Appendix B, we prove that case 1 corresponds to a fully-observable
MDP. This is evident from the graphical model in Figure 3a by consid-
ering ωt = (st, zt) to be the ‘state’ of the MDP at time t. Case 2, on the
other hand, corresponds to a partially-observed MDP (POMDP) if we
define the state to contain both st and z0:t, but leave z0:t unobserved
at time t (see Appendix B for details).

4.1 VARIANCE REDUCTION

In input-driven MDPs, the standard input-agnostic baseline is ineffective at reducing variance, as
shown by our motivating example (§3). We propose to use an input-dependent baseline of the form
b(ωt, zt:∞)— a function of both the observation at time t and the input sequence from t onwards. An
input-dependent baseline uses information that is not available to the policy. Specifically, the input
sequence zt:∞ cannot be used when taking an action at time t, because zt+1:∞ has not yet occurred
at time t. However, in many applications, the input sequence is known at training time. In some cases,
we know the entire input sequence upfront, e.g., when training in a simulator. In other situations, we
can record the input sequence on the fly during training. Then, after a training episode, we can use the
recorded values, including those that occurred after time t, to compute the baseline for each step t.

We now analyze input-dependent baselines. Our main result is that input-dependent baselines are
bias-free. We also derive the optimal input-dependent baseline for variance reduction. All the results
hold for both cases in Figure 3. We first state two useful lemmas required for our analysis. The first
lemma shows that under the input-driven MDP definition, the input sequence zt:∞ is conditionally
independent of the action at given the observation ωt, while the second lemma states the policy
gradient theorem for input-driven MDPs.
Lemma 1. Pr(zt:∞, at|ωt) = Pr(zt:∞|ωt)πθ(at|ωt), i.e., zt:∞ − ωt − at forms a Markov chain.
Proof. See Appendix C.
Lemma 2. For an input-driven MDP, the policy gradient theorem can be rewritten as

∇θη (πθ) = E(ω,z)∼ρπ
a∼πθ

[
∇θ log πθ(a|ω)Q(ω, a,z)

]
, (2)

where ρπ(ω,z) =
∑∞
t=0 [γ

t Pr(ωt = ω, zt:∞ = z)] denotes the discounted visi-
tation frequency of the observation ω and input sequence z, and Q(ω, a, z) =
E
[∑∞

l=0 γ
lrt+l

∣∣ ωt = ω, at = a, zt:∞ = z
]
.

Proof. See Appendix D.

Equation (2) generalizes the standard Policy Gradient Theorem in Equation (1). ρπ(ω,z) can be
thought of as a joint distribution over observations and input sequences. Q(ω, a, z) is a “state-action-
input” value function, i.e., the expected return when taking action a after observing ω, with input
sequence z from that step onwards. The key ingredient in the proof of Lemma 2 is the conditional
independence of the input process zt:∞ and the action at given the observation ωt (Lemma 1).
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Theorem 1. An input-dependent baseline does not bias the policy gradient.

Proof. Using Lemma 2, we need to show: E(ω,z)∼ρπ,a∼πθ [∇θ log πθ(a|ω)b(ω,z)] = 0. We have:

E(ω,z)∼ρπ
a∼πθ

[∇θ log πθ(a|ω)b(ω,z)] =
∑
ω

∑
z

∑
a

ρπ(ω,z)πθ(a|ω)∇θ log πθ(a|ω)b(ω,z)

=
∑
ω

∑
z

ρπ(ω,z)b(ω,z)
∑
a

πθ(a|ω)∇θ log πθ(a|ω). (3)

Since
∑
a πθ(a|ω)∇θ log πθ(a|ω) =

∑
a∇θπθ(a|ω) = ∇θ

∑
a πθ(a|ω) = 0, the theorem follows.

Input-dependent baselines are also bias-free for policy optimization methods such as TRPO (Schulman
et al., 2015a), as we show in Appendix F. Next, we derive the optimal input-dependent baseline for
variance reduction. As the gradient estimates are vectors, we use the trace of the covariance matrix as
the minimization objective (Greensmith et al., 2004).

Theorem 2. The input-dependent baseline that minimizes variance in policy gradient is given by

b∗(ω,z) =
Ea∼πθ

[
∇θ log πθ(a|ω)T∇θ log πθ(a|ω)Q(ω, a, z)

]
Ea∼πθ [∇θ log πθ(a|ω)T∇θ log πθ(a|ω)]

. (4)

Proof. See Appendix E.

Operationally, for observation ωt at each step t, the input-dependent baseline takes the
form b(ωt, zt:∞). In practice, we use a simpler alternative to Equation (4): b(ωt, zt:∞) =
Eat∼πθ [Q(ωt, at, zt:∞)]. This can be thought of as a value function V (ωt, zt:∞) that provides
the expected return given observation ωt and input sequence zt:∞ from that step onwards. We discuss
how to estimate input-dependent baselines efficiently in §5.

Remark. Input-dependent baselines are generally applicable to reducing variance for policy gradient
methods in input-driven environments. In this paper, we apply input-dependent baselines to A2C
(§6.2), TRPO (§6.1) and PPO (Appendix L). Our technique is complementary and orthogonal to
adversarial RL (e.g., RARL (Pinto et al., 2017)) and meta-policy adaptation (e.g., MB-MPO (Clav-
era et al., 2018b)) for environments with external disturbances. Adversarial RL improves policy
robustness by co-training an “adversary” to generate a worst-case disturbance process. Meta-policy
optimization aims for fast policy adaptation to handle model discrepancy between training and testing.
By contrast, input-dependent baselines improve policy optimization itself in the presence of stochastic
input processes. Our work primarily focuses on learning a single policy in input-driven environments,
without policy adaptation. However, input-dependent baselines can be used as a general method to
improve the policy optimization step in adversarial RL and meta-policy adaptation methods. For
example, in Appendix M, we empirically show that if an adversary generates high-variance noise,
RARL with a standard state-based baseline cannot train good controllers, but the input-dependent
baseline helps improve the policy’s performance. Similarly, input-dependent baselines can improve
meta-policy optimization in environments with stochastic disturbances, as we show in Appendix N.

5 LEARNING INPUT-DEPENDENT BASELINES EFFICIENTLY

Input-dependent baselines are functions of the sequence of input values. A natural approach to train
such baselines is to use models that operate on sequences (e.g., LSTMs (Gers et al., 1999)). However,
learning a sequential mapping in a high-dimensional space can be expensive (Bahdanau et al., 2014).
We considered an LSTM approach, but ruled it out when initial experiments showed that it fails to
provide significant policy improvement over the standard baseline in our environments (Appendix G).

Fortunately, we can learn the baseline much more efficiently in applications where we can repeat
the same input sequence multiple times during training. Input-repeatability is feasible in many
applications: it is straightforward when using simulators for training, and also feasible when training
a real system with previously-collected input traces outside simulation. For example, training a
robot in the presence of exogenous forces might apply a set of time-series traces of these forces
repeatedly to the physical robot. We now present two approaches that exploit input-repeatability to
learn input-dependent baselines efficiently.
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Multi-value-network approach. A straightforward way to learn b(ωt, zt:∞) for different input
instantiations z is to train one value network to each particular instantiation of the input process.
Specifically, in the training process, we first generate N input sequences {z1, z2, · · · , zN} and
restrict training only to those N sequences. To learn a separate baseline function for each input
sequence, we use N value networks with independent parameters θV1

, θV2
, · · · , θVN , and single

policy network with parameter θ. During training, we randomly sample an input sequence zi, execute
a rollout based on zi with the current policy πθ, and use the (state, action, reward) data to train the
value network parameter θVi and the policy network parameter θ (details in Appendix I).

Meta-learning approach. The multi-value-network approach does not scale if the task requires
training over a large number of input instantiations to generalize. The number of inputs needed is
environment-specific, and can depend on a variety of factors, such as the time horizon of the problem,
the distribution of the input process, the relative magnitude of the variance due to the input process
compared to other sources of randomness (e.g., actions). Ideally, we would like an approach that
enables learning across many different input sequences. We present a method based on meta-learning
to train with an unbounded number of input sequences. The idea is to use all (potentially infinitely
many) input sequences to learn a “meta value network” model. Then, for each specific input sequence,
we first customize the meta value network using a few example rollouts with that input sequence.
We then compute the actual baseline values for training the policy network parameters, using the
customized value network for the specific input sequence. Our implementation uses Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017).

Algorithm 1 Training a meta input-dependent baseline for policy-based methods.

Require: α, β: meta value network step size hyperparameters
1: Initialize policy network parameters θ and meta-value-network parameters θV
2: while not done do
3: Generate a new input sequence z
4: Sample k rollouts T1, T2, ..., Tk using policy πθ and input sequence z
5: Adapt θV with the first k/2 rollouts: θ1V = θV − α∇θV LT1:k/2 [VθV ]
6: Estimate baseline value Vθ1V (ωt) for st ∼ Tk/2:k using adapted θ1V
7: Adapt θV with the second k/2 rollouts: θ2V = θV − α∇θV LTk/2:k [VθV ]
8: Estimate baseline value Vθ2V (ωt) for st ∼ T1:k/2 using adapted θ2V
9: Update policy with Equation (2) using the values from line (6) and (8) as baseline

10: Update meta value network: θV ← θV − β∇θV Lk/2:k
[
Vθ1V

]
− β∇θV L1:k/2

[
Vθ2V

]
11: end while

The pseudocode in Algorithm 1 depicts the training algorithm. We follow the notation of MAML,
denoting the loss in the value function VθV (·) on a rollout T as LT [VθV ] =

∑
ωt,rt∼T ‖VθV (ωt)−∑T

t′=t γ
t′−trt‖2. We perform rollouts k times with the same input sequence z (lines 3 and 4); we use

the first k/2 rollouts to customize the meta value network for this instantiation of z (line 5), and then
apply the customized value network on the states of the other k/2 rollouts to compute the baseline
for those rollouts (line 6); similarly, we swap the two groups of rollouts and repeat the same process
(lines 7 and 8). We use different rollouts to adapt the meta value network and compute the baseline to
avoid introducing extra bias to the baseline. Finally, we use the baseline values computed for each
rollout to update the policy network parameters (line 9), and we apply the MAML (Finn et al., 2017)
gradient step to update the meta value network model (line 10).

6 EXPERIMENTS

Our experiments demonstrate that input-dependent baselines provide consistent performance gains
across multiple continuous-action MuJoCo simulated robotic locomotions and discrete-action environ-
ments in queuing systems and network control. We conduct experiments for both policy gradient meth-
ods and policy optimization methods (see Appendix K for details). The videos for our experiments
are available at https://sites.google.com/view/input-dependent-baseline/.
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Figure 4: In continuous-action MuJoCo environments, TRPO (Schulman et al., 2015a) with input-dependent
baselines achieve 25%–3× better testing reward than with a standard state-dependent baseline. Learning curves
are on 100 testing episodes with unseen input sequences; shaded area spans one standard deviation.

6.1 SIMULATED ROBOTIC LOCOMOTION

We use the MuJoCo physics engine (Todorov et al., 2012) in OpenAI Gym (Brockman et al., 2016) to
evaluate input-dependent baselines for robotic control tasks with external disturbance. We extend the
standard Walker2d, HalfCheetah and 7-DoF robotic arm environments, adding a different external
input to each (Figure 1).

Walker2d with random wind (Figure 1c). We train a 2D walker with varying wind, which randomly
drags the walker backward or forward with different force at each step. The wind vector changes
randomly, i.e., the wind forms a random input process. We add a force sensor to the state to enable
the agent to quickly adapt. The goal is for the walker to walk forward while keeping balance.

HalfCheetah on floating tiles with random buoyancy (Figure 1d). A half-cheetah runs over a
series of tiles floating on water (Clavera et al., 2018a). Each tile has different damping and friction
properties, which moves the half-cheetah up and down and changes its dynamics. This random
buoyancy is the external input process; the cheetah needs to learn running forward over varying tiles.

7-DoF arm tracking moving target (Figure 1e). We train a simulated robot arm to track a randomly
moving target (a red ball). The robotic arm has seven degrees of freedom and the target is doing a
random walk, which forms the external input process. The reward is the negative squared distance
between the robot hand (blue square) and the target.

The Walker2d and 7-DoF arm environments correspond to the fully observable MDP case in Figure 3,
i.e. the agent observes the input zt at time t. The HalfCheetah environment is a POMDP, as the agent
does not observe the buoyancy of the tiles. In Appendix H, we show results for the POMDP version
of the Walker2d environment.

Results. We build 10-value networks and a meta-baseline using MAML, both on top of the OpenAI’s
TRPO implementation (Dhariwal et al., 2017). Figure 4 shows the performance comparison among
different baselines with 100 unseen testing input sequences at each training checkpoint. These
learning curves show that TRPO with a state-dependent baseline performs worst in all environments.
With the input-dependent baseline, by contrast, performance in unseen testing environments improves
by up to 3×, as the agent learns a policy robust against disturbances. For example, it learns to lean
into headwind and quickly place its leg forward to counter the headwind; it learns to apply different
force on tiles with different buoyancy to avoid falling over; and it learns to co-adjust multiple joints
to keep track of the moving object. The meta-baseline eventually outperforms 10-value networks as
it effectively learns from a large number of input processes and hence generalizes better.

The input-dependent baseline technique applies generally on top of policy optimization methods. In
Appendix L, we show a similar comparison with PPO (Schulman et al., 2017). Also, in Appendix M
we show that adversarial RL (e.g., RARL (Pinto et al., 2017)) alone is not adequate to solve the high
variance problem, and the input-dependent baseline helps improve the policy performance (Figure 9).

6.2 DISCRETE-ACTION ENVIRONMENTS

Our discrete-action environments arise from widely-studied problems in computer systems research:
load balancing and bitrate adaptation.1 As these problems often lack closed-form optimal solu-
tions (Grandl et al., 2016; Yin et al., 2015), hand-tuned heuristics abound. Recent work suggests

1We considered Atari games often used as benchmark discrete-action RL environments (Mnih et al., 2015).
However, Atari games lack an exogenous input process: a random seed perturbs the games’ initial state, but it
does not affect the environmental changes (e.g., in “Seaquest”, the ships always come in a fixed pattern).
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b(ω, z) = V(ω, z) (MAML)

b(ω, z) = V(ω, z) (10 values)
b(ω) = V(ω),∀z

heuristic

Figure 5: In environments with discrete action spaces, A2C (Mnih et al., 2016) with input-dependent baselines
outperforms the best heuristic and achieves 25–33% better testing reward than vanilla A2C (Mnih et al., 2016).
Learning curves are on 100 test episodes with unseen input sequences; shaded area spans one standard deviation.

that model-free reinforcement learning can achieve better performance than such human-engineered
heuristics (Mao et al., 2016; Evans & Gao, 2016; Mao et al., 2017; Mirhoseini et al., 2017). We con-
sider a load balancing environment (similar to the example in §3) and a bitrate adaptation environment
in video streaming (Yin et al., 2015). The detailed setup of these environments is in Appendix J.

Results. We extend OpenAI’s A2C implementation (Dhariwal et al., 2017) for our baselines. The
learning curves in Figure 5 illustrate that directly applying A2C with a standard value network
as the baseline results in unstable test reward and underperforms the traditional heuristic in both
environments. Our input-dependent baselines reduce the variance and improve test reward by 25–33%,
outperforming the heuristic. The meta-baseline performs the best in all environments.

7 RELATED WORK

Policy gradient methods compute unbiased gradient estimates, but can experience a large vari-
ance (Sutton & Barto, 2017; Weaver & Tao, 2001). Reducing variance for policy-based methods
using a baseline has been shown to be effective (Williams, 1992; Sutton & Barto, 2017; Weaver & Tao,
2001; Greensmith et al., 2004; Mnih et al., 2016). Much of this work focuses on variance reduction
in a general MDP setting, rather than variance reduction for MDPs with specific stochastic structures.
Wu et al. (2018)’s techniques for MDPs with multi-variate independent actions are closest to our
work. Their state-action-dependent baseline improves training efficiency and model performance
on high-dimensional control tasks by explicitly factoring out, for each action, the effect due to other
actions. By contrast, our work exploits the structure of state transitions instead of stochastic policy.

Recent work has also investigated the bias-variance tradeoff in policy gradient methods. Schulman
et al. (2015b) replace the Monte Carlo return with a λ-weighted return estimation (similar to TD(λ)
with value function bootstrap (Tesauro, 1995)), improving performance in high-dimensional control
tasks. Other recent approaches use more general control variates to construct variants of policy
gradient algorithms. Tucker et al. (2018) compare the recent work, both analytically on a linear-
quadratic-Gaussian task and empirically on complex robotic control tasks. Analysis of control variates
for policy gradient methods is a well-studied topic, and extending such analyses (e.g., Greensmith
et al. (2004)) to the input-driven MDP setting could be interesting future work.

In other contexts, prior work has proposed new RL training methodologies for environments with
disturbances. Clavera et al. (2018b) adapts the policy to different pattern of disturbance by training the
RL agent using meta-learning. RARL (Pinto et al., 2017) improves policy robustness by co-training an
adversary to generate a worst-case noise process. Our work is orthogonal and complementary to these
work, as we seek to improve policy optimization itself in the presence of inputs like disturbances.

8 CONCLUSION

We introduced input-driven Markov Decision Processes in which stochastic input processes influence
state dynamics and rewards. In this setting, we demonstrated that an input-dependent baseline
can significantly reduce variance for policy gradient methods, improving training stability and the
quality of learned policies. Our work provides an important ingredient for using RL successfully in a
variety of domains, including queuing networks and computer systems, where an input workload is a
fundamental aspect of the system, as well as domains where the input process is more implicit, like
robotics control with disturbances or random obstacles.

We showed that meta-learning provides an efficient way to learn input-dependent baselines for appli-
cations where input sequences can be repeated during training. Investigating efficient architectures
for input-dependent baselines for cases where the input process cannot be repeated in training is an
interesting direction for future work.
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A ILLUSTRATION OF VARIANCE REDUCTION IN 1D GRID WORLD

Consider a walker in a 1D grid world, where the state st ∈ Z at time t denotes the position of
the walker, and action at ∈ {−1,+1} denotes the intent to either move forward or backward.
Additionally let zt ∈ {−1,+1} be a uniform i.i.d. “exogenous input” that perturbs the position
of the walker. For an action at and input zt, the state of the walker in the next step is given by
st+1 = st + at + zt. The objective of the game is to move the walker forward; hence, the reward is
rt = at + zt at each time step. γ ∈ [0, 1] is a discount factor.

While the optimal policy for this game is clear (at = +1 for all t), consider learning such a policy
using policy gradient. For simplicity, let the policy be parametrized as πθ(at = +1|st) = eθ/(1+eθ),
with θ initialized to 0 at the start of training. In the following, we evaluate the variance of the policy
gradient estimate at the start of training under (i) the standard value function baseline, and (ii) a
baseline that is the expected cumulative reward conditioned on all future zt inputs.

Variance under standard baseline. The value function in this case is identically 0 at all states. This
is because E[

∑∞
t=0 γ

trt] = E[
∑∞
t=0 γ

t(at + zt)] = 0 since both actions at and inputs zt are i.i.d.
with mean 0. Also note that ∇θ log πθ(at = +1) = 1/2 and ∇θ log πθ(at = −1) = −1/2; hence
∇θ log πθ(at) = at/2. Therefore the variance of the policy gradient estimate can be written as

V1 = Var

[ ∞∑
t=0

at
2

∞∑
t′=t

γt
′
rt′

]
= Var

[ ∞∑
t=0

at
2

∞∑
t′=t

γt
′
(at′ + zt′)

]
. (5)

Variance under input-dependent baseline. Now, consider an alternative “input-dependent” baseline
V (st|z) defined as E[

∑∞
t=0 γ

trt|z]. Intuitively this baseline captures the average reward incurred
when experiencing a particular fixed z sequence. We refer the reader to §4 for a formal discussion and
analysis of input-dependent baselines. Evaluating the baseline we get V (st|z) = E[

∑∞
t=0 γ

trt|z] =∑∞
t=0 γ

tzt. Therefore the variance of the policy gradient estimate in this case is

V2 = Var

[ ∞∑
t=0

at
2

( ∞∑
t′=t

γt
′
rt′ −

∞∑
t′=t

γt
′
zt′

)]
= Var

[ ∞∑
t=0

at
2

( ∞∑
t′=t

γt
′
at′

)]
. (6)

Reduction in variance. To analyze the variance reduction between the two cases (Equations (5)
and (6)), we note that

V1 =V2 +Var

[ ∞∑
t=0

at
2

( ∞∑
t′=t

γt
′
zt′

)]
+ 2Cov

( ∞∑
t=0

at
2

( ∞∑
t′=t

γt
′
at′

)
,

∞∑
t=0

at
2

( ∞∑
t′=t

γt
′
zt′

))
(7)

=V2 +Var

[ ∞∑
t=0

at
2

( ∞∑
t′=t

γt
′
zt′

)]
. (8)

This follows because

E

[ ∞∑
t=0

at
2

( ∞∑
t′=t

γt
′
zt′

)]
=

∞∑
t=0

∞∑
t′=t

γt
′

2
E[atzt′ ] = 0, and

E

[( ∞∑
t=0

at
2

( ∞∑
t′=t

γt
′
at′

))( ∞∑
t=0

at
2

( ∞∑
t′=t

γt
′
zt′

))]
=

∞∑
t1=0

∞∑
t′1=t1

∞∑
t2=0

∞∑
t′2=t2

E
[at1at′1at2zt′2

4
γt

′
1+t

′
2

]
= 0.

Therefore the covariance term in Equation (7) is 0. Hence the variance reduction from Equation (8)
can be written as

V1 − V2 = Var

[ ∞∑
t=0

at
2

( ∞∑
t′=t

γt
′
zt′

)]
=

∞∑
t1=0

∞∑
t′1=t1

∞∑
t2=0

∞∑
t′2=t2

E
[at1at2zt′1zt′2

4
γt

′
1+t

′
2

]

=

∞∑
t1=0

∞∑
t′1=t1

E

[
a2t1z

2
t′1

4
γ2t

′
1

]
=

Var(a0)Var(z0)

4(1− γ2)2
.
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Thus the input-dependent baseline reduces variance of the policy gradient estimate by an amount
proportional to the variance of the external input. In this toy example, we have chosen zt to be binary-
valued, but more generally the variance of zt could be arbitrarily large and might be a dominating
factor of the overall variance in the policy gradient estimation.

B MARKOV PROPERTIES OF INPUT-DRIVEN DECISION PROCESSES

Proposition 1. An input-driven decision process satisfying the conditions of case 1 in Figure 3 is a
fully observable MDP, with state s̃t := (st, zt), and action ãt := at.

Proof.

Pr(s̃t+1|s̃0:t, ã0:t) = Pr(st+1, zt+1|s0:t, z0:t, a0:t)
= Pr(st+1, zt+1|st, zt, at) (by definition of case 1 in Figure 3a)
= Pr(s̃t+1|s̃t, ãt).

Proposition 2. An input-driven decision process satisfying the conditions of case 2 in Figure 3, with
state s̃t := (st, z0:t) and action ãt := at is a fully observable MDP. If only ωt = st is observed at
time t, it is a partially observable MDP (POMDP).

Proof.

Pr(s̃t+1|s̃0:t, ã0:t) = Pr(st+1, z0:t+1|s0:t, z0:t, a0:t)
= Pr(st+1|s0:t, z0:t+1, a0:t) Pr(z0:t+1|s0:t, z0:t, a0:t)
= Pr(st+1|st, z0:t+1, at) Pr(z0:t+1|st, z0:t, at) (by definition of case 2 in Figure 3b)
= Pr(st+1, z0:t+1|st, z0:t, at)
= Pr(s̃t+1|s̃t, ãt).

Therefore, (s̃t, ãt) is a fully observable MDP. If only ωt = st is observed, the decision process is a
POMDP, since the z0:t component of the state is not observed.

C PROOF OF LEMMA 1

Proof. From the definition of an input-driven MDP (Definition 1), we have

Pr(z0:∞, ωt, at) =Pr(z0:t, ωt, at) Pr(zt+1:∞|z0:t, ωt, at)
=Pr(z0:t, ωt) Pr(at|z0:t, ωt) Pr(zt+1:∞|z0:t)
=Pr(z0:t, ωt)πθ(at|ωt) Pr(zt+1:∞|z0:t)
=Pr(z0:∞, ωt)πθ(at|ωt). (9)

Notice that Pr(at|z0:t, ωt) = πθ(at|ωt) in both the MDP and POMDP cases in Figure 3. By
marginalizing over z0:t−1 on both sides, we obtain the result:

Pr(zt:∞, ωt, at) = Pr(zt:∞, ωt)πθ(at|ωt). (10)
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D PROOF OF LEMMA 2

Proof. Expanding the Policy Gradient Theorem (Sutton & Barto, 2017), we have

∇θη(πθ) =E

 ∞∑
t=0

∇θ log πθ(at|ωt)
∑
t′≥t

γt
′
rt′


=

∞∑
t=0

E

∇θ log πθ(at|ωt)∑
t′≥t

γt
′
rt′


=

∞∑
t=0

∑
ω,a,z

Pr(ωt = ω, at = a, zt:∞ = z)∇θ log πθ(a|ω)E

∑
t′≥t

γt
′
rt′ |ωt = ω, at = a, zt:∞ = z


=

∞∑
t=0

∑
ω,a,z

Pr(ωt = ω, zt:∞ = z)πθ(a|ω)∇θ log πθ(a|ω)E

∑
t′≥t

γt
′
rt′ |ωt = ω, at = a, zt:∞ = z

 ,
(11)

where the last step uses Lemma 1. Using the definition of Q(ω, a,z), we obtain:

∇θη(πθ) =
∞∑
t=0

[∑
ω,a,z

Pr(ωt = ω, zt:∞ = z)πθ(a|ω)∇θ log πθ(a|ω)γtQ(ω, a, z)

]

=
∑
ω,a,z

[
πθ(a|ω)∇θ log πθ(a|ω)Q(ω, a,z)

[ ∞∑
t=0

γt Pr(ωt = ω, zt:∞ = z)

]]
=
∑
ω,a,z

πθ(a|ω)∇θ log πθ(a|ω)Q(ω, a, z)ρπ(ω,z)

=E(ω,z)∼ρπ
a∼πθ

[
∇θ log πθ(a|ω)Q(ω, a,z)

]
. (12)

E PROOF OF THEOREM 2

Proof. Let G(ω, a) denote ∇θ log πθ(a|ω)T∇θ log πθ(a|ω). For any input-dependent baseline
b(ω,z), the variance of the policy gradient estimate is given by

E(ω,z)∼ρπ
a∼πθ

[
‖∇θ log πθ(a|ω) [Q(ω, a,z)− b(ω,z)]− Eρπ,πθ [∇θ log πθ(a|ω) [Q(ω, a, z)− b(ω,z)]]‖22

]
= Eρπ,πθ

[
G(ω, a)

[
Q(ω, a, z)− b(ω,z)

]2]− ∥∥∥Eρπ,πθ[∇θ log πθ(a|ω)[Q(ω, a, z)− b(ω,z)
]]∥∥∥2

2

= Eρπ,πθ
[
G(ω, a)

[
Q(ω, a,z)− b(ω,z)

]2]− ∥∥∥Eρπ,πθ[∇θ log πθ(a|ω)Q(ω, a, z)
]∥∥∥2

2
(due to Theorem 1)

= Eρπ,πθ
[
G(ω, a)Q(ω, a, z)2

]
− ‖Eρπ,πθ [∇θ log πθ(a|ω)Q(ω, a, z)]‖22

+ Eρπ
[
Ea∼πθ

[
G(ω, a)

∣∣ z, ω] b(ω,z)2 − 2Ea∼πθ
[
G(ω, a)Q(ω, a, z)

∣∣ ω,z] b(ω,z)].
Notice that the baseline is only involved in the last term in a quadratic form, where the second order
term is positive. To minimize the variance, we set baseline to the minimizer of the quadratic equation,
i.e., 2Ea∼πθ

[
G(ω, a)

∣∣ ω,z] b(ω,z)− 2Ea∼πθ
[
G(ω, a)Q(ω, a, z)

∣∣ ω,z] = 0 and hence the result
follows.

F INPUT-DEPENDENT BASELINE FOR TRPO

We show that the input-dependent baselines are bias-free for Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015a).
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b(ω, z) = V(ω, z) (MAML)

b(ω) = V(ω), ∀z

b(ω, z) = V(ω, z) (LSTM)

Figure 6: An LSTM-based input-dependent baseline (green) does not provide significant performance gain over
standard state-dependent baseline (red) for load balancing and Walker2d with wind environments.

Preliminaries. Stochastic gradient descent using Equation (1) does not guarantee consistent policy
improvement in complex control problems. TRPO is an alternative approach that offers monotonic
policy improvements, and derives a practical algorithm with better sample efficiency and performance.
TRPO maximizes a surrogate objective, subject to a KL divergence constraint:

maximize
θ

Es∼ρπold
a∼πold

[
πθ(a|s)
πold(a|s)

Qπold(s, a)

]
(13)

subject to Es∼ρπold
[DKL (πold(·|s)||πθ(·|s))] ≤ δ, (14)

in which δ serves as a step size for policy update. Using a baseline in the TRPO objective, i.e.
replacing Qπold(s, a) with Qπold(s, a)− b(s), empirically improves policy performance (Schulman
et al., 2015b).

Similar to Theorem 2, we generalize TRPO to input-driven environments, with ρπ(ω,z) =∑∞
t=0 [γ

t Pr(ωt = ω, zt:∞ = z)] denoting the discounted visitation frequency of the observation
ω and input sequence z, and Q(ω, a, z) = E

[∑∞
l=0 γ

lrt+l
∣∣ ωt = ω, at = a, zt:∞ = z

]
. The

TRPO objective becomes E(ω,z)∼ρold,a∼πold [Qπold(ω, a, z)πθ(a|ω)/πold(a|ω)], and the constraint is
E(ω,z)∼ρπold

[DKL (πold(·|s)||πθ(·|s))] ≤ δ.

Theorem 3. An input-dependent baseline does not change the optimal solution of the
optimization problem in TRPO, that is argmaxθE(ω,z)∼ρold,a∼πold

[
πθ(a|ω)
πold(a|ω)Qπold(ω, a, z)

]
=

argmaxθE(ω,z)∼ρold,a∼πold

[
πθ(a|ω)
πold(a|ω) (Qπold(ω, a,z)− b(ω,z))

]
.

Proof.

E(ω,z)∼ρold,a∼πold

[
πθ(a|ω)
πold(a|ω)

b(ω,z)

]
=
∑
ω

∑
z

ρold(ω,z)
∑
a

πold(a|ω)
[
πθ(a|ω)
πold(a|ω)

b(ω,z)

]
=
∑
ω

∑
z

ρold(ω,z)
∑
a

πθ(a|ω)b(ω,z)

=
∑
ω

∑
z

ρold(ω,z)b(ω,z),

which is independent of θ. Therefore, b(ω,z) does not change the optimal solution to the optimization
problem.

G INPUT-DEPENDENT BASELINE WITH LSTM

The input-dependent baseline is a function of both the state and the entire future input sequence. A
natural approach to approximate such baselines is to use neural models that operate on sequences
(e.g., LSTMs (Gers et al., 1999)). However, learning a sequential mapping in a high-dimensional
space can be expensive (Bahdanau et al., 2014). For example, consider the LSTM input-dependent
baseline with A2C on the load balancing environment (Figure 1a; §6.2) and TRPO on the Walker2d
with wind environment (Figure 1c; §6.1). As shown in Figure 6, the LSTM input-dependent baseline
(green) does not significantly improve the policy performance over a standard state-only baseline
(red) in these environments. By contrast, the MAML based input-dependent baseline (§5) reduces the
variance in policy gradient estimation much more effectively and achieves a consistently better policy
performance.
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H ADDITIONAL POMDP EXPERIMENT
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b( , z) = V( , z) (10 values)
b( ) = V( ), z

Figure 7: Input-dependent base-
line improves TRPO performance
in the POMDP version of the
Walker2d with wind environment.

Recall that the HalfCheetah on floating tiles environment (Figure 1d)
is a POMDP, since the agent does not observe the buoyancy of the
tiles. Figure 4 (middle) shows that the input-dependent baseline
significantly improves the TRPO performance for this POMDP en-
vironment. We also created a POMDP version of the Walker2d
with wind environment (Figure 1c), where the force of the wind is
removed from the observation provided to the agent. The results of
repeating the same training are shown in Figure 7. We make two key
observations: (1) Compared with the MDP case in Figure 4 (left),
the performance drops slightly overall. This is expected because the
agent can react more agilely if it directly observes the current wind
in the MDP case. (2) Input-dependent baselines reduce variance and
improve the policy performance, with the MAML-based approach
achieving the best performance, similar to the MDP case.

I PSEUDOCODE FOR TRAINING MULTI-VALUE
BASELINES

In §5, we explained the idea of efficiently computing input-dependent baselines (§4.1) using multiple
value networks on a fixed set of input sequences. Algorithm 2 depicts the details of this approach.

Algorithm 2 Training multi-value baselines for policy-based methods.

Require: pregenerated input seuqnces {z1, z2, · · · , zN}, step sizes α, β
1: Initialize value network parameters θV1

, θV1
, · · · , θVN and policy parameters θ

2: while not done do
3: Sample a input sequence zi
4: Sample k rollouts T1, T2, ..., Tk using policy πθ and input sequence zi
5: Update policy with Equation (2) using baseline estimated with θVi
6: Update i-th value network parameters: θVi ← θVi − β∇θViL1:k

[
VθVi

]
7: end while

J SETUP FOR DISCRETE-ACTION ENVIRONMENTS

Load balancing across servers (Figure 1a). In this environment, an RL agent balances jobs over
k servers to minimize the average job completion time. Similar to §3, the job sizes follow a Pareto
distribution (scale xm = 100, shape α = 1.5), and jobs arrive in a Poisson process (λ = 55). We run
over 10 simulated servers with different processing rates, ranging linearly from 0.15 to 1.05. In this
setting, the load of the system is at 90% (i.e., on average, 90% of the queues are non-empty). In each
episode, we generate 500 jobs as the exogenous input process. The problem of minimizing average
job completion time on servers with heterogeneous processing rates does not have a closed-form
solution (Harchol-Balter & Vesilo, 2010); the most widely-used heuristic is to join the shortest
queue (Daley, 1987). However, understanding the workload pattern can give a better policy; for
example, we can reserve some servers for small jobs. In this environment, the observed state is a
vector of (j, q1, q2, ..., qk), where j is the size of the incoming job, qi is the amount of work currently
in each queue. The action a ∈ {1, 2, ..., k} schedules the incoming job to a specific queue. The
reward is the number of active jobs times the negated time elapsed since the last action.

Bitrate adaptation for video streaming (Figure 1b). Streaming video over variable-bandwidth
connections requires the client to adapt the video bitrates to optimize the user experience. This is
challenging since the available network bandwidth (the exogenous input process) is hard to predict
accurately. We simulate real-world video streaming using public cellular network data (Riiser et al.,
2013) and video with seven bitrate levels and 500 chunks (DASH Industry Form, 2016). The reward
is a weighted combination of video resolution, time paused for rebuffering, and the number of bitrate
changes (Mao et al., 2017). The observed state contains bandwidth history, current video buffer size,
and current bitrate. The action is the next video chunk’s bitrate. State-of-the-art heuristics for this
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Figure 8: In continuous-action MuJoCo environments (§6.1), PPO (Schulman et al., 2017) with input-dependent
baselines achieves 42%–3.5× better testing reward than PPO with a standard state-dependent baseline. Learning
curves are on 100 testing episodes with unseen input sequences; shaded area spans one standard deviation.

problem conservatively estimate the network bandwidth and use model predictive control to choose
the optimal bitrate over the near-term horizon (Yin et al., 2015).

K EXPERIMENT DETAILS

In our discrete-action environments (§6.2), we build 10-value networks and a meta-baseline using
MAML (Finn et al., 2017), both on top of the OpenAI A2C implementation (Dhariwal et al., 2017).
We use γ = 0.995 for both environments. The actor and the critic networks have 2 hidden layers,
with 64 and 32 hidden neurons on each. The activation function is ReLU (Nair & Hinton, 2010) and
the optimizer is Adam (Chilimbi et al., 2014). We train the policy with 16 (synchronous) parallel
agents. The learning rate is 1−3. The entropy factor (Mnih et al., 2016) is decayed linearly from 1 to
0.001 over 10,000 training iterations. For the meta-baseline, the meta learning rate is 1−3 and the
model specification has five step updates, each with learning rate 1−4. The model specification step
in MAML is performed with vanilla stochastic gradient descent.

We introduce disturbance into our continuous-action robot control environments (§6.1). For the walker
with wind (Figure 1c), we randomly sample a wind force in [−1, 1] initially and add a Gaussian noise
sampled from N (0, 1) at each step. The wind is bounded between [−10, 10]. The episode terminates
when the walker falls. For the half-cheetah with floating tiles, we extend the number of piers from 10
in the original environment (Clavera et al., 2018a) to 50, so that the agent remains on the pathway for
longer. We initialize the tiles with damping sampled uniformly in [0, 10]. For the 7-DoF robot arm
environments, we initialize the target to randomly appear within (−0.1,−0.2, 0.5), (0.4, 0.2,−0.5)
in 3D. The position of the target is perturbed with a Gaussian noise sampled from N (0, 0.1) in each
coordinate at each step. We bound the position of the target so that it is confined within the arm’s
reach. The episode length of all these environments are capped at 1,000.

We build the multi-value networks and meta-baseline on top of the TRPO implementation by
OpenAI (Dhariwal et al., 2017). We turned off the GAE enhancement by using λ = 1 for fair
comparison. We found that it makes only a small performance difference (within ±5% using λ =
{0.95, 0.96, 0.97, 0.98, 0.99, 1}) in our environments. We use γ = 0.99 for all three environments.
The policy network has two hidden layers, with 128 and 64 hidden neurons on each. The activation
function is ReLU (Nair & Hinton, 2010). The KL divergence constraint δ is 0.01. The learning
rate for value functions is 1−3. The hyperparameter of training the meta-baseline is the same as the
discrete-action case.

L INPUT-DEPENDENT BASELINES WITH PPO

Figure 8 shows the results of applying input-dependent baselines on PPO (Schulman et al., 2017) in
MuJoCo (Todorov et al., 2012) environments. We make three key observations. First, compared to
Figure 4 the best performances of PPO in these environments (blue curves) are better than that of
TRPO. This is as expected, because the variance of the reward feedbacks in these environments is
generally large and the reward clipping in PPO helps. Second, input-dependent baselines improve
the policy performance for all environments. In particular, the meta-learning approach achieves
the best performance, as it is not restricted to a fixed set of input sequences during training (§5).
Third, the trend of learning curve is similar to that in TRPO (Figure 4), which shows our input-
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TRPO, b(ω, z) = V(ω, z)

RARL, b(ω, z) = V(ω, z)

TRPO, b(ω) = V(ω),∀z

RARL, b(ω) = V(ω),∀z

Figure 9: The input-dependent baseline technique is complementary and orthogonal to RARL (Pinto et al.,
2017). The implementation of input-dependent baseline is MAML (§5). Left: learning curves of testing rewards;
shaded area spans one standard deviation; the input-dependent baseline improves the policy optimization for
both TRPO and RARL, while RARL improves TRPO in the Walker2d environment with wind disturbance.
Right: CDF of testing performance; RARL improves the policy especially in the low reward region; applying
the input-dependent baseline boosts the performance for both TRPO and RARL significantly (blue, red).

dependent baseline approach is generally applicable to a range of policy gradient based methods (e.g.,
A2C (§6.2), TRPO (§6.1), and PPO).

M INPUT-DEPENDENT BASELINES WITH RARL

Our work is orthogonal and complementary to adversarial and robust reinforcement learning (e.g.,
RARL (Pinto et al., 2017)). These methods seek to improve policy robustness by co-training an
adversary to generate a worst-case noise process, whereas our work improves policy optimization
itself in the presence of inputs like noise. Note that if an adversary generates high-variance noise,
similar to the inputs we consider in our experiments (§6), techniques such RARL alone are not
adequate to train good controllers.

To empirically demonstrate this effect, we repeat the Walker2d with wind experiment described
in §6.1. In this environment, we add a noise (of the same scale as the original random walk) on the
wind and co-train an adversary to control the strength and direction of this noise. We follow the
training procedure described in RARL (Pinto et al., 2017, §3.3).

Figure 9 depicts the results. With either the standard state-dependent baseline or our input-dependent
baseline, RARL generally improves the robustness of the policy, as RARL achieves better testing
rewards especially in the low reward region (i.e., compared the yellow curve to green curve, or red
curve to blue curve in CDF of Figure 9). Moreover, input-dependent baseline significantly improves
the policy optimization, which boosts the performance of both TRPO and RARL (i.e., comparing the
blue curve to the green curve, and the red curve to the yellow curve). Therefore, in this environment,
the input-dependent baseline helps improve the policy optimization methods and is complementary
to adversarial RL methods such as RARL.

N INPUT-DEPENDENT BASELINES WITH META-POLICY ADAPTATION

There has been a line of work focusing on fast policy adaptation (Clavera et al., 2018a;b; Harrison
et al., 2017). For example, Clavera et al. (2018b) propose a model-based meta-policy optimization
approach (MB-MPO). It quickly learns the system dynamics using supervised learning and uses the
learned model to perform virtual rollouts for meta-policy adaptation. Conceptually, our work differs
because the goal is fundamentally different: our goal is to learn a single policy that performs well in
the presence of a stochastic input process, while MB-MPO aims to quickly adapt a policy to new
environments.

It is worth noting that the policy adaptation approaches are well-suited to handling model discrepancy
between training and testing. However, in our setting, there exists no model discrepancy. In particular,
the distribution of the input process is the same during training and testing. For example, in our load
balancing environment (Figure 1a, §6.2), the exogenous workload process is sampled from the same
distribution during training and testing.

Therefore our work is conceptually complementary to policy adaptation approaches. Since some
of these methods require a policy optimization step (e.g., (Clavera et al., 2018b, §4.2)), our input-
dependent baseline can help these methods by reducing variance during training. We perform an
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b(ω, z) = V(ω, z); TRPO
b(ω, z) = V(ω, z); MPO

b(ω) = V(ω),∀z; TRPO
b(ω) = V(ω),∀z; MPO

Figure 10: The input-dependent baseline technique is complementary to MPO (Clavera et al., 2018b). The
implementation of input-dependent baseline is MAML (§5). Left: learning curves in the testing Walker2d
environment with wind disturbance; MPO is tested with adapted policy in each testing instance of the wind
input; shaded area spans one standard deviation; the input-dependent baseline improves the policy optimization
for both TRPO and MPO, while MPO improves TRPO. Right: meta policy adaptation at training timestep 5e7;
adapting the policy in specific input instances help boosting the performance (comparing yellow with green, and
red with blue); applying input-dependent baseline generally improves the policy performance.

experiment to investigate this. Specifically, we apply the meta-policy adaptation technique proposed
by Clavera et al. (2018b) in our Walker2d environment with wind disturbance (Figure 1c, §6.1).
For this environment, although the wind pattern is drawn from the same stochastic process (random
walk), we aim to adapt the policy to each particular instantiation of the wind.

Operationally, to reduce complexity, we bypass the supervised learning step for the system dynamics
and use the simulator to generate rollouts directly, since the interaction with the simulator is not
costly for our purpose and the state transition in our environment is not deterministic. Following
the meta-policy adaptation approach, the policy optimization algorithm is TRPO (Schulman et al.,
2015a). The meta-policy adaptation algorithm is MAML (Finn et al., 2017). In particular, we
performed ten gradient steps to specialize the meta-policy for each instantiation of the input process.
For input-dependent baseline, we inherit our meta-baseline approach from §5. Similar to policy
adaptation, we adapt our meta-baseline alongside with the policy adaptation in the ten gradient steps
for each input instance.

The results of our experiment is shown in Figure 10. The learning curve (left figure) shows the
policy performance for 100 unseen test input sequences at each training checkpoint. We measure the
performance of MPO after ten steps of policy adaptation for each of the 100 input sequences. As
expected, policy adaptation specializes to the particular instance of the input process and improves
policy performance in the learning curve (e.g., MPO improves over TRPO, as shown by the green and
yellow learning curve). However, policy adaptation does not solve the problem of variance caused
by the input process, since the policy optimization step within policy adaptation suffers from large
variance. Using an input-dependent baseline improves performance both for TRPO and MPO. Indeed,
MPO trained with the input-dependent baseline (and adapted for each input sequence) outperforms
the single TRPO policy, as shown by the red learning curve.

This effect is more evident in the policy adaptation curve (right figure). The policy adaptation curve
shows the testing performance of the adapted policy at each adaptation step (the meta-policy is taken
from the 5e7 training timestep). With an input-dependent baseline, the meta policy already performs
quite well at the 0th step of policy adaptation (without any adaptation). This is perhaps unsurprising,
since a single policy (e.g., the TRPO policy trained with input-dependent baseline) can achieve good
performance in this environment. However, specializing the meta-policy for each particular input
instance further improves performance.
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