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Abstract

Crowdsourced labor markets make it possible to recruit large numbers of people to
complete small tasks that are difficult to automate on computers. These marketplaces
are increasingly widely used, with projections of over $1 billion being transferred be-
tween crowd employers and crowd workers by the end of 2012. While crowdsourcing
enables forms of computation that artificial intelligence has not yet achieved, it also
presents crowd workflow designers with a series of challenges including describing
tasks, pricing tasks, identifying and rewarding worker quality, dealing with incorrect
responses, and integrating human computation into traditional programming frame-
works.

In this dissertation, we explore the systems-building, operator design, and op-
timization challenges involved in building a crowd-powered workflow management
system. We describe a system called Qurk that utilizes techniques from databases
such as declarative workflow definition, high-latency workflow execution, and query
optimization to aid crowd-powered workflow developers. We study how crowdsourcing
can enhance the capabilities of traditional databases by evaluating how to implement
basic database operators such as sorts and joins on datasets that could not have
been processed using traditional computation frameworks. Finally, we explore the
symbiotic relationship between the crowd and query optimization, enlisting crowd
workers to perform selectivity estimation, a key component in optimizing complex
crowd-powered workflows.
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Chapter 1

Introduction

Crowdsourced marketplaces such as Amazon’s Mechanical Turk [4] make it possible
to recruit large numbers of people to complete small tasks that are difficult to auto-
mate on computers, such as transcribing an audio snippet or finding a person’s phone
number on the Internet. Employers submit jobs (Human Intelligence Tasks, or HITs
in MTurk parlance) as HTML forms requesting some information or input from work-
ers. Workers (called Turkers on MTurk) perform the tasks, input their answers, and
receive a small payment (specified by the employer) in return (typically 1-5 cents).

These marketplaces are increasingly widely used. Crowdflower [9], a startup that
builds tools to help companies use MTurk and other crowdsourcing platforms now
claims to process more than 1 million tasks per day to more than 1 million workers
and has raised $17M+ in venture capital. CastingWords [§], a transcription service,
uses MTurk to automate audio transcription tasks. Novel academic projects include
a word processor with crowdsourced editors [2I] and a mobile phone application
that enables crowd workers to identify items in images taken by blind users [22].
Other applications include organizing the search through satellite imagery for Jim
Gray and Stephen Fossett [I], and translating messages from Creole during the Haiti
Earthquake [2].

Given the breadth of crowd-powered applications, most of which are currently
hand-built and optimized, it would help to have a platform that makes it easier to
build these applications. Workers typically interact with the tasks they must perform
through HTML forms like the one in Figure Most systems like MTurk offer
a form builder interface as well as an API for programmatically managing crowd
work. The majority of tasks are managed using the API, but typically the very
basic APT calls (e.g., create task, retrieve response, pay worker) are a part of higher-
order workflow logic that is part of the larger application of the crowdsourced work.
For example, Soylent [21] embeds crowdsourced editors in Microsoft Word, and so
it requires significant logic to manage the user interface elements it adds to Word,
present editing suggestions to users, and manage the multiple forms of questions it
asks crowd workers, with the actual MTurk API calls it makes taking up less than
1% of its codebase.

A significant amount of the code behind crowd-powered workflows shepherds re-
quests, vets worker responses for potential mistakes, and connects individual workers’
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Adam Marcus

amazonmechanical turk . 26,547 HITs

Your Account HITs Qualifications available now

All HITs | HITs Available To You | HITs Assigned To You

HITs hd 0.00 L ]lGo,

Timer: 00:00:00 of 60 minutes Want to work on this HIT? Total Earned: $0.24
Accept HIT Total HITs Submitted: 29

Answer a question
Requester: Adam Marcus Reward: $0.05 per HIT HITs Available: 1 Duration: 60 minutes
Qualifications Required: None

What is the email address and phone number of Joe Hellerstein, who works at UC Berkeley?

Email Address

Phone Number

Want to work on this HIT?

AﬁceEt HIT

Figure 1-1: A sample Amazon Mechanical Turk Task.

contributions to form a larger whole. Furthermore, much of the code in these work-
flows is boilerplate, repeated across workflows, and hand-optimized by crowd work-
flow designers. In this dissertation, I present a system called Qurk that simplifies
crowd-powered workflow development along with a set of optimized reusable work-
flow components that improve on the current hand-coded crowd workflow building
regime. Qurk opens up several research questions in the areas of crowd-powered data
operator design, crowd-powered workflow optimization, and crowd worker quality
estimation.

1.1 Crowd Programming Challenges

While there is great promise in the ways in which we can use crowds to extend the
capabilities of computation, working with crowd workers has its own set of challenges.
Code reuse. Programmers encounter unnecessarily repeated code in two ways as
they implement crowd-powered workflows. The first is in implementing the logic
behind common functionality, such as filtering or labeling a collection of items in
a dataset, or performing entity resolution between two datasets. The second is in
the basic plumbing of crowd work: generating HTML tasks, assignment of workers
to tasks, asynchronously collecting worker responses, verifying result quality across
workers, and compensating the workers with good result quality.

Complex workflows. It is common for crowd-powered data processing tasks to
require multiple crowd-powered workflow stages. For example, Soylent shortens a
paragraph with the help of the crowd in a three-stage workflow called Find-Fiz-
Verify, where one group of workers finds patches of text to shorten, another group of
workers fixes up patches by providing shortenings, and yet another group verifies the
fixes by voting on the best ones. Workflow manipulation can take thousands of lines
of error-prone code, even though the high-level description of the workflow stages can
be stated in a sentence.

Latency. Sending a task to human workers means a simple imperative program
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that blocks on a response from each worker might block for seconds, minutes, or
hours at a time. Crowd-powered workflow developers have to implement their own
solutions to asynchrony through threading or message passing in order to get around
this challenge.
Cost. To keep costs low, one can simply pay workers less to perform each task.
This has the effect of increasing the time to complete a task, as workers prefer other
tasks in the market. It can also reduce quality as workers increase the rate at which
they perform the task, which may introduce new errors. Paying workers less also has
ethical implications that I address at the end of this dissertation. Another approach
to driving down cost, and sometimes even time, is to batch tasks together. Rather
than labeling a single image as inappropriate, a worker might label two at a time,
reducing the overhead of waiting for their work to be submitted or for the next task
to load.
Interface design. Because humans are in many ways the most capable but least
reliable part of a crowd-powered workflow, designing the interfaces that they interact
with is crucial to good workflow design. In the simplest of cases, an interface bug that
makes one response button larger than another might cause skew in worker responses.
A more complicated case occurs in picking the right interface to elicit user feedback.
Imagine sorting a set of books by quality with input from people that have read the
books as Amazon does with its five-star rating system. Is a rating-based interface the
best way to elicit meaningful feedback from the crowd, or would it be better to ask
users who read two books to make a relative comparison between the two?
Algorithm design. Some common tasks, like entity resolution, can generate a num-
ber of crowd tasks that is superlinear in the size of the datasets they are processing.
For example, matching companies in one dataset that are identified by their stock
ticker symbols (e.g., IBM) to companies in another dataset identified by their full
name (e.g., International Business Machines) might, in a entity resolution implemen-
tation, generate crowd tasks for an all-pairs comparison. Since tasks sent to humans
cost money, it is desirable to design algorithms that reduce such superlinear task
generation.
Optimization. Crowd-powered workflows regularly require multiple steps, and de-
ciding how many resources to allocate to each workflow step as well as reordering
steps to reduce crowd work is a challenging task. A common workflow optimization
technique is known as selectivity estimation, where workflow steps that reduce the
amount of work required in future steps are executed first. Implementing selectiv-
ity estimation is difficult when workflow steps require human feedback, and as we
later show, naive crowd-powered selectivity estimation techniques can be an order of
magnitude less efficient and two orders of magnitude less accurate than well-designed
selectivity estimation approaches.
Worker and result quality. Workers can make mistakes or try to perform less
accurate work to finish tasks faster. (Workers with consistently low-quality responses
are sometimes called “spammers.”) Because of the uncertainty in worker responses,
it is impossible to guarantee 100% data accuracy.

There are several approaches to acheiving high quality. A simple approach is to
build redundancy into tasks. For example, if a worker will, on average, correctly
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label an image as inappropriate 90% of the time, we can ask three workers to label
each image and take the majority vote response, resulting in around 97% accuracy
assuming worker errors are independent. Other approaches involve asking one group
of workers to vote on the best answer that another set of workers generated. Such
multiple-worker responses tend to increase workflow cost and time as more workers
are involved in a workflow. Another common approach is to pose gold standard
questions with known answers in order to identify workers with poor performance.
This approach again requires increased cost and time as each worker must perform
gold standard tasks in addition to the yet-incomplete work.

Both of the methods of verifying worker quality require that worker responses
either match other workers’ answers or match a gold standard dataset. These ap-
proaches do not handle scenarios were correctness is not binary. For example, in de-
termining that there are five people in an image, we want to reward a crowd worker
who responded 4 more than we reward a crowd worker who responded 10.

1.2 Crowd Workflow Management: The Dark Ages

Crowdsourcing platforms are less than a decade old, and the ecosystem for manag-
ing them reflects their novelty. Crowdsourced workflow development is currently an
ad-hoc process, where developers build imperative programs to manage the crowd.
These developers recreate common crowd design patterns, hand-tune their own opti-
mizations, and manage work quality using less than ideal algorithms.

A similar situation existed in the data management field before database man-
agement systems reduced data workflow complexity with declarative programming
models, reduced program complexity with the introduction of common data opera-
tors, and reduced parameter tuning with the introduction of query optimizers. In
this dissertation, I explore how analogous approaches in declarative programming,
crowd-powered operators, and crowd workflow optimization can improve the ease
and efficiency of managing crowd work.

1.3 Qurk: A Crowd-powered Workflow System

Qurk is a database workflow engine that is crowd-aware. It supports a Pig Latin-
like [5] workflow definition language. While it allows common database operations like
sorting and filtering, its novelty is in supporting similar operations that are crowd-
powered. For example, Qurk allows a user to sort a collection of images by how
interesting they look, an operation that a computer alone can not yet perform.

Qurk is one of the contributions of this dissertation, but it also opens up research
opportunities of its own that address the challenges mentioned above:

e To address code reuse and complex workflows, Qurk’s declarative programming
language allows workflow developers to specify a high-level description of work-
flow stages, which the system compiles down into the complex logic that handles
data shuffling, asynchrony, result quality, and workflow optimization.
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e To avoid latency, Qurk’s operators and human task execution layer are non-
blocking, with all workflow elements communicating through asynchronous mes-
saging queues that are managed on behalf of the user.

e To reduce cost, Qurk applies various forms of batching work to take advantage
of humans’ natural ability to batch process certain kinds of data. We also reduce
cost by building new interfaces and algorithms for sorting and joining datasets
with the crowd that take human cognition and input mechanisms into account.

e To promote workflow optimization we explore different techniques for perform-
ing selectivity estimation, and in the process contribute an algorithm for esti-
mating worker and result quality in the face of continuous or ordinal response
types.

In Chapter 3] we present the data model and query languages that Qurk supports
to allow users to build crowd-powered workflows. In Chapter [4] we explore the ar-
chitecture and implementation that allows Qurk to both handle high-latency worker
responses and maintain high result quality across multiple responses.

1.4 Reusable Operations: Sorts and Joins

In Chapter [5 we explore how to build resuable crowd-powered operators. We specif-
ically study how to implement crowd-powered sort and join operators.

Building a crowd-powered resuable operator requires attention to traditional con-
siderations such as algorithmic complexity as well as new ones like human attention
and user interface usability. We show that with proper design, a join operation be-
tween two sets of images (a person-identification task) can be reduced in cost by over
an order of magnitude. We also explore the tradeoffs in costs and accuracy between
a rating-based sort, which requires a number of tasks linear in the input size, and a
comparison-based sort, which may require a number of tasks quadratic in the input
size.

1.5 Query Optimization and Work Quality

While operator-based optimizations are important for high result quality at reason-
able cost, crowd-powered workflows often contain several stages whose parameters
and execution must be optimized globally. In Chapter [0 we look at one form of
query optimization in in the form of crowd-powered selectivity estimation. For ex-
ample, consider a workflow that requires us to filter a collection of images to those of
males with red hair, and consider a scenario in which redheads are less prevalent in
our image collection than males. We can reduce workflow cost and time by having
the crowd first filter images to those of redheads, and then search among those images
for those of males.

The problem of operator ordering through selectivity estimation is one instance of
a crowd-powered count-based aggregation operation. Our goal is to, for some dataset,
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estimate the number of items in that dataset with a given property (e.g., hair color or
gender). We compare a sampled label-based interface, which asks crowd workers to
identify item properties on a sample of the dataset, to a sampled count-based interface,
which shows a subset of the dataset and asks workers to estimate the number of items
with the property in that sample. We show that, for items with high “pop-out,” (e.g.,
images of people that workers can scan quickly to determine their gender) the count-
based approach can provide accurate estimates up to an order of magnitude faster and
more cheaply than the label-based approach. For low pop-out items (e.g., snippets
of text that require careful attention and are not easily skimmable), we find that the
label-based approach is the only way to achieve reasonable result quality.

Through this work, we also explore a method of acheiving high result quality by
identifying spammers and coordinated attacks by workers (i.e., sybil attacks [35]).
This method expands on prior work that determines worker quality by requiring
multiple workers to redundantly label each item and measures workers’ overall agree-
ment with each redundant response. Our technique allows us to ask workers questions
about a larger fraction of the dataset with less redundancy in our questions, identi-
fying spammers and improving accuracy by up to two orders of magnitude.

1.6 Ethics and New Employment Models

The promise of human computation is that it enables new forms of computation and
more fluid access to labor than the traditional employee-employer or contract-based
attrangement. Aside from the technical challenges that we have to solve in order to
enjoy the benefits of crowd computing, there are also ethical ones we must consider.

Since the internet spans time, political borders, degrees of economic development,
and culturally accepted norms, many questions arise as to what comprises ethical
crowd computing. In Chapter [7 we consider some of these questions and review some
literature from the social sciences that addresses the questions in more traditional
environments. In addition to ethical questions, we also consider task employment
models that bridge traditional employment and the more free-flowing models enabled
by crowd work.

1.7 Multiple Authors and Prior Publications

The work presented in this dissertation is the result of several research collaborations
across three papers and a demo. My advisors, Sam Madden, David Karger, and Rob
Miller, who are also co-authors on all of these papers, aided in brainstorming many
ideas, defining experiment design, and writing up portions of all three papers. Kugene
Wu was instrumental in clarifying the initial ideas for Qurk as well as heavily editing
our CIDR paper [56]. He was even more crucial in our study of human-powered
sorts and joins [58], where he designed many of the user interfaces, implemented
significant portions of the Python backend, and developed and ran many of the sort-
based experiments. Eugene was an equal partner in the Scala-based implementation
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of Qurk for our SIGMOD demo [57]. For our work on selectivity estimation with the
crowd, many discussions with FEugene and Sewoong Oh helped frame my thoughts,
though all of the development, analysis, and experiment design are my own.

1.8 The Use of “We” Instead of “I”

While I have no experiments to support this hypothesis, I think that in time the
research community will find that recognition and attribution, given their importance
in the traditional workplace, have significant weight in supporting effective crowd
work.

Many crowds influenced this dissertation. My coauthors helped me frame, design,
and write up the research that went into the papers behind this dissertation. The
software behind Qurk was written collaboratively by Eugene Wu and me. Our human-
powered sort and join operator research registered input from at least 952 Turker IDs.
The selectivity estimation experiments showed contributions from at least 1062 Turker
IDs. An important and oft-unacknowledged crowd includes you, the reader, to whom
I write, and without whom I would be unable to frame this document.

It was with all of these crowds in mind that I wrote this dissertation. The contri-
butions, efforts, discoveries, and conclusions are not mine alone, and I find it inappro-
priate to use the pronoun “I” to describe them. While I take credit for the majority
of the intellectual contributions of this dissertation, we will explore the rest of this
research together.
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Chapter 2

Related Work

Several communities have taken to studying crowd work and its applications, systems
and programming models for crowdsourcing, and worker and result quality metrics.
In this chapter, we discuss the various efforts to improve the crowd-powered workflow
building process.

The study of crowd work is inseparable from an understanding of human behav-
ior, and so we can take inspiration from the field of psychology. Because the specific
psychological concerns of the interfaces we design are problem-specific, we leave dis-
cussion of those effects to the individual relevant chapters.

2.1 Studying the Crowds

One of the first researchers to study crowd platforms such as MTurk was Ipeirotis,
who offers an analysis of the marketplace [44]. From this study, we learn that between
January 2009 and April 2010, MTurk saw millions of HITs, hundreds of thousands of
dollars exchanged, and that the most popular tasks performed were product reviews,
data collection and categorization, and transcription. HIT prices ranges from $0.01
and $10.00, with approximately 90% of HITs paying less than $0.10.

Ipeirotis also surveyed Turkers to collect demographic information. Through these
surveys, we learn that between 2008 and 2010, the MTurk population demographics
resembled the US internet populations’, with a bias toward more females (70%),
younger workers, lower incomes, and smaller families [47].

As crowdsourcing platforms open up to a more global population, however, we
see several demographic shifts. With an increasing crowd worker population from
the developing world (in particular, India), Ross et al. show that with changes in
demographics come changes in motivations for performing work [66]. Workers from
India are more likely to have crowd work as a primary source of income, whereas
US workers treat it as an income supplement. This study showed that workers for
whom crowd work is their primary source of income, pay becomes a larger incentive
for performing tasks.

Mason and Watts [59] studied the effects of price on quantity and quality of work.
They find that workers are willing to complete more tasks when paid more per task.
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They also find that for a given task difficulty, result accuracy is not improved by
increasing worker wages.

Another study of worker incentives by Chandler and Kapelner [25] shows that US
workers on MTurk are more likely to perform a task if given context. Specifically, they
are more likely to start doing work on a task when told that they will be labeling
images of tumor cells than when they will be labeling objects of interest. Indian
Turkers do not display this property, favoring both tasks equally. Still, once either
worker starts performing a task, their quality is commensurate.

2.2 Applications of Crowds

Before we can understand different systems and models for building crowd-powered
workflows, we must first understand the types of applications that are built using
those workflows.

Crowd-powered tasks have made their way into user interfaces. In Soylent [21],
Bernstein et al. add shortening, proofreading, and macro functionality in Word.
The authors present a programming paradigm they name Find-Fiz- Verify, which is
designed to elicit several small bits of creative work from the crowd and then have
other crowd workers rate the alternative contributions to separate good from bad.

Find-Fix-Verify is one workflow for eliciting work from crowd workers. Little et
al. present an iterative approach [54], which is useful in having multiple workers
iteratively refine results of prior workers on difficult tasks such as decyphering a
hard-to-read text scan. Such novel crowd-powered workflows suggest the need for a
programming language and system that make it easy to define and optimize common
patterns for directing the crowd.

In a mix of human and machine computation, Branson et al. integrate humans and
learning algorithms into a visual 20 questions game [23]. In this game, a coordinating
algorithm uses machine vision to select and put an ordering on the questions asked
of humans to assist in classifying pictures of birds.

In VizWiz, Bigham et al. [22] describe a mobile phone application that allows
blind users to have various crowds, ranging from Turkers to their Facebook friends,
to label objects they take pictures of. In such a scenario, latency is important, and
the authors present a system called quikTurkit that, for a fixed price, can drastically
reduce the latency of results. Latency reduction is accomplished through several
techniques, including reposting tasks with regular frequency and posting more tasks
than are immediately available to entice Turkers. The existence and effectiveness of
such techniques suggests that latency reduction on MTurk is not a fruitful area of
research for the database community, since the majority of latency reduction can be
acheived by catering to idiosyncracies of the ecosystem.

Noronha et al. show with Platemate [60] that in addition to labeling images
with which foods they contain, Turkers are also effective at estimating the nutritional
properties of the food, such as how many calories the food contains.

With techniques like Games with a Purpose [73] and CAPTCHA [74], von Ahn
et al. show that it is possible to incentivize crowd work with non-monetary rewards.
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In Games with a Purpose, the crowd is presented with games that, as a byproduct,
label images or music. With CAPTCHA, users who wish to authenticate themselves
as human and not a spammer decypher difficult-to-read text or audio clips, thereby
transcribing those clips in the process.

Outside of the research world, several commercial applications of crowdsourcing
have popped up. CastingWords [8] is an MTurk-powered service that allows users to
pay to have their audio clips transcribed, with each worker performing a few minutes
of transcription. Captricity [6] uses its own crowd to convert paper forms into digital
records, and comes out of research by Chen et al. [26, 27]. CardMunch [7], which
was purchased by LinkedIn in 2011, allowed users to take photos of business cards
and have them digitized by Turkers. SmartSheet [I1] allows crowdsourced tasks to
be managed through a spreadsheet interface, which is a powerful way to view tasks
to be completed alongside data improvements.

2.3 Crowdsourced Databases

Given the parallels between crowd workflow optimization and traditional database
query optimization, applying and modifying database technology to crowd work is
natural. Several crowd-powered databases including CrowdDB [40], Deco [64, [65],
and our own Qurk [56] [58] enable users to issue data-oriented tasks to crowd workers.

While the design details between the various crowd-powered databases are inter-
esting, the majority of the early research contributions in this space have been around
database operators, including filters [63], sorts and joins [58], and max-finding [42].
Some of the operator-based work explores proving bounds on the complexity or cost of
acheiving a certain level of data quality with a certain quality of worker input. Other
aspects of this work involve exploring the user interfaces that various algorithms re-
quire as input, as we do in our study of crowd-powered sort and join implementations
(Chapter [3)).

In addition to discussing operator implementations such as sorts and joins in
this dissertation, we extend crowd-powered query optimization to consider cross-
operator optimizations through selectivity estimation, having the crowd estimate the
selectivity of various operators. This has the benefit of serving both crowd-powered
query optimizers and implementing crowd-powered COUNT aggregates with GROUP
BY clauses.

In CrowdDB, Franklin et al. present the concept of an Open World model of
databases that crowd-powered databases allow. Essentially, in this model, all of the
tuples relevant to a query are not assumed to be in the database a priori, and instead
can be retrieved in real time. While this model is desirable for generative open-ended
problems, it poses difficulties in optimizing queries for which one does not have all of
the data. As an example, consider the following query:

SELECT *
FROM professors
WHERE professors.university = "Berkeley";
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In an open-world model database, we can not be sure that the professors table
contains all of the professors at Berkeley, and have to decide both how many Berkeley
professors exist in the world and have the crowd determine who they are. To address
these challenges, Trushkowsky et al. have shown how to both estimate the cardinality
of a set, and identify the unique elements in that set with the help of the crowd [72].
This work is related to our selectivity estimation problem: for us to be able to calculate
counts of large numbers of groups with the crowd, it is important to enumerate the
distinct group elements which we are counting.

The database literature offers some guidance in how to process uncertain data,
which Qurk will also generate. Trio [I3] handles data with uncertain values and
lineage, and presents a language for querying this data. Dalvi and Suciu explore
efficient queries over probabilistic databases [32]. BayesStore [75] takes this a step
further, adding complex inference functionality to databases with probabilistic data.
MauveDB [34] explores generating model-based views over tables in order to model,
clean, and perform inference over the data. In Qurk, our workflow and user-defined
function language does not handle uncertain data. Instead, the system allows pro-
grammers to specify how to convert multiple potentially different worker responses
for the same task into a single definitive answer, for example by keeping the response
indicated by a majority vote.

2.4 Crowd Programming Models

Crowdsourcing platforms such as MTurk offer low-level interfaces for posting HTML
forms or iframes around HIT content that is hosted elsewhere. The APIs allow users
to generate new HITs, specify a price per HIT assignment, and set a number of
assignments per HIT. Users manage their own multi-HIT workflows, poll the API for
task completion, and gauge the quality of the responses on their own.

MTurk-style APIs are akin to filesystem and network APIs on which databases
and other data and information management platforms are built. Building robust
crowdsourced workflows that produce reliable, error-free answers on top of these APIs
is not easy. One has to consider how to design the user interface (an HTML form)
the crowd worker sees, the price to pay for each task, how to weed out sloppy or
intentionally incorrect answers, and how to deal with latency on the order of minutes
to hours of various HITs that crowd-powered programs generate. Several startups,
such as CrowdFlower [9] and MobileWorks [10] aim to make crowdsourced workflow
development easier by offering simplified APIs (CrowdFlower) or task-specific ones
(MobileWorks).

Further up the stack are crowdsourced language primitives. Little et al. present
TurKit [55], which supports a process in which a single task, such as sorting or editing
text, might be implemented as multiple coordinated HITs, and offers a persistence
layer that makes it simple to iteratively develop such tasks without incurring excessive
HIT costs. Much like low-level parallelization frameworks such as pthreads [24] allow
developers to fork multiple tasks off to workers in parallel, TurKit offers several par-
allelization primitives. Like low-level threading primitives, however, low-level crowd
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programming libraries require care in correctly using fork/join-style parallelization
primitives.

Crowdsourcing best-practices are generally relayed as workflows like Soylent’s
Find-Fix-Verify. As such, several workflow-oriented systems allow developers to spec-
ify at a high level how to process various bits of data, and a system manages HIT
creation, aggregation, and, eventually, pricing and quality. Outside of the databases
community, systems such as CrowdForge [51] and Jabberwocky [14] help manage such
workflows. CrowdForge by Kittur et al. provides a MapReduce-style programming
model for task decomposition and verification. Jabberwocky from Ahmad et al. pro-
vides a full stack: Dormouse for low-level crowdsourcing primitives, ManReduce for
a MapReduce-style task decomposition, and Dog as a Pig-like programming envi-
ronment [5] for specifying workflows at a high level. While the flavors of Pig Latin
in Qurk and Dog are similar in that they allow developers to declaratively specify
workflow steps, Dog’s contribution is a declarative specification of how to recruit
crowd workers from different platforms, whereas Qurk focuses on how to define tasks
encoded in user-defined functions.

The database community has largely rallied around SQL with some crowd-oriented
additions to provide a declarative programming interface for the crowd. While we
ultimately settled on Pig Latin for Qurk’s programming language, our changes to the
core language constructs are the least invasive of the crowd-powered databases. This is
because, like traditional databases, we assume a closed-world data model, and provide
a method for defining crowd-powered user-defined functions that do not otherwise
require modification to the query language. As we tested the limits of the language
for building Find-Fix-Verify-style workflows, we realized that a workflow language like
Pig Latin might be a better choice than SQL, as it offers the benefits of a declarative
programming interface while providing imperative step-by-step descriptions of crowd
workflows.

Developers of crowdsourced programming languages are not the first to consider
human-in-the-loop programming. Business Process Execution Language (BPEL) [30]
is a language for specifying executable business process workflows, like submitting
a request to another person, waiting for a response, and taking different actions
depending on the response. The crowdsourcing community has for the most part not
adopted the BPEL standard, perhaps because other programming models such as
MapReduce or SQL are already well-known and used.

2.5 Worker and Result Quality

One of the key problems in designing a crowd-powered workflow is providing a desired
level of worker response quality. Even the best of workers make mistakes, and building
redundancy and verification into a workflow is required.

CrowdFlower requests that users provide gold standard data with which to test
worker quality, and disallows workers who perform poorly on the gold standard. For
categorical data, an approach such as asking multiple workers each question and
selecting a majority vote of responses can improve results. Dawid and Skene presented
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an expectation maximization technique for for iteratively estimating worker and result
quality [33] in the absense of gold standard data. Ipeirotis et al. [46] modified this
technique to consider bias between workers in addition to worker quality on categorical
data. Karger et al. extend this work, identifying a theoretically better algorithm for
quality labels [49].

In this thesis, we explore the effects of using majority vote and iterative worker
quality measures when implementing crowd-powered joins in Chapter [ We also
extend the iterative worker quality approach to continuous data without redundant
samples in our exploration of estimating counts in Chapter [6] We find that for count
estimation, it is better to avoid the redundant labels and instead increase diversity in
samples to achieve faster convergence. Our worker quality detection technique allows
us to acheive even faster convergence by identifying poor-quality worker output.

Thus far, techniques for measuring worker quality as a proxy for result quality have
assumed a strong worker identity system and no cross-worker coordination. These
algorithms are susceptible to Sybil attacks [35] by workers with multiple identities or
workers who act in concert to avoid being identified as spammers while finishing tasks
faster than high-quality workers. Sybil attacks are well-researched in systems design,
but have not yet been introduced as research problems with practical solutions in
the field of human computation. We propose a Sybil-resistant solution to our count
estimation problem, and show that it works in simulations of such attacks.

Since result quality, cost, and latency are often at tension, we require constraint-
based optimization to satisfy users’ multiple requirements. Dai et al. explore such
workflow parameter optimization techniques in a decision-theoretic framework [31].
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Chapter 3

Qurk Query and Data Model

In this chapter, we present Qurk’s data model and query model. Qurk follows the
traditional relational data model. The the original Qurk query language was SQL,
but we moved toward a Pig Latin-based language [62]. SQL, while compact, stan-
dardized, and feature-rich, has properties that make it less desirable for describing
longer workflows of computation. Because high-level human computation pipelines
often have multiple steps and branches, we explore a Pig Latin-based query interface
to Qurk for defining these workflows. After describing our data and query models
with examples of particular features, we close with an end-to-end workflow example
from Soylent’s Find-Fix-Verify [21].

3.1 Data Model

Qurk’s query executor operates on relational data with no modifications to the tra-
ditional relational model [29]. This means that data is stored in tables that contain
rows. Each table has several columns to describe row properties, and for any row,
a column contains a single value. We integrate crowd input into a query plan by
allowing developers to define crowd-powered user-defined functions (UDFs).

Our choice of data model design works well for processing varied datasets, but
a wrinkle in the design arises when dealing with multiple crowd worker responses.
Because any one crowd worker’s response cannot be counted on to be correct, we
often assign multiple workers to a HIT. As we describe in Section [3.2] Qurk’s UDF
descriptions specify how to combine multiple worker responses.

Our choice of Pig Latin as the basis for our query language does not suggest
we employ a nested relational model as Pig does. Our design goal in borrowing
from Pig was to allow simple workflow descriptions while providing developers with
the more widely recognized operators of the relational model. In the nested model,
tables can contain other tables, allowing set-valued attributes. This table nesting
is facilitated by non-relational operator implementations like nested FOREACH and
GROUP operators. As we show in Section [3.2] our language design utilizes Pig Latin’s
workflow description logic, and borrows operators that remove set-valued attributes
that appear in multiple worker responses, while replacing non-relational operators
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such as Pig’s GROUP with relational ones as they appear in SQL.

3.2 Pig Latin-based Query Language

We now describe the Qurk query language, and focus on how operators such as filters,
joins, and sorts are expressed through a series of queries. Users utilize the language
to describe crowd-powered workflows to process their datasets, and periodically call
out to crowd workers in these workflows by defining templates for crowd-powered
UDFs. By embedding crowd-powered UDF's in a Pig Latin-like workflow description
language, we base our language design on a set of data processing primitives that are
already vetted by the declarative workflow-building community:.

Our examples have workers provide us with information about various images. We
use image examples for consistency of explanation, and because databases typically
do not perform processing over images. While image processing makes for a good
example of the benefit of crowd-powered databases, Qurk’s use cases are not limited
to processing images. Franklin et al. [40] show how human computation-aware joins
can be used for entity disambiguation, and we explore using workers to rate video
content in Section In Section [6] we also explore labeling and counting textual
data such as tweets.

Qurk supports user-defined scalar and table functions (UDFs) to retrieve data
from the crowd. Rather than requiring users to implement these UDFs in terms
of raw HTML forms or low-level code, most UDFs are implemented using one of
several pre-defined Task templates that specify information about how Qurk should
present questions to the crowd. Qurk compiles task tempates into an HTML form
that displays an item to be processed, a prompt describing how to process it, and
form elements to collect worker output.

To illustrate a simple example, suppose we have a table of celebrities, with schema
celeb(name text, img url).

We want the crowd to filter this table and find celebrities that are female. We
would write:

female_celebs =
FILTER celeb BY isFemale(c.url)

This is an unadulterated Pig Latin query, with isFemale defined as follows:

TASK isFemale(field) TYPE Filter:
Prompt: "<table><tr> \
<td><img src=’%s’></td> \
<td>Is the person in the image a woman?</td> \
</tr></table>", tuple[field]
YesText: "Yes"
NoText: "No"
BatchPrompt: "There are ’%d people below. \
Please specify whether each is a \
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woman.", BATCHSIZE
Combiner: MajorityVote

Tasks have types (e.g., Filter for yes/no questions or Rank for sort-based com-
parators) that define the low-level implementation and interface to be generated.
Filter tasks take tuples as input, and produce tuples that users indicate satisfy the
question specified in the Prompt field. Here, Prompt is simply an HTML block into
which the programmer can substitute fields from the tuple being filtered. This tuple
is available via the tuple variable; its fields are accessed via the use of field names in
square brackets. In this case, the question shows an image of the celebrity and asks if
they are female. The YesText and NoText fields allow developers to specify the titles
of buttons to answer the question.

Filters describe how to ask a worker about one tuple. The query compiler and
optimizer can choose to repeat the Prompts for several tuples at once. This allows
workers to perform several filter operations on records from the same table in a single
HIT. The BatchPrompt allows a user to specify to workers that multiple answers are
expected of them in a single HIT.

Workers sometimes make mistakes, generate unusual answers, or, in an attempt
to make money quickly, submit tasks without following directions. Because any one
worker might provide an unreliable response, it is valuable to ask multiple workers
for answers. We allow users to specify how many responses are desired; by default we
send jobs to 5 workers. Certain worker response combination logic (described next
in our discussion of Combiners) will ask progressively more workers to provide an
answer if a task is particularly difficult, and so the number of workers per task is not
always fixed. In our experiments we measure the effect of the number of workers on
answer quality. We also discuss algorithms for adaptively deciding whether another
answer is needed in Section [5.5]

The Combiner field specifies a function that determines how to combine multiple
responses into one answer. In addition to providing a MajorityVote combiner, which
returns the most popular answer, we have implemented the method described by
Ipeirotis et al. [46]. This method, which we call QualityAdjust, identifies spammers
and worker bias, and iteratively adjusts answer confidence accordingly in an Expec-
tation Maximization-like fashion. Developers can implement their own combiners by
building a custom user-defined aggregate (UDA), that, in addition to providing an
aggregate result, can also request more worker responses if answer certainty is low.

Advanced users of Qurk can define their own tasks that, for example, generate
specialized Uls. However, these custom Uls require additional effort if one wishes to
take advantage of optimizations such as batching.

3.2.1 Generative Tasks

Filter tasks have a constrained user interface for providing a response. Often, a task
requires workers to generate unconstrained input, such as producing a label for an
image or finding a phone number. In these situations, we must normalize worker
responses to better take advantage of multiple worker responses. Since generative

31



tasks can have workers generate data for multiple fields and return tuples, this is a
way to generate tables of data.

For example, say we have a table of animal photos: animals(id integer, img
url). We wish to ask workers to provide us with the common name and species of
each animal:

common_species =
FOREACH animals
GENERATE id, animalInfo(img) .common
animalInfo(img) .species

In this case, animalInfo is a generative UDF which returns two fields, common with
the common name, and species with the species name.

TASK animalInfo(field) TYPE Generative:
Prompt: "<table><tr> \
<td><img src=’%s’> \
<td>What is the common name \
and species of this animal? \
</table>", tuple[field]
Fields: {
common: { Response: Text("Common name")
Combiner: MajorityVote,
Normalizer: LowercaseSingleSpace },
species: { Response: Text("Species"),
Combiner: MajorityVote,
Normalizer: LowercaseSingleSpace }

by

A generative task provides a Prompt for asking a question, much like a filter task.
It can return a tuple with fields specified in the Fields parameter. Just like the filter
task, we can combine the work with a Combiner. We also introduce a Normalizer,
which takes the text input from workers and normalizes it by lower-casing and single-
spacing it, which makes the combiner more effective at aggregating responses. While
one is not present in this example, a user can also provide a BatchPrompt to precede
multiple batched questions.

Pig Latin provides a method of nesting results inside other results with statements
nested inside FOREACH operations. We do not allow this language feature to avoid
generating set-valued attributes.

3.2.2 Sorts

Sorts are implemented through UDF's specified in the ORDER BY clause. Suppose,
for example, we have a table of images of squares of different sizes, with schema
squares (label text, img url). To order these by the area of the square, we write:
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sorted =
ORDER squares BY squareSorter (img)

where the task definition for squareSorter is as follows.

TASK squareSorter(field) TYPE Rank:
SingularName: "square"
PluralName: "squares"
OrderDimensionName: "area"
LeastName: "smallest"
MostName: "largest"
Html: '"<img src=’%s’ class=1glmg>",tuple[field]

As we discuss in Section Qurk uses one of several different interfaces for
ordering elements. One version asks workers to order small subsets of elements.
Another version asks users to provide a numerical ranking for each element. The
Rank task asks the developer to specify a set of labels that are used to populate these
different interfaces. In the case of comparing several squares, the above text will
generate an interface like the ones shown in Figure and [3-2]

There are 2 groups of squares. We want to order the squares
in each group from smallest to largest.

¢ Each group is surrounded by a dotted line. Only compare the squares within a group.
¢ Within each group, assign a number from 1 to 7 to each square, so that:
1 represents the smallest square, and 7 represents the largest.
¢ We do not care about the specific value of each square, only the relative order of the squares.
¢ Some groups may have less than 7 squares. That is OK: use less than 7 numbers, and make sure they are ordered

according to size.
¢ Iftwo squares in a group are the same size, you should assign them the same number.

----------------------------------------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------------------------------------

________________________________________________________________________________________________________________________________________

Figure 3-1: Comparison Sort

As with filters, tasks like Rank specified in the ORDER BY clause can ask users
to provide ordering information about several records from the input relation in a
single HIT. This allows our interface to batch together several tuples for a worker to

process.
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There are 2 squares below. We want to rate squares by
their size.

¢ For each square, assign it a number from 1 (smallest) to 7 (largest) indicating its size.
» For perspective, here is a small number of other randomly picked squares:

----------------------------------------------------------------------------------------------------------------------------------------

________________________________________________________________________________________________________________________________________

Figure 3-2: Rating Sort

3.2.3 Joins and Feature Extraction

The basic implementation of joins is similar to that for sorts and filters. Suppose
we want to join a table of images with schema photos(img url) with the celebrities
table defined above:

combined =
JOIN celeb, photos
ON samePerson(celeb.img, photos.img)

This join syntax borrows from SQL, since Pig Latin’s join logic assumes join predicates
are defined as equality between two fields. Qurk instead allows more rich human-
powered join predicates like samePerson, which is an equijoin task that is defined as
follows:

TASK samePerson(f1, f2) TYPE EquiJoin:
SingluarName: "celebrity"
PluralName: "celebrities"
LeftPreview: "<img src=’%s’ class=smImg>",tuplel[fl]
LeftNormal: "<img src=’%s’ class=1lgImg>",tuplel[f1]
RightPreview: "<img src=’%s’ class=smImg>",tuple2[f2]
RightNormal: "<img src=’%s’ class=1glmg>",tuple2[f2]
Combiner: MajorityVote
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The fields in this task are used to generate one of several different join interfaces
that is presented to the user. The basic idea with these interfaces is to ask users
to compare pairs of elements from the two tables (accessed through the tuplel and
tuple2 variables); these pairs are used to generate join results. As with sorting
and filter, Qurk can automatically batch together several join tasks into one HIT. A
sample interface is shown in Figure -1}

As we discuss in Section we often wish to extract features of items being
joined together to filter potential join candidates down, and allow us to avoid com-
puting a cross product. Some features may not be useful for accurately trimming the
cross product, and so we introduce a syntax for users to suggest features for filtering
that may or may not be used (as we discuss in Section , the system automatically
selects which features to apply.)

We supplement traditional join syntax with an OPTIONALLY keyword that indicates
the features that may help filter the join. For example, the query:

combined =
JOIN celeb, photos
ON samePerson(celeb.img, photos.img)
AND OPTIONALLY gender(celeb.img) == gender (photos.img)
AND OPTIONALLY hairColor(celeb.img) == hairColor(photos.img)
AND OPTIONALLY skinColor(celeb.img) == skinColor(photos.img)

joins the celeb and photos table as above. The additional OPTIONALLY clause filters
extract gender, hair color, and skin color from images being joined and are used to
reduce the number of join candidates that the join considers. Specifically, the system
only asks users to join elements from the two tables if all of the predicates in the
OPTIONALLY clauses that Qurk uses are satisfied. The predicates that Qurk does use
to narrow down join candidates can be applied in a linear scan of the tables, avoiding
a cross product that might otherwise result. In Section [5.2.2] we discuss scenarios
where not all of the predicates proposed by a user are used for feature filtering. Here,
gender, hairColor, and skinColor are UDFs that return one of several possible
values. For example:

TASK gender(field) TYPE Generative:

Prompt: "<table><tr> \

<td><img src=’%s’> \

<td>What is this person’s gender? \

</table>", tuple[field]
Response: Choice("Gender",
["Male","Female" ,UNKNOWN])

Combiner: MajorityVote

In contrast to the animalInfo generative task, note that this generative task only

has one field, so it omits the Fields parameter. Additionally, the field does not
require a Normalizer because it has a constrained input space.
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It is possible for feature extraction interfaces to generate a special value UNKNOWN,
which indicates a worker could not tell its value. This special value is equal to any
other value, so that an UNKNOWN value does not remove potential join candidates.

3.2.4 Aggregates

Finally, we turn to grouping and aggregating data. Imagine a table shapes(id,
picture) that contains several pictures of shapes that vary in fill color. If one wanted
to generate an interface to navigate this collection of images, it would help to sum-
marize all colors of images and their frequency in the dataset, as in the following

query:

counted_shapes =
FOREACH shapes
GENERATE fillColor(picture), COUNT(id)
GROUP BY fillColor(picture)

Here, £illColor is a crowd-powered UDF that asks a user to specify the color
of a shape from a drop-down list of possible colors. Our grouping and aggregation
language design is a diversion from the design for Pig Latin. In Pig Latin, grouping
and aggregating are performed in separate GROUP and nested FOREACH steps. Since
we do not want to use a grouping operator that generates set-valued attributes, we
instead borrow from SQL’s syntax, which performs grouping and aggregation in the
same query.

3.3 Workflow Example

The language features we have described until now allow a user to compactly specify
a single crowd-powered data processing step. If this were the only requirement of
our query language, SQL would be an effective choice of query language. In practice,
crowd-powered pipelines require multiple steps that flow into one-another. As our
running example, we will consider Soylent’s Find-Fix-Verify [21] algorithm as it is
used to shorten the length of a long paper.

To avoid giving any one crowd worker too much power to change significant por-
tions of a paper, the Find-Fix-Verify workflow creates microtasks that put workers’
responses at tension with one-another. Given a section of text to shorten, the algo-
rithm guides through the text paragraph-by-paragraph. In a given paragraph, the
Find stage asks multiple crowd workers to identify patches of text that could be
shortened. In the Fix stage, each patch is sent to a different crowd of workers who
recommend shorter versions of the text. Finally, the multiple patches and shortened
recommendations are then sent to a third group of crowd workers that Verify, or
vote, on the best shortenings.

To implement such a workflow in a SQL-like language, users would have two
choices. A user could utilize temporary tables to capture the output of each workflow
step, for example creating a find _temp table with the output of the Find stage. This
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has the undesirable effect of separating query plan elements by tables, across which
most query optimizers do not optimize or re-order plan elements. Alternatively, the
worker could nest the SQL queries inside one-another. This would have the effect
of requiring the workflow to be stated in reverse, with the Verify stage embedding
a nested Fix stage as a subquery and so on. Such an nested/inverted workflow
description is undesirable as it makes the workflow difficult to understand.

Languages such as Pig Latin allow declarative workflow specifications with named
stages that feed into one-another. We can succinctly describe the Find-Fix-Verify
workflow in Qurk’s Pig Latin-inspired language. Given a relation paragraphs (paragraph_id,
text) with paragraphs of a paper (or, alternatively, a previous process that splits a
paper into paragraphs), one can issue the following Pig Latin-like query:

find = FOREACH paragraphs
GENERATE paragraph_id, text,
FLATTEN (suggestPatch(text)) AS patch;
fix = FOREACH find
GENERATE paragraph_id, text, patch,
FLATTEN (suggestCut (text, patch)) AS fixed;
verify = SORT fix
BY paragraph_id, compareFixes(text, patch, fixed);

This query has three phases. In the find phase, we emit the patches of text that the
crowd identifies as candidates for shortening. To understand what purpose FLATTEN
serves, we must first look at the definition of suggestPatch.

TASK suggestPatch(field) TYPE Generative:
Prompt: "In the paragraph below, please highlight \
a patch of text that can be shortened: \
<div id=’paragraph_container’>%s</div>", tuplel[field]
Fields: {
common: { Response: HighlightPatch("paragraph_container"),
Combiner: ListGenerator

3

The suggestPatch UDF presents the paragraph to a crowd worker, who is prompted
to highlight a patch of text in the paragraph that can be shortened. The response is
encoded by HighlightPatch, a javascript-powered highlight-detection module that
returns the start and end offsets of the highlighted patch in the paragraph. The
Combiner, which until now has been MajorityVote or QualityAdjust, is instead
ListGenerator. While previous combiners assumed answers would be similar, and
some form of overlap amongst worker responses could provide the correct one, there
is no good way to combine the highlighted patches from different workers until after
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cuts are recommended for them in the fix stage. Instead, the ListGenerator returns
a list of all of the patches suggested by the crowd}

In order to keep with the relational model and avoid set-valued attributes, we
wrap the list returned by suggestPatches in FLATTEN, which creates one tuple per
patch. As an example, consider some paragraph (e.g., paragraph id = 3) with some
text (e.g., “There are several ways to...”). If suggestPatches returns a list with
highlighted patches from two crowd workers (e.g., [start: 5, end: 20, start:
10, end: 36]), the find stage will emit:

3 | "There are several ways to..." | {start: 5, end: 20}

3 | "There are several ways to..." | {start: 10, end: 36}

Once candidate patches are emitted from find, the fix stage will prompt workers
with another Generative UDF called suggestCut that highlights a patch in the
paragraph and asks the crowd to recommend shorter versions of the highlighted text.
These potential cuts are again not easily combined, and are thus flattened into one row
per potential cut. In the verify stage, we sort the worker responses by paragraph ID
(a comparison that is easily performed by Qurk), and then, per paragraph, prompt the
crowd to put a ranking on the shortened patches using a UDF called compareFixes
that has UDF type Rank.

We see that, for Find-Fix-Verify, the workflow can be described in roughly three
lines of Qurk workflow logic and less than 100 lines of Qurk UDF logic specifications.
By contrast, the TurKit-based Soylent implementation of the workflow logic behind
Find-Fix-Verify requires more than 1000 lines of javascript. While not a scientific
comparison, it’s clear that a declarative approach reduces the amount of code required
to implement a crowd-powered query.

Furthermore, the Pig Latin-based implementation is more approachable to devel-
opers and readers than a SQL-based implementation, as there are no nested queries
or temporary tables. While the SQL- and Pig Latin-based approaches are equivalent
in terms of optimization opportunities and functionality, we opted to implement a
Pig Latin-like query language for our Qurk prototype because we found Pig Latin
to suit real-world use cases that are more workflow/stage-oriented. This reasoning is
echoed by other crowd language designs like Jabberwocky’s Dog [14].

IThe actual solution proposed in Soylent is to generate patches of text based on high-overlap
regions identified by multiple workers. Using ListGenerator as a combiner has the effect of asking
for fixes across all highlighted patches, whereas a combiner that creates a list of several high-overlap
patches of text would be more true to the solution proposed by the authors of Soylent.
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Chapter 4

Architecture and Query Execution

In this chapter, we describe the architecture of Qurk, provide some implementation
details, and discuss the query execution process.

4.1 Architecture

Qurk is architected to handle an atypical database workload. The crowdsourced
workloads that Qurk handles rarely encounter hundreds of thousands of tuples, and
an individual operation, encoded in a HIT, takes several minutes. Components of the
system operate asynchronously, and the results of almost all operations are saved to
avoid re-running unnecessary crowd work. Qurk’s architecture is shown in Figure 4-1}

The Query Executor takes as input query plans from the query optimizer and
executes the plan, possibly generating a set of tasks for humans to perform according
to the rules in Section 4.3} Due to the latency in processing HITs, each operator runs
in its own thread, asynchronously consuming results from input queues and sending
tasks to the Task Manager. This asynchronous operator and input queue design is
similar to that of the Volcano parallel query executor [41].

The Task Manager maintains a global queue of tasks to perform that have been
enqueued by all operators, and builds an internal representation of the HIT required
to fulfill a task. The manager takes data that the Statistics Manager has collected
to determine the number of workers and the cost to charge per task, which can differ
per operator. Additionally, the manager can collapse several tasks generated by
operators into a single HIT. These optimizations collect several tuples from a single
operator (e.g., collecting multiple tuples to sort) or from a set of operators (e.g.,
sending multiple filter operations over the same tuple to a single worker).

Qurk first looks up each HIT that is generated from the task manager in the
Task Cache to determine if the the result has been cached (if an identical HIT
was executed already) and probes the Task Model to determine if a learning model
has been primed with enough training data from other HITs to provide a sufficient
result without calling out to a crowd worker. The Task Model currently serves as
an architectural placeholder, and is not explored or implemented in this dissertation.
We discuss the open questions around implementing the Task Model in Chapter [7]
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Figure 4-1: The Qurk system architecture.

If the HIT cannot be satisfied by the Task Cache or Task Model, then it is passed
along to the HIT Compiler, which generates the HT'ML form that a workers will see
when they accept the HIT, as well as other information required by the crowdsourcing
platform (e.g., MTurk). The compiled HIT is then passed to the crowdsourcing
platform. Upon completion of a HIT, the Task Model and Task Cache are updated
with the newly learned data, and the Task Manager enqueues the resulting data in the
next operator of the query plan. Once results are emitted from the topmost operator,
they are inserted into the database. The user can periodically check for new records,
or wait until a callback alerts them that the query has completed.

4.2 Implementation Details

Qurk is implemented as a Scala workflow engine with several input types including
relational databases and tab-delimited text files. To quickly iterate on many of the in-
terfaces for this dissertation, we created several interface prototypes and experiments
in Python using the Django web framework.

Pricing Tasks. Our current Qurk implementation runs on top of Mechanical Turk.
We pay a fixed value per HIT ($0.01 in our experiments). Research by Mason and
Watts has suggested that workers on Mechanical Turk do not do particularly higher
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quality work for higher priced tasks [59]. Mason and Watts also find that workers are
willing to perform more work in each task with an increase in pay per task, suggesting
that Turkers have an internal model of how much money their work is worth. In all
of our experiments, the basic tasks we perform are quick enough that users will do
several of them for $0.01, which means we can batch several tasks into a single HIT.
Paying more per HIT would allow us to perform more batching, but the degree of
additional batching would scale linearly with the additional money we pay, which
wouldn’t save us money.

Objective Function. Because we pay a fixed value per HIT, Qurk uses a simple
objective function: minimize the total number of HITs required to fully process a
query subject to the constraint that query answers are actually producedﬂ The
constraint arises because certain optimizations we apply, like batching, will eventually
lead to HITs that are too time-consuming for users to be willing to do for $0.01.
Batching. Qurk automatically applies two types of batching to tasks: merging, where
we generate a single HIT that applies a given task (operator) to multiple tuples, and
combining, where we generate a single HIT that applies several tasks (generally only
filters and generative tasks) to the same tuple. Both of these optimizations have the
effect of reducing the total number of HITS? For filters and generative tasks, batches
are generated by concatenating multiple Prompt sections (e.g., “Is the person in this
image female?”) for multiple tasks together onto the single web page presented to the
user. These batched Prompts are preceded with a single BatchPrompt (e.g., “Please
answer questions about the gender of people in the following 5 pictures. If you are
unsure about a person’s gender, click unsure”) as described in Section Different
user interfaces require different levels of batching as we will see when we explore
sorts, joins, and counts. We leave it to future work to estimate the best batch size
per interface.

HIT Groups. In addition to batching several tasks into a single HIT, Qurk groups
together (batched) HITs from the same operator into groups that are sent to Me-
chanical Turk as a single HIT group. This is done because Turkers tend to gravitate
toward HIT groups with more tasks available in them, as they can more quickly per-
form work once they are familiar with the interface. In CrowdDB [40], the authors
show the effect of HIT group size on task completion rate.

4.3 HIT Generation

Qurk queries are translated into HITs that are issued to the underlying crowd. It is
important to generate tasks in a way that keeps the total number of HITs generated

LOther objective functions include maximizing answer quality or minimizing latency. Unfor-
tunately, answer quality is hard to define (the correct answer to many human computation tasks
cannot be known). Latency is highly variable, and probably better optimized through low-level
optimizations like those used in quikTurkit [22] or Adrenaline [20].

2For sequences of conjunctive predicates, combining actually does more “work” on people than
not combining, since tuples that may have been discarded by the first filter are run through the
second filter as well. Still, as long as the first filter does not have 0 selectivity, this will reduce the
total number of HITs that have to be run.
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low. For example, as in a traditional database, it’s better to filter tables before
joining them. Query planning in Qurk is done in a way similar to conventional
logical-to-physical query plan generation. A query or workflow is translated into
a query plan/tree that processes input tables in a bottom-up fashion. Relational
operations that can be performed by a computer rather than humans are pushed
down the query plan as far as possible—including pushing non-HIT joins below HIT-
based filters when possible—as the goal is to reduce the number of tasks performed
by humans rather than reducing query/CPU time or disk utilization.

The system generates HITs for all non-join WHERE clause expressions first, and
then as those expressions produce results, feeds them into join operators, which in
turn produce HITs that are fed to successive operators. As described in Chapter [6]
Qurk utilizes selectivity estimation to order filters and joins in the query plan.
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Chapter 5

Human-powered Sorts and Joins

5.1 Introduction

In studying human computation workflows, one runs into repeated use of common
data processing operations. Workflow developers often implement tasks that involve
familiar database operations such as filtering, sorting, and joining datasets. For ex-
ample, it is common for MTurk workflows to filter datasets to find images or audio on
a specific subject, or rank such data based on workers’ subjective opinion. Program-
mers currently waste considerable effort re-implementing these operations because
reusable implementations do not exist. Furthermore, existing database implementa-
tions of these operators cannot be reused, because they are not designed to execute
and optimize over crowd workers.

Reusable crowd-powered operators naturally open up a second opportunity for
database researchers: operator-level optimization. Human workers periodically intro-
duce mistakes, require compensation or incentives, and take longer than traditional
silicon-based operators. Currently, workflow designers perform ad-hoc parameter tun-
ing when deciding how many assignments of each HIT to post in order to increase
answer confidence, how much to pay per task, and how to combine several human-
powered operators (e.g., multiple filters) together into one HIT. These parameters
are amenable to cost-based optimization, and introduce an exciting new landscape
for query optimization and execution research.

In this chapter, we focus on the implementation of two of the most important
database operators: joins and sorts. The human-powered versions of these operators
are important because they appear in multiple use cases. For example, informa-
tion integration and deduplication can be stated as a join between two datasets,
one with canonical identifiers for entities, and the other with alternate identifiers.
Human-powered sorts are widespread as well. Each time a user provides a rating,
product review, or votes on a user-generated content website, they are contributing
to a human-powered ORDER BY.

Sorts and joins are challenging to implement because there are a variety of ways
they can be implemented as HITs. For example, to sort a list of images, we might ask
users to compare groups of images. Alternatively, we might ask users for numerical
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ratings for each image. We would then use the comparisons or scores to compute
the order. The interfaces for sorting are quite different, require a different number of
total HITs and result in different answers. Similarly, there are a variety of ways to
issue HITs that compare objects for computing a join, and we study answer quality
generated by different interfaces on a range of datasets.

In this chapter, we will explore how Qurk’s executor can choose the best imple-
mentation or user interface for different operators depending on the type of question
or properties of the data. The Qurk executor combines human computation and tra-
ditional relational processing (e.g., filtering images by date before presenting them to
the crowd). Finally, Qurk automatically translates queries into HITs and collects the
answers in tabular form as they are completed by workers.

Besides describing implementation alternatives, we also explore optimizations to
compute a result in a smaller number of HITs, which reduces query cost and some-
times latency. Specifically, we look at:

e Batching: We can issue HITs that ask users to process a variable number of
records. Larger batches reduce the number of HITs, but may negatively impact
answer quality or latency.

o Worker agreement: Workers make mistakes, disagree, and attempt to game the
marketplace by doing a minimal amount of work. We evaluate several metrics
to compute answer and worker quality, and inter-worker agreement.

e Join pre-filtering: There are often preconditions that must be true before two
items can be joined. For example, two people are the same if and only if
they have the same gender. We introduce a way for users to specify such filters
(essentially human-powered classifiers), which require a linear pass by the crowd
over each table being joined, but allow us to avoid a full cross-product when
computing the join.

e Hybrid sort: When sorting, asking users to rate items requires fewer tasks than
directly comparing pairs of objects, but produces a less accurate ordering. We
introduce a hybrid algorithm that uses rating to roughly order items, and it-
eratively improves that ordering by using comparisons to improve the order of
objects with similar ratings.

Our join optimizations result in more than an order-of-magnitude cost reduction,
from $67 to $3, on a join of 30 photos with 30 other photos while maintaining result
accuracy and latency. For sorts, we show that ranking (which requires a number of
HITs linear in the input size) costs dramatically less than ordering (which requires
a number of HITs quadratic in the input size), and produces comparable results in
many cases. Finally, in an end-to-end test, we show that our optimizations can reduce
by a factor of 14 the number of HIT's required to join images of actors and rank-order
them.
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5.2 Join Operator

This section describes several implementations of the join operator, and the details
of our feature filtering approach for reducing join complexity. We present a series of
experiments to show the quality and performance of different join approaches.

5.2.1 Implementation

The join HIT interface asks a worker to compare elements from two joined relations.
Qurk implements a block nested loop join, and uses the results of the HIT comparisons
to evaluate whether two elements satisfy the join condition. We do not implement
more efficient join algorithms (e.g., hash join or sort-merge join) because we do not
have a way to compute item (e.g., picture) hashes for hash joins or item order for
sort-merge joins.

The following screenshots and descriptions center around evaluating join predi-
cates on images, but Qurk is not limited to image data types. The implementations
generalize to any field type that can be displayed in HTML. In this section, we assume
the two tables being joined are R and S, with cardinalities |R| and |S|, respectively.

Is the same celebrity in the image on the left and
the image on the right?

eS|l No

Figure 5-1: Simple Join
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Simple Join

Figure [5-1] shows an example of a simple join predicate interface called SimpleJoin.
In this interface, a single pair of items to be joined is displayed in each HIT along
with the join predicate question, and two buttons ( Yes, No) for whether the predicate
evaluates to true or false. This simplest form of a join between tables R and S requires
|R||S| HITs to be evaluated.

Is the same celebrity in the image on the left and the image
on the right?

> Yes o No

Figure 5-2: Naive Batching

Naive Batching

Figure shows the simplest form of join batching, called NaiveBatch. In Naive-
Batch, we display several pairs vertically. Yes, No radio buttons are shown with each
pair that is displayed. A Submit button at the bottom of the interface allows the
worker to submit all of the pairs evaluated in the HIT. If the worker clicks Submit
without having selected one of Yes or No for each pair, they are asked to select an
option for each unselected pair.
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For a batch size of b, where b pairs are displayed in each HIT, we can reduce the
number of HITs to ‘il)'s'.

Find pairs of images with the same celebrity

* To select pairs, click on an image on the left and an image on the right. Selected pairs will appear in the Matched Celebrities list on the left.
* To magnify a picture, hover your pointer above it.

* To unselect a selected pair, click on the pair in the list on the left.

+ Ifnone of the celebrities match, check the I did not find any pairs checkbox.

* There may be multiple matches per page.

Matched Celebrities
To remove a pair added in error, click on the
pair in the list below.

o1 did not find any pairs

Figure 5-3: Smart Batching

Smart Batching

Figure |5-3| shows a more complex join batching interface called SmartBatch. Two
columns of images are displayed, and workers are asked to click on pairs of images
that match the join predicate. The first column contains images from table R and
the second contains images from table S.

Once a worker selects a pair, it is displayed in a list to the right of the columns,
and can be removed (if added by mistake) by clicking on the pair. All selected pairs
are connected by a line. A worker may match multiple images on the right that
match with an image on the left or vice versa. If none of the images match the join
predicate, the worker is asked to click a checkbox indicating no matches. In order to
submit the HIT, the box must be checked or at least one pair must be selected.

To conserve vertical space, images are not displayed at full size. If a user hovers
over an image, it is displayed at the size used in SimpleJoin and NaiveJoin (e.g., in
Figure , the mouse is hovering over Notorious B.I.G, who is displayed at full size).
|RHSITor r images in the first column and s in the second column, we must evaluate

HITs.

rs
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Alternative Join Algorithms

There are a number of alternative join algorithms we have not discussed. For exam-
ple, we could ask workers to label each tuple with a unique identifier of the entity
that it represents, and perform a traditional join on the identifier. Our goal is to
understand the accuracy-cost tradeoffs of batching and combining, so these alterna-
tives are outside this dissertation’s scope. Our results can still be used to benefit
other join algorithms, and we use the idea of labeling tuples for the feature filtering
optimization described in Section

5.2.2 Feature Filtering Optimization

In Section [3.2] we introduced the OPTIONALLY clause to joins for identifying feature-
based filters that may reduce the size of a join cross product. This clause allows the
developer to specify that some features must be true for the join predicate to evaluate
to true. For example, two profile images shouldn’t join unless they have the same
gender, hair color, and skin color. These predicates allow us to only consider join
pairs which match the extracted features.

We now explain the benefit of this filtering. To simplify our analysis, we assume
that all filter features are uncorrelated, and that the filters do not emit the value
UNKNOWN.

Suppose there are N OPTIONALLY clauses added to a join. Let F' = {F}, ..., Fx},
where F; is a set that contains the possible values for the feature being compared in
OPTIONALLY clause i. For example, if the ith feature is hairColor, F; = {black, brown, blond, white}.
Let the probability that feature i (e.g., hair color) has value j (e.g., brown) in table
X to be px;;. Then, for two tables, R and S, the probability that two random records
from both tables match on feature ¢ is:

0i = E Psij X PRij

JEF;

In other words, o; is the selectivity of feature i. For example 0yenqer across tables R
and S is PS female X PRfemale + PSmale X PRmale-

The selectivity of all expressions in the OPTIONALLY clauses of a join (assuming
the features are independent) is:

Sel = H o;

i€[1...N]

Feature filtering causes the total number of join HITs that are executed to be a
fraction Sel of what would be executed by a join algorithm alone. For example, if
two features gender and hairColor appear in OPTIONALLY clauses for a join, Sel =
Ogender X OhairColor- L his benefit comes at the cost of running one linear pass over each
table for each feature filter. Of course, the HITs in the linear pass can be batched
through merging and combining.

In general, feature filtering is helpful, but there are three possible cases where we
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may not want to apply a filter: 1) if the additional cost of applying the filter does not
justify the reduction in selectivity it offers (e.g., if all of the people in two join tables
of images have brown hair); 2) if the feature doesn’t actually guarantee that two
entities will not join (e.g., because a person has different hair color in two different
images); or 3) if the feature is ambiguous (i.e., workers do not agree on its value).

To detect 1), we run the feature filter on a small sample of the data set and
estimate selectivity, discarding filters that are not effective. We discuss how selectivity
estimation is performed for filters in Chapter |§] To evaluate 2) for a feature f, we
also use a sample of both tables, computing the join result j;- with all feature filters
ljp——d g+l

;-1

and if it is below some threshold, we discard that feature filter clause from the join[

For case 3) (feature ambiguity), we use a measure called inter-rater reliability
(IRR), which measures the extent to which workers agree. As a quantitative measure
of IRR, we utilize Fleiss’ k [39] (defined in Footnote 5). Fleiss’ « is used for measuring
agreement between two or more raters on labeling a set of records with categorical
labels (e.g., true or false). It is a number between -1 and 1, where a higher number
indicates greater agreement. A x of 0 roughly means that the ratings are what would
be expected if the ratings had been sampled randomly from a weighted distribution,
where the weights for a category are proportional to the frequency of that category
across all records. For feature filters, if we measure x to be below some small positive
threshold for a given filter, we discard it from our filter set. In this research, we
only evaluate whether k is a good signal of worker agreement, but do not identify a
particular cutoff for discarding features, as this depends on the users’ level of comfort
with worker response diversity for their application. Due to our use of Fleiss’ k, Qurk
currently only supports detecting ambiguity for categorical features, although in some
cases, range-valued features may be binned into categories.

except f, as well as the join result with f, jz+. We then measure the fraction

5.2.3 Further Exploring the Design Space

In our experiments, we will explore the various interfaces and algorithms we have
outlined. In order to fully understand where in the design space our experiments lie,
it helps to identify other representative solutions that we have not explored but could
make for interesting directions for future work.

Alternative user interfaces. In our experiments, we explore three user interfaces
for eliciting pairs of matched items from crowd workers. While these designs help us
explore workers’ ability to batch-process data, they are not an exhaustive exploration
of the design space.

A design that extends our batched interfaces would be one that displays items
in a two-dimensional array, as one does with cards in memory games. So far, we
have only batched images vertically, providing two columns of images that are to be
matched. Adding more columns to this display might increase the batch size while

! This fraction is an accuracy measure that identifies the amount of join results that are eliminated
by using feature f. We leave other error scores to future work, but have found this measure to work
well in practice.
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not significantly affecting accuracy. For this design to work, we need a pair selection
mechanism that avoids drawing lines across the screen as we do in smart batching.
One such design might involve adding selected pairs to a gutter to the side of the
screen, or only showing lines between matched items when a user hovers over one of
the items.

Another interface and algorithm design would involve asking users to find similar

items rather than precise matches. As the system learns a “crowd kernel” [70] for sim-
ilarity between items, it could potentially identify nearby items as strong candidates
for matches.
Game designs. While the interfaces and interactions we design are designed for use
on paid crowd platforms, we might design different interfaces if building for Games
with a Purpose [73]-style interactions. The benefit of casting the entity resolution
problem as a game is that one might be able to perform the matching for reduced or
eliminated payments to workers, who are now incentivized by gameplay.

One gamelike design would cast the pair matching problem as a game of Memory.
As players explore an obscured set of items to identify matching items two at a time,
they reveal the matches to the system. Scoring the game would be difficult, as a
priori we would not know whether a pair identified by a player was truly a pair or a
mistake. To handle this, we could turn the game into a multiplayer experience, with
players taking turns identifying pairs while the other players vote to verify each pair.

Another aspect of entity resolution that can be made into a game is feature ex-
traction. Image tagging has already been cast as a two-player game in which players
earn points by tagging an image with the same terms [73]. We could identify join
candidates by looking for high-overlap images to use as candidates for join pairs.
Machine learning. In our study of human-powered joins, we have restricted our ex-
ploration to functionality that is strictly human-powered. Specifically, we are looking
at the power of different user interfaces for identifying matched pairs, and exploring
how to elicit hints about features that are necessary conditions for a pair of items to
meet a join condition. In practice, we want to further reduce the amount of pairwise
comparisons workers have to perform to reduce cost, and a natural method of doing
this is to pre-process the two datasets with machine learning algorithms that identify
high-probability candidates for matches. A recent paper by Wang et al. [76] continues
our line of research by combining crowd matching and machine learning algorithms.
In that work, the authors also show that learning algorithms can generate batches of
similar items to increase the likelihood of matches in a batch that a worker is looking
at.

The machine learning approach is relatively domain-specific. If performing entity
resolution on text fields, one might look for fields that have high text overlap or
sound like one-another when pronounced. For images, one could apply a suite of
computer vision algorithms to identify similar items. Vision algorithms might further
be domain-specific, as is the case with face detection algorithms.

The approaches we explore in this dissertation can layer with machine learning
techniques for reducing crowd work. It is not always the case that an off-the-shelf
automated matching algorithm for the problem a user is trying to solve will exist,
whereas describing the matching problem to another human is a simpler task. Even if
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an algorithm is identified, it might require training data before it can reach accuracy
levels that are acceptable to the user. Finally, even after pairs are eliminated through
a learning algorithm, the low-confidence negative or positive matches are still likely
to need vetting by the crowd, and our join interfaces can power those scenarios.

5.2.4 Experiments

We now assess the various join implementations and the effects of batching and feature
filtering. We also explore the quality of worker output as they perform more tasks.

Dataset

In order to test join implementations and feature filtering, we created a celebrity
join dataset. This dataset contains two tables. The first is celeb(name text, img
url), a table of known celebrities, each with a profile photo from IMDBP The second
table is photos(id int, img url), with images of celebrities collected from People
Magazine’s collection of photos from the 2011 Oscar awards.

Each table contains one image of each celebrity, so joining N corresponding rows
from each table naively takes N? comparisons, and has selectivity %

Join Implementations

In this section, we study the accuracy, price, and latency of the celebrity join query
described in Section 3.2.3

We run each of the join implementations twice (Trial #1 and #2) with five as-
signments for each comparison. This results in ten comparisons per pair. For each
pair of trials, We ran one trial in the morning before 11 AM EST, and one in the
evening after 7 PM EST, to measure variance in latency at different times of day. All
assignments are priced at $0.01, which costs $0.015 per assignment due to Amazon’s
half-cent HIT commission.

We use the two methods described in Section to combine the join responses
from each assignment. For MajorityVote, we identify a join pair if the number of
positive votes outweighs the negative votes. For QualityAdjust, we generate a corpus
that contains each pair’s Yes, No votes along with the Amazon-specified Turker 1D
for each vote. We execute Ipeirotis et al.’s worker quality algorithm [46] for five
iterations on the corpus, and parametrize the algorithm to penalize false negatives
twice as heavily as false positives (this gave us good results on smaller test runs, but
the results are not terribly sensitive to these parameters).

Baseline Join Algorithm Comparison: We first verify that the three join imple-
mentations achieve similar accuracy in unbatched form. Table contains the results
of the joins of a sample of 20 celebrities and matching photos. The ideal algorithm
results in 20 positive matches and 380 negative matches (pairs which do not join).
The true positives and negatives for MajorityVote and QualityAdjust on all ten
assignments per pair are reported with the prefixes MV and QA, respectively. From

?http://www.imdb. com
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Implementation | True Pos. | True Pos. | True Neg | True Neg
(MV) (QA) (MV) (QA)
IDEAL 20 20 380 380
Simple 19 20 379 376
Naive 19 19 380 379
Smart 20 20 380 379

Table 5.1: Baseline comparison of three join algorithms with no batching enabled.
Each join matches 20 celebrities in two tables, resulting in 20 image matches (1
per celebrity) and 380 pairs with non-matching celebrities. Results reported for ten
assignments aggregated from two trials of five assignments each. With no batching
enabled, the algorithms have comparable accuracy.

these results, it is evident that all approaches work fairly well, with at most 1 photo
which was not correctly matched (missing true positive). We show in the next section
that using QA and MV is better than trusting any one worker’s result.

Effect of Batching: In our next experiment, we look at the effect of batching on
join quality and price. We compared our simple algorithm to naive batching with 3,
5, and 10 pairs per HIT and smart batching with a 2 x 2 and 3 x 3 grid, running a
celebrity join between two images tables with 30 celebrity photos in each table. The
answer quality results are shown in Figure[5-4l There are several takeaways from this
graph.

First, all batching schemes except Smart 2x2, which performs as well as the Simple
Join, do have some negative effect on the overall total number of true positives. When
using QA, the effect is relatively minor with 1-5 additional false negatives on each of
the batching schemes. There is not a significant difference between naive and smart
batching. Batching does not significantly affect the overall true negative rate.

Second, QA does better than MV in improving true positive result quality on
batched schemes. This is likely because QA includes filters for identifying spammers
and sloppy workers, and these larger, batched schemes are more attractive to spam-
mers that quickly and inaccurately complete tasks. The overall error rate between
two trials of 5 assignments per pair was approximately the same. However, individual
trials are more vulnerable to a small number of spammers, which results in higher
variance in accuracy.

Third, MV and QA often achieve far higher accuracy as compared to the expected
accuracy from asking a single worker for each HIT. In the Simple experiments, the
expected true positive rate of an average worker was 235/300 = 78%, whereas MV was
93%. MV performed the worst in the Smart 3x3 experiments, yet still performed as
well as the expected true positive rate of 158/300 = 53%. In all cases, QA performed
significantly better.

We also determined the cost (in dollars) of running the complete join (900 com-
parisons) for the two trials (with 10 assignments per pair) at a cost of $0.015 per
assignment ($0.01 to the worker, $0.005 to Amazon). The cost of a naive join is thus
900 x $0.015 x 10 = $135.00. The cost falls proportionally with the degree of batching
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Figure 5-4: Fraction of correct answers on celebrity join for different batching ap-
proaches. Results reported for ten assignments aggregated from two runs of five as-
signments each. Joins are conducted on two tables with 30 celebrities each, resulting
in 30 matches (1 per celebrity) and 870 non-matching join pairs.

(e.g., naive 10 reduces cost by a factor of 10, and a 3x3 join reduces cost by a factor
of 9), resulting in a cost of around $13.50.

Figure [5-5shows end-to-end latency values for the different join implementations,
broken down by the time for 50%, 95%, and 100% percent of the assignments to
complete. We observe that a reduction in HITs with batching reduces latency, even
though fewer HIT's are posted and each HIT contains more WOI‘kEl. Both SimpleJoin
trials were slower than all other runs, but the second SimpleJoin trial was particularly
slow. This illustrates the difficulty of predicting latency in a system as dynamic
as MTurk. Finally, note that in several cases, the last 50% of wait time is spent
completing the last 5% of tasks. This occurs because the small number of remaining
tasks are less appealing to Turkers looking for long batches of work. Additionally,
some Turkers pick up and then abandon tasks, which temporarily blocks other Turkers
from starting them. Many of these latency-based issues can be solved by applying
the techniques used by quikTurkit [22].

3There are limits to this trend, but the latency generally goes down until workers are unwilling
to perform tasks because they are too unfairly priced.
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Figure 5-5: Completion time in hours of the 50, 95 and 100" percentile assignment
for variants of celebrity join on two tables with 30 celebrities each.

Assignments vs. Accuracy

One concern is that a worker’s performance will degrade as they execute more tasks
and become bored or less cautious. This is a concern as our results (and those of
CrowdDB [40]) suggest that a small number of workers complete a large fraction of
tasks.

To test if the amount of work done by a worker is negatively correlated with
work quality, we performed a linear regression. For a combination of responses to the
two simple 30 x 30 join tasks, we fit the number of tasks each worker did with their

ta%?{?i?ﬂfgf;i d)’ and found R? = 0.028, p < .05. Accuracy and number of

tasks are positively correlated (the slope, [, is positive), and the correlation explains
less than 3% of variance in accuracy. This suggests no strong effect between work
done and accuracy.

accuracy (

Feature Filtering

Finally, we ran an experiment to measure the effectiveness of feature filtering. In this
experiment, we asked workers to choose the hair color, skin color, and gender of each
of the 60 images in our two tables. For each feature, we ran two trials with 5 votes
per image in each trial, combining answers using majority vote. We also ran two
trials with a combined interface where we asked workers to provide all three features
at once.

Table [5.2| shows the effectiveness of applying feature filters in the four trials. We
report the number of errors, which is the number of pairs that should have joined (of
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’ Trial # ‘ Combined? ‘ Errors ‘ Saved Comparisons ‘ Join Cost ‘

1 Y 1 592 $27.52
2 Y 3 623 $25.05
1 N 5 633 $33.15
2 N 5 646 $32.18

Table 5.2: Feature Filtering Effectiveness.

30) that didn’t pass all three feature filters. We then report the saved comparisons,
which is the number of comparisons (of 870) that feature filtering helped avoid. We
also report the total join cost with feature filtering. Without feature filters the cost
would be $67.50 for 5 assigments per HIT.

From these results, we can see that feature filters substantially reduce the overall
cost (by more than a factor of two), and that combining features reduces both cost
and error rate. The reason that combining reduces error rate is that in the batched
interface, workers were much more likely to get hair color correct than in the non-
batched interface. We hypothesize that this is because when asked about all three
attributes at once, workers felt that they were doing a simple demographic survey,
while when asked solely any one feature (in this case hair color), they may have
overanalyzed the task and made more errors.

We now look at the error rate, saved comparisons, and total cost when we omit one
feature from the three. The goal of this analysis is to understand whether omitting
one of these features might improve join quality by looking at their effectiveness on a
small sample of the data as proposed in Section [5.2.2] The results from this analysis
on the first combined trial are shown in Table (all of the trials had the same
result). From this table, we can see that omitting features reduces the error rate,
and that gender is by far the most effective feature to filter on. From this result,
we conclude that hair color should potentially be left out. In fact, hair color was
responsible for all of the errors in filtering across all trials.

’ Omitted Feature \ Errors \ Saved Comparisons \ Join Cost ‘

Gender 1 356 $45.30
Hair Color 0 502 $34.35
Skin Color 1 542 $31.28

Table 5.3: Leave One Out Analysis for the first combined trial. Removing hair color
maintains low cost and avoids false negatives.

To see if we can use inter-rater reliability as a method for determining which
attributes are ambiguous, we compute the value of k (as described in Section for
each of the attributes and trials. The results are shown in Table[5.4] From the table,
we can see that the x value for gender is quite high, indicating the workers generally
agree on the gender of photos. The s value for hair is much lower, because many of
the celebrities in our photos have dyed hair, and because workers sometimes disagree
about blond vs. white hair. Finally, workers agree more about skin color when it is
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presented in the combined interface, perhaps because they may feel uncomfortable
answering questions about skin color in isolation.

Table [5.4] displays the average and standard deviation of x for 50 random samples
with 25% of the celebrities in each trial. We see that these x value approximations
are near the true s value in each trial, showing that Qurk can use early s values
to accurately estimate worker agreement on features without exploring the entire
dataset. As the dataset size increases, we suspect a smaller percentage of samples
will be required to acheive commensurate accuracy.

From this analysis, we can see that k is a promising metric for automatically
determining that hair color (and possibly skin color) should not be used as a feature
filter.

Trial | Sample | Combined? Gender Hair Skin
Size K (std) K (std) K (std)
1 100% Y 0.93 0.29 0.73
2 100% Y 0.89 0.42 0.95
1 100% N 0.85 0.43 0.45
2 100% N 0.94 0.40 0.47
1 25% Y 0.93 (0.04) | 0.26 (0.09) | 0.61 (0.37)
2 25% Y 0.89 (0.06) | 0.40 (0.11) | 0.95 (0.20)
1 25% N 0.85 (0.07) | 0.45 (0.10) | 0.39 (0.29)
2 25% N 0.93 (0.06) | 0.38 (0.08) | 0.47 (0.24)

Table 5.4: Inter-rater agreement values (k) for features. For each trial, we display &
calculated on the entire trial’s data and on 50 random samples of responses for 25% of
celebrities. We report the average and standard deviation for s from the 50 random
samples.

5.2.5 Limitations

One might wonder how well our findings generalize to other join applications. Our
experiments so far have been run on a single image dataset, and so we caution against
assuming that particular variable values (e.g., batch size) will be the same in exper-
iments on other datasets. In fact, when we run a complete end-to-end experiment
on a different dataset in Section [5.4] we see similar trends to the ones we have just
discussed (i.e., batching reduces work, but eventually sees quality degradation and
workers refusing to do complex tasks for $0.01), but find that we are able to batch
more images into the Smart Join implementation without losing quality.

We are unable to make any statements about the statistical significance of partic-
ular experiments, such as the ones behind Figure [5-4. While we re-ran experiments
that generated the chart and found similar results, it is too expensive to run the
experiments enough times to identify error bars for the chart. Still, once we apply
QualityAdjust to remove spammers from the results, we do notice trends. The true
negative rate never changes across tests, so all we focus on is the true positive rate.
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After quality-adjusting, the true positive rate of any of the approaches sees a steady
decrease as the batch size for that approach increases. These are takeaways that we
expect will generalize to other experiments.

Similar caution should be taken with interpreting the feature filtering results.
Worker agreement and leave-one-out analysis can serve as good fail-fast and effec-
tiveness measures respectively, but significant future work remains in identifying the
particular level of these signals that indicates desirable and undesirable results.

5.2.6 Summary

We found that for joins, batching is an effective technique that has small effect on
result quality and latency, offering an order-of-magnitude reduction in overall cost.
Naive and smart batching perform similarly, with smart 2x2 batching and QA achiev-
ing the best accuracy. In Section we show an example of a smart batch run where
a 5xb smart batch interface was acceptable, resulting in a 25x cost reduction. We
found that the QA scheme in [46] significantly improves result quality, particularly
when combined with batching, because it effectively filters spammers. Finally, feature
filtering offers significant cost savings when a good set of features can be identified.
Putting these techniques together, we can see that for celebrity join, feature filtering
reduces the join cost from $67.50 to $27.00. Adding batching can further reduce the
cost by up to a factor of 10 on both feature filtering and joins, yielding a final cost
for celebrity join of $2.70.

5.3 Sort Operator

Users often want to perform a crowd-powered sort of a dataset, such as “order these
variants of a sentence by quality,” or “order the images of animals by adult size.”

As with joins, the HITs issued by Qurk for sorting do not actually implement
the sort algorithm, but provide an algorithm with information it needs by either: 1)
comparing pairs of items to each other, or 2) assigning a rating to each item. The
Qurk engine then sorts items using pairwise comparisons or their ratings.

5.3.1 Implementations

We now describe our two basic implementations of these ideas, as well as a hybrid
algorithm that combines them. We also compare the accuracy and total number of
HITs required for each approach.

Comparison-based

The comparison-based approach (Figure asks workers to directly specify the
ordering of items in the dataset. Our naive but accurate implementation of this
approach uses up to (]; ) tasks per sort assignment, which is expensive for large
datasets. While the worst-case number of comparisons is O(N log V) for traditional
sort algorithms, we now explain why we require more comparison tasks.
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There are 2 groups of squares. We want to order the squares
in each group from smallest to largest.

e Each group is surrounded by a dotted line. Only compare the squares within a group.
» Within each group, assign a number from 1 to 7 to each square, so that:
o 1 represents the smallest square, and 7 represents the largest.
o We do not care about the specific value of each square, only the relative order of the squares.
o Some groups may have less than 7 squares. That is OK: use less than 7 numbers, and make sure they are ordered
according to size.
o Iftwo squares in a group are the same size, you should assign them the same number.

----------------------------------------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------------------------------------

Figure 5-6: Comparison Sort

In practice, because these individual sort HITs are done by different workers, and
because tasks themselves may be ambiguous, it can be the case that transitivity of
pairwise orderings may not hold. For example, worker 1 may decide that A > B and
B > C', and worker 2 may decide that C' > A. One way to resolve such ambiguities is
to build a directed graph of items, where there is an edge from item i to item j if ¢ > j.
We can run a cycle-breaking algorithm on the graph, and perform a topological sort
to compute an approximate order. Alternatively, as we do in our implementation, we
can compute the number of HITs in which each item was ranked higher than other
itemsﬂ This approach, which we call “head-to-head,” provides an intuitively correct
ordering on the data, which is identical to the true ordering when there are no cycles
and workers provide correct responses.

Cycles also mean that we can not use algorithms like Quicksort that only perform
O(Nlog N) comparisons. These algorithms do not compare all elements, and yield
unpredictable results in ambiguous situations (which we found while running our
experiments). There has been a lot of theoretical work on pushing faulty comparator-
based sorts toward O(Nlog N) [18] [16} [67, 52]. It would be interesting to see how
these techniques can be adapted to a human-in-the-loop framework.

Instead of comparing a single pair at a time, our interface, shown in Figure
[0, displays groups of S items, and asks the worker to rank items within a group
relative to one-another. When generating groups of size S, we ensure that a pairwise
comparison appears in at least one group, but it is possible that in order to complete

4This approach breaks cycles by picking the most strongly agreed-upon comparisons. There are
pathological scenarios, such as all workers providing the same cyclic ordering, which it can not solve.
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There are 2 squares below. We want to rate squares by
their size.

¢ For each square, assign it a number from 1 (smallest) to 7 (largest) indicating its size.
» For perspective, here is a small number of other randomly picked squares:

----------------------------------------------------------------------------------------------------------------------------------------

________________________________________________________________________________________________________________________________________

Figure 5-7: Rating Sort

a yet-unevaluated pair, we add other pairs to the grouping to reach an S items in the
group. The result of each task is (g) pairwise comparisons, which reduces the number

of HITs to %N__ll)) Although the number of HITs is large, they can be executed
in parallel. We can batch b such groups in a HIT to reduce the number of hits by a

factor of b.

Rating-based

The second approach is to ask workers to rate each item in the dataset along a
numerical scale. We then compute the mean of all ratings for each item, and sort the
dataset using these means.

Figure illustrates the interface for a single rating task. The worker is shown
a single item and asked to rate it along a seven-point Likert Scale [53], which is
commonly used for subjective survey data. In order to provide context to assign a
rating, we show ten randomly sampled images along the top of the interface. Showing
a random selection allows us to give the worker a sense for the dataset without knowing
its distribution a priori.

The advantage of this approach is that it requires closer to O(N) HITs. We can
batch b ratings in a HIT to reduce the number of HITs by a factor of b. The variance
of the rating can be reduced by asking more workers to rate the item. The drawback
is that each item is rated independently of other items, and the relative ordering of
an item pair’s mean ratings may not be fully consistent with the ordering that would

59



result if workers directly compared the pair.

Hybrid Algorithm

We now propose a hybrid approach that initially orders the data using the rating-
based sort and generates a list L. Each item [; € L has an average rating p;, as well
as a standard deviation o; computed from votes used to derive the rating. The idea
of our hybrid approach is to iteratively improve L by identifying subsets of S items
that may not be accurately ordered and using the comparison-based operator to order
them. The user can control the resulting accuracy and cost by specifying the number
of iterations (where each iteration requires one additional HIT) to perform.

We explored several techniques for selecting size-S windows for comparisons. We
outline three representative approaches:

Random: In each iteration, pick S items randomly from L.

Confidence-based: Let w; = {l;, ..., li1+s-1}, meaning w; contains the S consecutive
items [; € L starting from item [;. For each pair of items a,b € w;, we have their
rating summary statistics (pq,0q) and (up, 0p). For p, < pp, we compute A, the
difference between one standard deviation above u, and one standard deviation below
ty, where A, = max(p, + 04 — 4 — 05,0). Note that A, is only greater than 0
when there is at least a one standard deviation overlap between items a and 0. For all
windows w;, we then compute R; = Z(a,b)Ewi A,p and order windows in decreasing
order of R;, such that windows with the most standard deviation overlap, and thus
least confidence in their ratings, are reordered first.

Sliding window: The algorithm picks a window
Wi = {li mod |L|> > l(i+S) mod ||} With i starting at 1. In successive iterations, 7 is
incremented by ¢ (e.g., i = (i +t)), which the mod operation keeps the range in
[1,|L]]. If t is not a divisor of L, when successive windows wrap around L, they will
be offset from the previous passes.

5.3.2 Further Exploring the Design Space

In our experiments, we will explore the various interfaces and algorithms we have
outlined. In order to fully understand where in the design space our experiments lie,
it helps to identify other representative solutions that we have not explored but could
make for interesting directions for future work.

Interface details. While we presented a single interface for each of comparison- and
rating-based sorts, the details of each interface have several variations.

The rating-based interface is a combination of several design choices. While rating
on a seven-point Likert scale is common for subjective measures, it would be useful to
see if adding granularity increases accuracy or overwhelms workers. Traditional Likert
scales are designed to evaluate delcarative statements (e.g., “This animal has a large
adult size”), whereas our design was less strict (e.g., “Rate this animal by its adult
size”). Testing variations of the rating question might make for interesting future
work. Another variation involves the ten randomized example images we display to
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workers at the top of each rating task. We can explore displaying different amounts
of these images in addition to biasing the sample toward images that early on seem
to be extremely low- or high-ranking.

The comparison-based interface has fewer variations than the rating-based one.

The most interesting of the design variations are around the interaction technique
by which workers order the items being compared. Our interface has users assign
numbers indicating the relative ranking of the items in a batch, but a draggable
interface might make it easier for workers to interact with more items at a time.
Alternative algorithmic approaches. There are fundamentally two inputs to a
ranking algorithm: ratings and comparisons. We proposed one hybrid algorithm that
compares nearby items after ranking by worker-provided ratings, but other hybrids
exist. For example, we could recursively rate items, applying more ratings to items
that are more uncertain in order to better discern the differences between them.
Similarly, we could design a comparison-based interface that has workers broadly
group items quickly (e.g., “generally large animals,” “medium-sized animals,” and
“generally small animals”) before applying finer-granularity comparisons within those
groupings.
Blocking approaches. Whenever a crowd-powered algorithm goes to the crowd for
input that it must then process before generating more crowd work, the algorithm
creates an artificial barrier to parallelism, and thus sees increased latency. Our algo-
rithms have no such blocking steps, as they generate rating and all-pairs comparison
tasks for all items at once. The hybrid algorithms we explore require blocking steps
between the rating stage and the comparison stage, and potentially require several
comparison stages. While quicksort-like algorithms might reduce the generated crowd
work required to sort N items to O(N log N), they might introduce O(log N) blocking
stages if implemented naively.

5.3.3 Experiments

We now describe experiments that compare the performance and accuracy effects
of the Compare and Rate sort implementations, as well as the improvements of our
Hybrid optimizations.

The experiments compare the relative similarity of sorted lists using Kendall’s Tau
(7), which is a measure used to compute rank-correlation [50]. We use the 7-b variant,
which allows two items to have the same rank order. The value varies between -1
(inverse correlation), 0 (no correlation), and 1 (perfect correlation).

For each pair in Compare, we obtain at least 5 comparisons and take the majority
vote of those comparisons. For each item in Rate, we obtain 5 scores, and take the
mean of those scores. We ran two trials of each experiment.

Datasets

The squares dataset contains a synthetically generated set of squares. Each square is
n X n pixels, and the smallest is 20x20. A dataset of size N contains squares of sizes
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{(20+3%i) x (2043 *1i)|i € [0, N)}. This dataset is designed so that the sort metric
(square area) is clearly defined, and we know the correct ordering.

The animals dataset contains 25 images of randomly chosen animals ranging from
ants to humpback whales. In addition, we added an image of a rock and a dandelion
to introduce uncertainty. This is a dataset on which comparisons are less certain, and
is designed to show relative accuracies of comparison and rating-based operators. We
will test various sort orders on this dataset, including adult size and dangerousness.

Square Sort Microbenchmarks

In this section, we compare the accuracy, latency, and price for the query described
in Section [3.2.2] in which workers sort squares by their size.

Comparison batching. In our first experiment, we sort a dataset with 40 squares
by size. We first measure the accuracy of Compare as the group size S varies between
5, 10, and 20. Batches are generated so that every pair of items has at least 5
assignments. Our batch-generation algorithm may generate overlapping groups, so
some pairs may be shown more than 5 times. The accuracy is perfect when S = 5 and
S =10 (7 = 1.0 with respect to a perfect ordering). The rate of workers accepting
the tasks dramatically decreases when the group size is above 10 (e.g., the task takes
0.3 hours with group size 5, but more than 1 hour with group size 10.) We stopped
the group size 20 experiment after several hours of uncompleted HITs. We discuss
this effect in more detail, and ways to deal with it, in Section [5.5]

Rating batching. We then measure the accuracy of the Rate implementation.
The interface shows 10 sample squares, sampled randomly from the 40, and varies
the batch size from 1 to 10, requiring 40 to 4 HITSs, respectively. In all cases, the
accuracy is lower than Compare, with an average 7 of 0.78 (strong but not perfect
ranking correlation) and standard deviation of 0.058. While increasing batch size to
large amounts made HITs less desirable for Turkers and eventually increased latency,
it did not have a noticeable effect on accuracy. We also found that 5 assignments per
HIT resulted in similar accuracy to 10 assignments per HIT, suggesting diminishing
returns for this task.

Rating granularity. Our next experiment is designed to measure if the granularity
of the seven-point Likert scale affects the accuracy of the ordering as the number of
distinct items increases. We fix the batch size at 5, and vary the size of the dataset
from 20 to 50 in increments of 5. The number of HITs vary from 4 to 10, respectively.
As with varying batch size, the dataset size does not significantly impact accuracy
(avg 7 0.798, std 0.042), suggesting that rating granularity is stable with increasing
dataset size. While combining 10 assignments from two trials did reduce 7 variance,
it did not significantly affect the average.

Query Ambiguity: Sort vs. Rank

The square sort microbenchmarks indicate that Compare is more accurate than Rate.
In our next experiment, we compare how increasing the ambiguity of sorting tasks
affects the accuracy of Rate relative to Compare. The goal is to test the utility of

62



metrics that help predict 1) if the sort task is feasible at all, and 2) how closely Rate
corresponds to Compare. The metric we use to answer 1) is a modified’| version of
Fleiss” k (which we used for inter-rater reliability in joins), and the metric to answer
2) is 7 (described in Section[5.3.3] The experiment uses both the squares and animals
datasets.

We generated five queries that represent five sort tasks:

Q1: Sort squares by size

Q2: Sort animals by “Adult size”

Q3: Sort animals by “Dangerousness”

Q4: Sort animals by “How much this animal belongs on Saturn”
Q5: (Artificially) generate random Compare and Rate responses.

The instructions for Q3 and 4 were deliberately left open-ended to increase the
ambiguity. Q4 was intended to be a nonsensical query that we hoped would generate
random answers. As we describe below, the worker agreement for Q4’s Compare tasks
was higher than Q5, which suggests that even for nonsensical questions, workers will
apply and agree on some preconceived sort order.

For lack of objective measures, we use the Compare results as ground truth. The
results of running Compare on queries 2, 3, and 4 are as follows:

Size: ant, bee, flower, grasshopper, parrot, rock, rat, octopus, skunk, tazmanian
devil, turkey, eagle, lemur, hyena, dog, komodo dragon, baboon, wolf, panther, dol-
phin, elephant seal, moose, tiger, camel, great white shark, hippo, whale
Dangerousness: flower, ant, grasshopper, rock, bee, turkey, dolphin, parrot, ba-
boon, rat, tazmanian devil, lemur, camel, octopus, dog, eagle, elephant seal, skunk,
hippo, hyena, great white shark, moose, komodo dragon, wolf, tiger, whale, panther
Belongs on Saturnﬂ: whale, octopus, dolphin, elephant seal, great white shark, bee,
flower, grasshopper, hippo, dog, lempur, wolf, moose, camel, hyena, skunk, tazmanian
devil, tiger, baboon, eagle, parrot, turkey, rat, panther, komodo dragon, ant, rock

5Fleiss’ k is defined as 5P
K=

1-F,

Strictly speaking, only P, the average probability of agreement per category, measures agreement
between workers. The term P, is a measure of the skew in categories to compensate for bias in the
dataset (e.g., if there are far more small animals than big animals). Because of how we generated
squares (i.e., squares with a smaller integer identifier were smaller) and internally represented pairs
for comparison (i.e., (smaller_id, larger_id)), we generated a scenario where, if workers provided
an absolutely correct response, they would achieve P, of 1. This is because all generated pairs
have the correct category less_than. (Note that these idiosyncracies did not affect workers’ user
experiences because we randomized the visual order of images when displaying them to the user). In
practice, a well-randomized comparison operation would see roughly half of pairs in the less_than
category and roughly the other half in the greater_than category, resulting in a P, of .5. To get
meaningful x values for our synthetic data and have comparable x values on the non-synthetic data,
all k values reported in our sorting experiments are simply x = P, the average worker agreement,
unadjusted for bias in the categories.

SNote that while size and dangerousness have relatively stable orders, the Saturn list varies
drastically as indicated by low k. For example, in three runs of the query, rock appeared at the
end, near the beginning, and in the middle of the list.
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Figure 5-8: 7 and w metrics on 5 queries.

Figure [5-8 show 7 and x for each of the five queries. Here k is computed on
the comparisons produced by the Compare tasks. The figure also shows (in columns
labeled Kappa-sample and Tau-sample) the effect of computing these metrics on a
random sample of 10 of the squares/animals rather than the entire data set (the
sample bars are from 50 different samples; error bars show the standard deviation of
each metric on these 50 samples.)

The results show that the ambiguous queries have progressively less worker agree-
ment (k) and progressively less agreement between comparing and rating (7). While
k decreases between Q3 and Q4 (dangerousness and Saturn), it is not as low in Q4
as it is in Q5 (Saturn and random). While there is little agreement between workers
on animals that belong on Saturn, their level of agreement is better than random.
For example, Komodo Dragon was consistently rated as belonging to Saturn’s environ-
ment. The decrease in k with increasing ambiguity suggests that x is a useful signal
in identifying unsortable datasets. This feature, combined with the fact we will soon
show that we can accurately sample x on a small subset of the data, suggests that a
sampled k is a good fail-fast metric for stopping queries that are buggy or intrinsically
nonsensical.

7 is significantly lower for Q4 than for Q3, which suggests that ordering by rating
does not work well for Q4, at least given the number of ratings we collected, and that
we should probably use the Compare method for this workload rather than the Rate
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Figure 5-9: Hybrid sort algorithms on the 40-square dataset.

method. For Q1, Q2, and Q3, however, Rate agrees reasonably well with Compare,
and because it is significantly cheaper, may be a better choice.

Finally, we note that sampling 10 elements is an effective way to estimate both of
these metrics (in Figure , the bars for Tau/ Tau-sample and Kappa/ Kappa-sample
are very close). This suggests a pattern for running sort routines. Any time we wish
to sort, we can run both Rate and Compare on samples, and compute 7 and xk. We can
then decide, for this particular sort query, whether to order the rest of the data set
with Rate or Compare depending on 7. We can also decide to stop ordering outright
if the sample of x is very low.

Hybrid Approach

Our final set of experiments measure how the hybrid approaches perform in terms of
accuracy with increasing number of HITs. We aim to understand how the sort order
of hybrid changes between Rank quality and Compare quality with each additional
HIT.

The first experiment uses the 40-square dataset. The comparison interface shows
5 items at a time. We set window size S = 5 to be consistent with the number of items
in a single comparison HIT. Figure [5-9 shows how 7 improves with each additional
HIT. Compare (upper right circle) orders the list perfectly, but costs 78 HITs to
complete. In contrast, Rate (lower left square) achieves 7 = 0.78, but only costs 8
HITs (batch size=5). In addition to these two extremes, we compared four schemes,
based on those described in Section [5.3.1} random, confidence-based, windowing with
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t =5 (Window 5), and windowing with ¢ = 6 (Window 6).

Overall, Window 6 performs best, achieving 7 > .95 in under 30 additional HITs,
and converging to 7 = 1 in half the HITs that Compare requires. Window 5 performs
poorly because t is a multiple of the number of squares, so multiple passes over the
data set (beyond the 8th HIT) do not improve the ordering. Because Window 6’s
t-value (the amount we shift the window) of 6 is relatively prime with the window
size of 5, Window 6 is able to move items that are globally out of their sort order,
whereas Window 5 is unable to shift items beyond a local ordering.

As the list becomes more ordered, random is more likely to compare items that are
correctly ordered, and thus wastes comparisons. Confidence does not perform as well
as Window 6—prioritizing high-variance regions assists with fixing local sort order
mistakes, but does not systematically move items that are far from their correct
positions. In the sliding window scheme, after several passes through the dataset
items that were far away from their correct position can migrate closer to the correct
location.

Finally, we executed Q2 (animal size query) using the hybrid scheme and found
similar results between the approaches. Ultimately, the window-based approach per-
formed the best and improved 7 from .76 to .90 within 20 iterations.

5.3.4 Limitations

We ran most of our experiments on two datasets: 1) a synthetic squares dataset, and
2) a more realistic animal image dataset. We were able to identify comparison-based
sorting as superior in quality to rating-based sort using only the synthetic dataset, so
we can make no comments on how strong the improvement would be on less clearly
sortable datasets. Still, the difference between the quality of comparison and rating
(comparison did perfectly, and rating was around .2 lower on the 7-b scale) suggests
that we should expect a similar trend on other datasets.

Due to how expensive it is to run these experiments, it is also not possible to get
enough data for statistical significance on experiments such as the one in Figure [5-8|
Still, we are able to re-run the experiment and find the same trend remains: sort
problems that are more ambiguous result in lower inter-rater agreement, and see less
agreement between the comparison and rating tasks. Additionally, the sampled x and
T scores indicate that we can accurately sample these statistics to have them serve as
early fail-fast mechanisms when running queries.

Finally, we can not make a claim as to what the best sorting algorithm is. In part,
this depends on a user’s expectations for cost and quality. Additionally, our hybrid
algorithm suggests that there is a good space between rating-based sorts’ reasonable
accuracy and comparison-based sorts’ seemingly perfect accuracy. It remains an open
question whether we can develop a lower-complexity comparison-based sort algorithm
that achieves the same level of quality.
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’ Operator ‘ Optimization ‘ # HITs ‘

Join Filter 43

Join Filter + Simple 628

Join Filter + Naive 160

Join Filter + Smart 3x3 108

Join Filter + Smart 5x5 66

Join No Filter 4+ Simple 1055

Join No Filter 4+ Naive 211

Join No Filter + Smart 5x5 43
Order By Compare 61
Order By Rate 11

Total (unoptimized) 1055 + 61 = 1116
Total (optimized) 66 + 11 =77

Table 5.5: Number of HITs for each operator optimization.

5.3.5 Summary

We presented two sort interfaces and algorithms based on ratings (linear complexity)
and comparisons (quadratic complexity). We found that batching is an effective way
to reduce the complexity of sort tasks in both interfaces. We found that while signif-
icantly cheaper, ratings achieve sort orders close to but not as good as comparisons.
Using two metrics, 7 and a modified k, we were able to determine when a sort was
too ambiguous (k) and when rating performs commensurate with comparison (7).

Using a hybrid window-based approach that started with ratings and refined with
comparisons, we were able to get similar (7 > .95) accuracy to sorts at less than
one-third the cost.

5.4 End to End Query

In the previous sections, we examined different operator optimizations in isolation.
We now execute a complex query that utilizes joins and sorts, and show that our
optimizations reduce the number of HITs by a factor of 14.5x compared to a naive
approach.

5.4.1 Experimental Setup

The query joins a table of movie frames and a table of actor photos, looking for frames
containing the actor. For each actor, the query finds frames where the actor is the
main focus of the frame and orders the frames by how flattering they are:

combined =
JOIN actors, scenes
ON inScene(actors.img, scenes.img)
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AND OPTIONALLY numInScene(scenes.img) > 1;
ordered =
ORDER combined BY name, quality(scenes.img);

The query uses three crowd-based UDFs:

numInScene, a generative UDF that asks workers to select the number of people in
the scene given the options (0, 1, 2, 3+, UNKNOWN). This UDF was designed to
reduce the number of images input into the join operator.

inScene, an EquiJoin UDF that shows workers images of actors and scenes and asks
the worker to identify pairs of images where the actor is the main focus of the scene.
quality, a Rank UDF that asks the worker to sort scene images by how flattering
the scenes are. This task is highly subjective.

We tried several variants of each operator. For the numInScene filter we executed
join feature filtering with batch size 4. We also tried disabling the operator and
allowing all scenes to be input to the join operator. For the inScene join, we use
Simple, Naive batch 5, and Smart batch 3x3 and 5x5. For the quality sort, we
used Compare with group size 5, and Rate batch 5.

For the dataset, we extracted 211 stills one second apart from a three-minute
movie. Actor profile photos came from the Web.

5.4.2 Results

The results are summarized in Table[5.5] The bottom two lines show that a simple ap-
proach based on a naive, unfiltered join plus comparisons requires 1116 hits, whereas
applying our optimizations reduces this to 77 hits. We make a few observations:
Smart Join: Surprisingly, we found that workers were willing to complete a 5x5
SmartJoin, despite its relative complexity. This may suggest that SmartJoin is pre-
ferred to naive batching.

Feature Extraction: We found that the benefit of numInScene feature extraction
was outweighed by its cost, as the selectivity of the predicate was only 55%, and the
total number of HITs required to perform Smart Join with a 5x5 grid was relatively
small. This illustrates the need for online selectivity estimation to determine when a
crowd-based predicate will be useful.

Query Accuracy: The numInScene task was very accurate, resulting in no errors
compared to a manually-evaluated filter. The inScene join did less well, as some ac-
tors look similar, and some scenes showed actors from the side; we had a small number
of false positives, but these were consistent across join implementations. Finally, the
scene quality operator had high variance and was quite subjective.

5.5 Takeaways and Discussion

Reputation: While not directly related to database implementation, it is important
to remember that employer identity carries reputation on systems such as MTurk.
Turkers keep track of good and bad requesters, and share this information on message
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boards such as Turker Nation} By quickly approving completed work and responding
to Turker requests when they contact you with questions, you can generate a good
working relationship with Turkers.

When we started as requesters, Turkers asked on Turker Nation if others knew
whether we were trustworthy. A Turker responded:

[requester name] is okay ... | don't think you need to worry. He is great on communication,
responds to messages and makes changes to the Hits as per our feedback.

Turker feedback is also a signal for price appropriateness. For example, if a re-

quester overpays for work, Turkers will send messages asking for exclusive access to
their tasks.
Choosing Batch Size: We showed that batching can dramatically reduce the cost
of sorts and joins. In studying different batch sizes, we found batch sizes at which
workers refused to perform tasks, leaving our assignments uncompleted for hours at
a time. As future work, it would be interesting to compare adaptive algorithms for
estimating the ideal batch size. Briefly, such an algorithm performs a binary search
on the batch size, reducing the size when workers refuse to do work or accuracy
drops, and increasing the size when no noticeable change to latency and accuracy is
observed.

As a word of caution, the process of adaptively finding the appropriate batch
sizes can lead to worker frustration. The same Turker that initially praised us in
Section became frustrated enough to list us on Turker Nation’s “Hall of Shame:”

These are the “Compare celebrity pictures” Hits where you had to compare two pictures
and say whether they were of the same person. The Hit paid a cent each. Now there are
5 pairs of pictures to be checked for the same pay. Another Requester reducing the pay
drastically.

Hence, batching has to be applied carefully. Over time, ideal starting batch sizes
can be learned for various media types, such as joins on images vs. joins on videos.
Scaling Up Datasets: In our sort and join experiments, we described techniques
that provide order-of-magnitude cost reductions in executing joins and sorts. Still,
scaling datasets by another order of magnitude or two would result in prohibitive costs
due to the quadratic complexity of both join and sort tasks. Hence, one important
area of future work is to integrate human computation and machine learning, training
classifiers to perform some of the work, and leaving humans to peform the more
difficult tasks. Another area to explore with larger datasets is the asymptotic trends
in our findings: how do the various sampling- and hybrid-based approaches fare are
the number of items increases?

5.6 Conclusion

We presented several approaches for executing joins and sorts in a declarative database
where humans are employed to process records. For join comparisons, we developed

"http://turkers.proboards.com/
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three different Uls (simple, naive batching, and smart batching), and showed that
the batching interfaces can reduce the total number of HITs to compute a join by an
order of magnitude. We showed that feature filtering can pre-filter join results to avoid
cross products, and that our system can automatically select the best features. We
presented three approaches to sorting: comparison-based, rating-based, and a hybrid
of the two. We showed that rating often does comparably to pairwise comparisons,
using far fewer HITs, and presented metrics x and 7 that can be used to determine
if a dataset is sortable, and how well rating performs relative to comparison. We
also present a hybrid scheme that uses a combination of rating and comparing to
produce a more accurate result than rating while using fewer HITs than comparison.
We showed on several real-world datasets that we can greatly reduce the total cost
of queries without sacrificing accuracy — we reduced the cost of a join on a celebrity
image data set from $67 to about $3, a sort by 2x the worst-case cost, and reduced
the cost of an end-to-end example by a factor of 14.5.
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Chapter 6

Counting with the Crowd

6.1 Introduction

We have just shown how to implement sort and join operators in crowd databases, and
the costs of particular operator implementations. Given these costs, one fundamental
problem that remains to be addressed to perform optimization in a crowd-powered
database is that of selectivity estimation. In selectivity estimation, we are given an
expression or predicate, and we must estimate the number of results that will satisfy
the expression. Given cost estimates for individual operators, input cardinalities,
and selectivity estimates, standard cost-based optimization techniques can be used to
estimate overall query cost, allowing a query optimizer to reorder operators to reduce
cost.

In this chapter, we study how to estimate the selectivity of a predicate with help
from the crowd. Consider a crowdsourced workflow that filters a collection of photos
of people to those of males with red hair. Crowd workers are shown pictures of people
and provide either the gender or hair color of the person in the photoE]. Suppose we
could estimate that red hair is prevalent in only 2% of the photos, and that males
constitute 50% of the photos. We could then order these predicates properly (asking
about red hair first) and perform fewer HITs overall. Whereas traditional selectivity
estimation saves database users time, properly identifying the filter operator in this
query also saves users money by avoiding unnecessary HITs.

In addition to being used inside optimizers to estimate intermediate result size
and cost, selectivity estimators can be used to estimate answers to COUNT, SUM,
and AVERAGE aggregate queries with GROUP BY clauses. In a crowd context, such
answers are fundamentally approximate, since humans may disagree on answers. For
example, say we had a corpus of tweets and wanted to perform sentiment analysis on
those tweets, identifying how many positive, negative, and neutral tweets were in our
dataset. We could ask our database to provide us with a count of all tweets grouped
by their crowd-identified sentiment.

'In the previous chapter, we saw that one can batch the same question about multiple records
or batch multiple questions about the same record with similar cost effectiveness. As such, asking
a worker to provide both the hair color and gender of the person in the photo would do little to
reduce costs.
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The simplest way to perform selectivity estimation and count-/sum-based aggre-
gation would be to iterate over every item in the database and ask the crowd to
determine if it satisfies a predicate for filters or which group it belongs to for aggre-
gates. Unfortunately, this requires work proportional to the number of data items in
the database, which could be prohibitive for large databases. A more efficient way to
estimate selectivity (also used in traditional optimizers) is to sample a subset of the
rows. This concept naturally translates to crowdsourcing: in our example, we can
generate HITs on a subset of our photos, asking workers to label either the gender or
hair color of the person in the photo. With enough samples, we could estimate the
popularity of males or redheads in our dataset. This approach works, but does not
take advantage of humans’ natural ability to process multiple elements—especially for
heavily visual items like images—at the same time, as a batch [79]. Our hypothesis
is that people can estimate the frequency of objects’ properties in a batch without
having to explicitly label each item.

This observation leads to the first key contribution of this chapter: we employ an
interface and estimation algorithm that takes advantage of humans’ batch processing
capabilities. Instead of showing an image at a time, we can show 100 images (or 100
sentences) to a crowd worker, and ask them to tell us approximately how many people
in the images are male or red-headed (or what fraction of sentences are positive /
negative). By aggregating across several large batches and multiple crowd workers,
we can converge on the true fraction of each property. This “wisdom of the crowds”
effect, where an individual may not accurately estimate an aggregate quantity, but
the average of a number of individual’s estimates do approximate the quantity, has
been well documented [69]. We show that this approach allows us to estimate various
aggregates across a number of image-based data sets using about an order of mag-
nitude fewer HITs (and, correspondingly less money and latency for query results)
than sampling-based approaches with comparable accuracy. We find that on textual
datasets, the same effect does not apply—specifically, item-level labeling works better
than asking people to estimate an aggregate property of a batch of short sentences
(Tweets, in our experiment.)

The fast convergence of our count-based approach is not without challenges. Be-
cause workers are free to provide us with any estimate they wish, we must design
algorithms to detect and filter out “bad” workers such as spammers who answer
quickly in order to receive payment without doing work in earnest. The algorithm
we designed filters out spammers in both the count- and label-based interfaces by
removing workers whose answer distribution does not match other workers’. Unlike
previous techniques that require redundant answers to each label from multiple work-
ers, here we ask each worker to process different random subsets of a dataset. We
also identify a solution to the problem of a coordinated attack by multiple workers,
or sybil attacks [35] from a single worker with multiple identities.

In summary, in this chapter, our contributions are:

1. An interface and technique to estimate selectivity for predicates and GROUP
BY expressions over categorical data. Specifically, for a dataset (e.g., a collec-
tion of images) the algorithm approximates the distribution of some property
(e.g., gender) in the dataset. This has applications to query optimization in
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selectivity estimation, and to SELECT-COUNT-GROUP BY queries. Our ap-
proach converges on a correct response with high confidence up to an order of
magnitude faster than traditional sampling techniques.

2. A method for identifying low-quality or spam responses to our batched interface.
Prior work estimates worker quality by asking multiple crowd workers to label
the same data. We instead have workers provide us with non-overlapping esti-
mates of the number of items with a property in a given batch. Workers whose
answers are consistently near the global worker mean are judged to provide qual-
ity work, while workers who consistently stray from the mean are judged to be
low-quality. This approach improves our accuracy on real estimation problems
by up to two orders of magnitude.

3. A technique to identify and avoid coordinated attacks from multiple workers,
or one worker with multiple identities. If multiple workers agree to provide
the same estimate (e.g., “let’s report that any collection of 100 photos we see
contains 80 males” ), our spammer detection technique may be thrown off from
the true value. To avoid this attack, we insert a random amount of verified
gold standard data into each HIT, and show that this technique can weaken the
strength of an attack in proportion to the amount of gold standard data used.

We show through experiments that our approaches generalize to multiple problem

domains, including image estimation on human photos and text classification on
tweets.

6.2 Motivating Examples

In this section, we provide three example use-cases that use crowd-based counting
and selectivity estimation. While our examples utilize features of Qurk as a crowd-
powered workflow system, these optimization opportunities are available in all such
systems.

6.2.1 Filtering Photos

First, consider a table photos(id, name, picture) that contains photos of people,
with references to their names and pictures. Suppose we want to filter this dataset
to identify photos of redheaded males. In Qurk, we would write:

filtered_photos =
FILTER photos
BY gender(picture) = ’male’
AND hairColor(picture) = ’red’

In this case, gender and hairColor are crowd-powered user-defined functions
(UDFs) that specify templates for HTML forms that crowd workers fill out. The
gender UDF has the following definition in Qurk:
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TASK gender(field) TYPE Generative:
ItemPrompt: "<table><tr> \
<td><img src=’%s’> \
<td>What is the gender of this person? \
</table>", tuple[field]
Response: Choice("Gender", ["male","female",UNKNOWN])
BatchPrompt: "There are %d people below. \
Please identify the gender \
of each.", BATCHSIZE
Combiner: MajorityVote

This UDF instantiates an ItemPrompt per tuple, with a radio button that allows
the worker to select male or female for that tuple. It is common for workers to answer
multiple such ItemPrompts in a single HIT, and in such situations, the generated HIT
is preceeded with a BatchPrompt, letting the worker know how many image labels are
ahead of them. We discussed the effects and implications of batching in Chapter [5]
Multiple worker responses may be required to prevent a single incorrect worker from
providing a wrong answer, and the MajorityVote combiner takes the most popular
worker response per tuple.

As we describe below, a good crowd-powered optimizer will identify gender (picture)
= ’male’ as filtering out less records than hairColor(picture) = ’red’ and first
filter all tuples based on hair color to reduce the total number of HIT's.

6.2.2 Counting Image Properties

Our second example involves grouping and aggregating data. Imagine a table shapes(id,
picture) that contains several pictures of shapes that vary in fill color and shape.

If one wanted to generate an interface to navigate this collection of images, it would
help to summarize all colors of images and their frequency in the dataset, as in the
following query:

counted_shapes =
FOREACH shapes
GENERATE fillColor(picture), COUNT(id)
GROUP BY fillColor(picture)

This query would also provide a histogram of all image colors in the shapes table.
Here, fillColor is a crowd-based UDF that asks a worker to specify the color of a
shape from a drop-down list of possible colors. These colors would be predefined, or
a crowd-based technique for listing potential colors [72, [17] could be used.

6.2.3 Coding Tweet Text

Our final example shows how our approaches apply to datatypes beyond images. It is
common in social science applications to “code” datasets of user data. For example, in
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a study of Twitter usage habits by André et al. [I5], the authors had crowd workers
categorize tweets into categories such as “Question to Followers,” or “Information
Sharing.” Given a table of tweet content such as tweets(authorid, time, text),
one might have crowd workers code those tweets in the following way:

counted_tweets =
FOREACH tweets
GENERATE category(text), COUNT(authorid)
GROUP BY category(text)

Here category is a crowd-based UDF that presents workers with a form asking
them to code each tweet. Having a fast way to provide a histogram over such textual
data would be valuable to social scientists and other data analysts.

6.3 Counting Approach

Our fundamental problem comes down to estimating the count of the number of
items in a dataset that satisfy a predicate or belong to a group. These counts can be
used to answer aggregate queries or estimate selectivities. We explore two methods
for counting: a label-based approach and a count-based approach. The label-based
approach is based on traditional sampling theory. We sample tuples and ask the
crowd to label the category assigned to each tuple (e.g., whether a photo is of a male
or a female) until we achieve a desired confidence interval around the frequency of
each category. The count-based approach displays a collection of items to a worker
and asks them to approximate how many of the items fall into a particular category
(e.g., the number of images with males displayed).

Both approaches result in estimates of the true frequency of each category that,
in the absence of faulty worker responses, converge on the true frequency. Because
in practice all crowdsourced worker output has some uncertainty, all crowd-powered
techniques result in approximate answers. We study the convergence rate and accu-
racy of various approaches in Section [6.7]

For our purposes, we assume that categories are known ahead of time (e.g., we
know the domain of the GROUP BY attributes). One interesting line of research
lies in how we can determine all of the distinct categories covered by our estima-
tion technique. Various projects explore how this can be done in a crowdsourced
environment [17, [72].

6.3.1 User Interfaces for Count Estimation

Crowd worker user interface design, or the specification of tasks and user interface
that workers see when they perform a HIT, is an important component in acheiving
good result quality. Asking questions in a way that does not bias workers to pro-
vide incorrect answers, and providing interfaces that make it as hard to provide an
incorrect answer as it is to provide a correct one is crucial.
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There are 2 people below. Please identify the gender of each.

What is the gender of this person?
male @ female

‘What is the gender of this person?
male @ female

]

Figure 6-1: The label-based interface asks workers to label each item explicitly.

After some iterative design, we generated two interfaces that correspond to the
two approaches above: a label-based interface that prompts workers to provide a label
for each item displayed, and a count-based interface that shows workers a collection
of items and asks them for an approximate count of items with a given property.

Label-based interfaces are common on MTurk, as image labeling is a popular use
of the system. The label-based interface can be found in Figure [6-1] We see that
several items, in this case images of people, can be displayed in a single HIT. A
prompt at the top of the HIT asks workers to select the best label for each image.
Following each image, we see two radio buttons that the worker toggles between to
identify the gender of the person in the image. After going through several images
(in this case, the batch size of images per HIT is 2), the worker clicks the Submit
button. We error-check the submission to ensure all of the radio button pairs have a
selection, and upon successful submission of the HIT, offer the worker another set of
2 images to label.

Count-based interfaces are less common on MTurk, so this interface required more
design work. The interface we used for count-based experiments in this chapter can
be seen in Figure A prompt at the top of the HIT asks workers to identify how
many images have a particular property. Below that general instruction, workers are
prompted to enter the number of males and females in the collection of images below.
To estimate the frequency of two categories such as male and female, we only need
to ask about the number of items in one of those categories. We have included both
questions in the screenshot to illustrate the appearance of a multi-class interface.
Fixed-width images are displayed below the questions in tabular format. With more
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There are 10 people below. Please provide rough estimates for how many of the people have various properties.

About how many of the 10 people are male? 4‘

About how many of the 10 people are female?

Figure 6-2: The count-based interface asks workers to estimate the number of items
with a property.

images (e.g., 100) per page, the worker may have to scroll to reach the submit button.
When a worker pushes submit, the interface alerts them if they have not filled in all
of the requested counts, and performs bounds-checking on the inputs to ensure they
are non-negative and add up to less than or equal to the total number of images
displayed.

Our count-based interface design has several alternatives. One interface would
resize images so that, as more images are displayed on a page, the thumbnails shrink
and no scrolling is required. We avoided this design so that we could study batch
size (the number of images on a page) independent of task difficulty (identifying
properties of images as they shrink). Another design choice involves where to place
the prompts (i.e., the questions asking how many males are displayed). We found that
placing prompts at the top of the page made it easier for first-time workers to learn
the task without scrolling to the bottom of pages with large batch sizes. Scrolling to
the top of the page to fill in an answer after counting items did not seem to disturb
veteran workers. Finally, there are several options for the wording of the prompts. We
can ask workers to approximate the number of males, or prompt them for a precise
measurement, and study the effect on result accuracy. We prompted workers to tell
us “About how many” items have a given property, but allow them to be as precise
as they desire. We leave a study of the effect of wording on performance for future
work.

As we will show in Section the count-based interface allows a batch size of
about an order of magnitude more images than the label-based interface. Given the
lack of prior work on count-based interfaces, it is likely that further user studies and
design iterations could lead to more effective count-based interfaces. It is less likely
that label-based interfaces, which are so popular and well-researched on MTurk, will
see much improvement.
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6.3.2 Modifying UDF's to Support Counting

The label-based approach to estimating the fraction of items with a property simply
requires sampling the tuples in a table and applying a labeling UDF. Because we can
apply the UDF directly, the user interface for the label-based approach can be derived
directly from the UDF definition used in Qurk with no additional information. In the
case of the count-based approach, however, new prompts are necessary to give the
worker instructions on how to answer each query.

As an example, we modify the gender UDF from Section to include prompts
for counting the males and females in the dataset. Below is the original gender
defintion with two additions in bold:

TASK gender(field) TYPE Generative:
ItemPrompt: "<table><tr> \
<td><img src=’%s’> \
<td>What is the gender of this person? \
</table>", tuple[field]
PropertyPrompt: ‘“About how many of the %d \
people are %s?”’, BATCHSIZE, PROPERTY
Response: Choice("Gender", ["male","female",UNKNOWN])
BatchPrompt: "There are %d people below. \
Please identify the gender \
of each.", BATCHSIZE
CountPrompt: “There are %d people below. \
Please provide rough estimates for how \
many of the people have various \
properties.”’, BATCHSIZE
Combiner: MajorityVote

The first addition is PropertyPrompt, that specifies how to ask about each indi-
vidual property. We also add CountPrompt, that specifies the overall instructions for
the entire HIT. With these modifications, the Qurk optimizer can now prompt work-
ers with the count-based interface for selectivity estimation and SELECT-COUNT-
GROUP BY queries.

6.3.3 Estimating Overall Counts From Worker Counts

The “wisdom of the crowds” [69] says one can get a reasonable estimate for the
number of jelly beans in a jar by asking many people to estimate the number of
beans in the jar and taking the average of their responses. Our problem is not quite
this simple, because the population of items is large and the individual items are not
compact enough to show every person all of the items at the same time. Instead, we
show each worker a random sample of the items in our collection, and ask them how
many items have some property. For example, we can take a sample of 100 images
from a collection of several million, and ask a worker to approximate how many of
the people in the images are male.
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By the central limit theorem, the average of the fraction of items with a property
in each sample approaches the fraction of items in the dataset with that property.
There are three sources of error in this measurement:

1. Sampling error. In traditional sampling theory, we see errors in approxima-
tions derived from samples due to variations in the individual subsets that are
selected.

2. Worker error. Workers provide incorrect responses due to human error, or be-
cause entering nonsensical or less-than-acurate results allows them to complete
more tasks for money.

3. Dependent samples. Platforms such as MTurk allow workers to perform more
than one of the available HITs, meaning that multiple responses can be received
from each worker, and often spammers are the workers who complete the most
tasks.

While averaging across all responses reduces the sampling error as the number of
samples increases, the last two sources of error make taking an average inaccurate.
Limiting each worker to a single response would reduce serious error due to spammers,
but goes against the design of platforms such as MTurk, in which the majority of the
work is often done by a small group of workers [40].

The majority of workers provide accurate results, and one should allow these work-
ers the opportunity to do as much work as possible. Still, there is a danger in the
spammer who sometimes provides the largest number of responses due to the speed at
which they can generate inaccurate results. It is better to design algorithms that de-
tect, discount, and block future results from these workers while letting other workers
productively produce results. We explore a solution to this problem in Section [6.4]

6.3.4 Comparing the Approaches

The label- and count-based approaches are subject to different rates of worker error,
as they provide different interfaces and different prompts to the worker in order to
generate their estimates. Additionally, they incur different sampling errors because
of the differing amount of items that workers are willing to process for a price in
the different interfaces. We will leave worker error aside until the experiments in
Section [6.7, and for now focus on how each approach results in different amounts of
items sampled in a given number of HITs.

The approach to getting an item’s label (e.g., identifying a picture of a flower as
being blue) through multiple crowd workers is well-studied [46], [49]. At a high level,
we retrieve R redundant labels for each item, usually around 3-7. The redundancy
allows us to run majority vote-like algorithms amongst the multiple worker responses
to boost the likelihood of a correct item label. A label-based interface supports
batching By, item labels per HIT, usually in the range of 5-20. For example, to label
500 pictures as male or female, we may display 10 images per HIT, and ask 5 workers
to provide labels for each image. This would require % = 250 HIT assignments
to complete the labeling task. More generally, with a budget of H HITs, each HIT
containing By items to be labeled, and R redundant labels per HIT, the number of
items we can label (Np) is:
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In the count-based approach, we are not labeling particular items precisely, and
our spammer detection technique does not require redundant responses. We can
batch B¢ items per HIT, usually in the range of 50-150, since workers are performing
less work per item labeled (they are counting or estimating images in chunks rather
than explicitly working to label each image). In our image labeling example with 500
images of people and a batch rate of 75, we examine all images in 7 HITs, rather than
the 250 it took to label images precisely. More generally, with a budget of H HITs
and each HIT containing B¢ items to be counted, the number of items we can count
(N¢) is:

N¢ = BoH.

Putting aside differences in worker error in each approach, we can compare how
many items can be approximately counted or labeled in our approach given a budget
of H HITs. Taking the ratio of items counted to items labeled and assuming H is a
multiple of R, we get

N¢  BcR
N. Br’

In our running example (B, = 10, R = 5, B¢ = 75), we end up with workers
reviewing 37.5 times as many items counted as labeled for a given budget. As we
will find experimentally, the label-based approach benefits from breadth rather than
redundancy, and so in practice R = 1. Still, for certain classes of data (data with high
“pop-out”), Bc >> By, which allows the count-based approach to reach an answer
more quickly than the label-based approach.

6.3.5 Estimating Confidence Intervals

In both the label- and count-based approach, a user wants to know that the estimate
provided to them is within a certain margin of error from the true distribution of item
properties. For example, in selectivity estimation, a user might be comfortable with
a relatively wide margin of error between two filters, say 10%, as small errors will
not harm query processing or cost too much. When performing an aggregate query,
however, the user might prefer to attain high confidence in their results, demanding
the confidence of the gender split in their dataset to be near 1%.

In the label-based approach, we can consider each item’s label a Bernoulli random
variable (a categorical random variable in the case of more than two property values)
with some probability of each property value occurring. For example, when estimating
the fraction of male photos in a collection after labeling around 100, the gender
displayed in any photo is modeled as a Bernoulli variable with probability of being
male pqe. If we have labeled 40 photos as male, we can estimate p,,qe as % =
0.4. Using sampling theory, we can either utilize the normal approximation of the
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confidence interval for binomial distributions or the more accurate Wilson score [77]
to determine, with high probability, how close the actual answer is to the estimate.

The count-based approach works similarly. If we display Be items (e.g., photos)
per HIT and have workers provide us with a count (e.g., the number of males),
we can model this count as a binomial random variable C' that is distributed as
Binomial(Bc, pmate)- As we collect counts C; from various HITs, the average of the
fractions ch will approach p,,q. and we can again employ the Wilson score or normal
approximation of the confidence interval.

In practice, some of the responses will come from spammers, and assuming we can
detect them using techniques in Section we can calculate a confidence interval
on the remaining values. Additionally, instead of calculating confidence intervals,
one might employ resampling techniques such as the bootstrap [37] to estimate these
values on smaller sample sizes.

6.4 Identifying Spammers

We now discuss how to identify spammers using count-based input from crowd work-
ers. Spammer identification for label-based approaches is well-studied [46], [49], and
so we focus on count-based spammer identification.

Unlike the label-based approach, the count-based one is not built around redun-
dant responses (each worker sees a random sample of the items in our dataset), and the
responses are continuous/ordinal (workers provide us with sample property estimates
which map to fractions in the range [0, 1]). While the spam detection techniques we
discuss below apply to our estimation problem, it is more generally applicable for any
worker response for data which is sampled from a continuous distributions concen-
trated around some mean (e.g., counts, movie ratings, best-frame selection [20]).

A useful side-effect of our algorithm working on non-redundant worker output is
that, while we designed it for count-based inputs, it also works for label-based inputs
where no redundant labels are collected. If a worker labels five sampled images
as male and 20 as female, we can feed these numbers into the spammer detection
algorithm below to determine how likely that worker is to be a spammer. We will show
in Section that collecting redundant labels requires excessive amount of worker
resources for the label-based approach, and so the applicability our spammer detection
technique to non-redundant label-based data is also a benefit of the approach.

We will first define some variables and terms used in our algorithmic descriptions.
With these definitions, and some insights we got while engineering an effective algo-
rithm, we will conclude with the algorithm that we will show works well in Section [6.7]

6.4.1 Definitions

Say we have N workers 77, ..., Ty. Each worker T; completes H; HITs, and for each
HIT provides us with counts Cjy, ..., C;jg, of the number of items in that HIT with
a particular property. If there are Bo randomly sampled items in each HIT, we can
convert C;; (count from HIT j reported by worker 7) into a fraction
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We wish to calculate F , an approximation of F', the overall fraction of items with

a given property in our population. If we know there are no spammers, we could
Zi,j Fij
Zi,j 1
of spammers, we would like to discount workers with bad results. We will accomplish

this by identifying workers as potential spammers and assigning each worker a weight
0; € [0,1], with 0 representing a spammer and 1 representing a worker with high
quality.

simply average the worker responses to get F= . However, given the presence

6.4.2 A Spammer Model

We consider the case where each worker is a spammer or a good worker (6; € 0,1).
Say there is some underlying fraction ¢ of workers that are good. Then we can model
each 6; as a random bernoulli variable with probability ¢ € [0,1]. In this case, 6; is 1
(a good worker) with probability d, and 0 (a spammer) with probability 1 — 4.

We can define a probability distribution on §. A reasonable distribution is one with
decreasing probability of high §, since we usually see a small number of spammers.
A negative exponential distribution accomplishes this goal:

Pr[§ = 2] = a(\)e ™

Where a()\) = 2 is a normalization term to make the probability distribution
function of § sum to 1 in the range § € [0,1]. We use a regularization term A to

control how biased the distribution is toward a large or small amount of spammers.

We can now characterize the worker responses C;; depending on whether the
worker is a spammer or not. If the worker is not a spammer, they are shown a sample
of size Bo with each displayed item having probability F' of having some property.
Their response Cj; (the number of items with some property) is distributed as a
binomial random variable on B¢ items with probability F. If they are a spammer,
their response is a random number with no relationship to F'. Thus, the fractions Fj;
reported by each worker are defined as:

Bo , if T; is a good worker

Binomial(Bc,F)
Fy =
independent of F', if T; is a spammer

Under this probabilistic model, the likelihood is given by
Pr(o, {F;;},{6:}] =
B v
al)\ 6—/\5 691' 1— 5 (1-6;) (( c )FBCFij 1—F Bc(l—Fij)>
) H{ =0T (((pog )P0~ )
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6.4.3 An Ineffective Algorithm

To maximize the likelihood function provided in the previous section, we use a version
of alternating minimization methods popular in machine learning and computer vision
applications.

1. Initialize 6; to 0 or 1 randomly (with probability .5).

2. Given éi’s calculate F:

3. Given éz-’s calculate o:

AN = O m)2 - aa Y, (1 - 6)
22

8:

4. Given F, B compute éi’s:
5 _ 0 iflog(1— 0) —log(0) = 3=, L(F; Fy;) < 0
1, otherwise

P =

Where

A

L(F; Fy) = Fylog(Fy) + (1 — Fyj)log(1 — Fy;) — Fyjlog(F) — (1 — Fy;)log(1 — F).

5. Tterate back to step 2 until convergence of F' (usually within 20 iterations).

Briefly, this algorithm iterates between approximating the fraction of workers that
are spammers and identifying which of the workers are spammers. With a notion of
the workers that are spammers, it updates F, the estimate of the fraction of items
with a given property.

In practice, this algorithm does not provide good results. There are two key issues
with the algorithm as derived:

1. The algorithm estimates F'is based on the average of all responses, weighted to
discount spammers’ contributions. Our calculation of Fis theoretically optimal
in that it is a minimum-variance unbiased estimator of F. It fails in that
it allows workers with more responses to bias results in their favor. When
spammers attack, they tend to answer more HITs than good workers because
they can spend less work on each response. Increasing the number of HI'Ts they
complete allows spammers to pull F toward their responses, and reduces our
ability to discern spammers from good workers in step 4.
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2. The algorithm is sensitive to A and, by proxy, §. Changing A changes the
fraction of spammers step 3 calculates, and identifying a stable \ value that
works across experiments is difficult, because the fraction of spammers varies
by experiment. Even if we discard A\ and set 6 manually in step 3, we see erratic
changes in 6; values as we change 9.

6.4.4 A Spammer Detection Algorithm That Works

Given our experience with a principled model and the algorithm we derived from it,
we engineered a more effective algorithm. The algorithm limit workers’ contributions
to F by averaging each workers’ responses. It also does away with approximating the
fraction of good workers 0 by calculating a worker’s weight 6; based on their distance
from the estimate F regardless of the other workers’ responses. Our approach relies
on the assumption that the majority of workers are not spammers, and that most
workers will be able to reasonably estimate the correct answer to HI'Ts. This means
a spammer is a worker whose answer deviates substantially from the other workers’
distribution of answers, and in particular from the mean of all of their responses. We
propose an iterative algorithm that estimates the mean, uses that estimated mean to
identify spammers, and then repeats, re-estimating the mean and finding spammers
until a fixed point is reached.

Because spammers often answer many questions (often they are trying to maximize
profit by doing many HITs cheaply), we limit the contribution of an individual worker
to the overall estimate by first averaging that worker’s estimate across all of the HITs
they have submitted:

Fo— Zj Fij
T T HZ

We might be able to use other summaries of the workers’ input rather than an
average of their responses. For example, we could use a worker’s first response or
pick a random response, but in practice we have found these approaches to be more
fickle when a worker makes a single mistake that is not representative of their overall
contribution.

We can now compute our first estimate of o

initial N
Here F is our current estimate, where each workers’ contributions are limited by
averaging over all of their answers.
We then compute 6;, the weight of each worker, by computing the bias of their
average response F; relative to the current global estimate F. We also threshold,

disallowing workers who are too far from the mean estimate. More precisely, in each
iteration:
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o _ J1— B Fl i [ = F| <\
' 0, otherwise
For 6; values to be accurate, we must calculate the global mean estimate F it-
eratively after every recalculation of € values, as above, weighting by the values in

6.

Ll
Zi 0

In our experiments in Section , we show that setting A = 0.14 (approximately
two standard deviations from the mean) tends to remove outlier workers while still
including workers with moderate bias. This technique can be thought of as an iterative
outlier detection method: workers whose performance is outside of a 95% confidence
interval (two standard deviations) are removed.

The algorithm iterates between estimating F and recalculating 6;’s until conver-
gence. Once we have identified spammers, we no longer need to protect against a
disproportionate number of responses from a single spammer, so we calculate our
final F based on individual worker responses:

I3 _ Z” 0:F3
final — Z” 0,

With this working algorithm in mind, we can now explain how each of the two
weaknesses in the last algorithm are addressed. First, we average the averages of
worker responses while we learn who the spammers are, reducing spammer bias.
Once our iteration converges, we calculate the final F value based on a weighted
average of all worker responses, benefitting from the use of a theoretically better
estimator. Second, this algorithm does not suffer from sensitivity to a global estimate
of the number of spammers (1 — § in the previous algorithm), because each worker
is considered without regard to the others in deciding if they are a spammer or not.
The threshold of A is the same for each worker, and is robust to small changes in A.

6.5 Protecting Against Coordinated Attacks

In the previous section, we presented an algorithm that estimates the fraction of items
with a given property (F') by preventing any one worker from skewing the estimate F
toward their own by quickly responding to many HITs. This is because we calculate
F' as the average of each worker’s average response, rather than the average of all
worker responses. Each worker only contributes a single value toward the average
regardless of how many HITs they performed.

The algorithm described in Section is still vulnerable to a coordinated attack
from multiple workers, however. While we have not seen a coordinated attack in our
experiments, there are reports of sophisticated Turkers who deploy multiple accounts
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to subvert worker quality detection algorithms [48]. If several workers, or a single
worker with multiple automated accounts, all submit estimates Fj; such that several
values of F; are similar to each other but far from the true mean, they will be able to
skew their worker quality estimates in their own favor so that they are not blacklisted,
or receive bonuses or additional pay for doing good work.

Susceptibility to coordinated attacks is not limited to our algorithm. Any crowd-
powered approach that rewards workers for being in the same range as other workers
is susceptible. For example, a recent approach by Bernstein et al. [20] to identify the
best frame in a video by getting crowd workers to agree on the best scenes in the
video would also be vulnerable.

A simple way to avoid this is to collect “gold standard” data (items with known
labels), on several items {G1, ..., G }. With gold standard data in hand, one can then
generate a HIT over that data for workers to complete to ensure that they accurately
count data for which we know the distribution before we give them additional HITs
over unknown data. We will see in Section that in a few HITs we can sample
several thousand items, and so collecting a few tens or hundreds of gold standard
items is not too resource-intensive.

The simple gold standard approach has several issues. First, sophisticated workers
could learn to identify the page with the gold standard data and the correct answer
to the estimates for that page. Second, because the distribution of the number of
tasks completed by each worker is zipfian [40], many workers will only complete one
or two tasks. This limitation means that the gold standard task would constitute the
bulk of the contribution of many workers, which is not ideal.

We propose a different use of the gold standard data. Rather than generate an
entire gold standard task, we randomly distribute the gold standard items throughout
each task. To do this, we first vary the number of gold standard items with a given
label in each task a worker completes. For example, if a worker is estimating the
number of men and women in a task with 100 images, we will randomly place between
1 and 20 gold standard images with known labels into the 100. When a worker tells
us the number of items with a property in the task they just completed (say, 25 males
in 100 images), we subtract the number of gold standard images with that property
(e.g., 13 gold standard male images) from their count when calculating the fraction
F;

Using this approach, there is no one repeating gold standard HIT, as some gold
standard data is mixed into every HIT. As a result, attackers can not identify and
correctly solve the gold standard HIT. Additionally, we can continue to measure
worker quality throughout the worker’s contributions.

6.5.1 Correcting Worker Responses

Formally, we show a worker R items at a time, where G;; gold standard items are
introduced into the jth HIT shown to worker i. When a worker tells us there are Cj;

2Note that we cannot just check how the worker did on the gold standard items, because we
are not asking the worker to label individual items, but to estimate the overall frequency of some
property on a number of items.
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items with a given property, we subtract the G;; known items when calculating the
fraction:

Fy= .

In this approach, since each worker sees a different fraction of gold standard data,
two or more workers who are colluding to skew F' to some value should no longer agree
once the gold standard data is removed. If these attackers coordinate in repeating
the same value Cj; for each task, the estimate Fj; will still vary per task due to the
randomness in Gj;. The larger the variance of G;; is per hit, the larger the variance
will be in the corrected F;;. This variance will reduce the power of disruption of a
coordinated attack, and increase the probability that attackers will be removed as
outliers because their answer varies from the overall mean.

In contrast, non-colluding workers who estimate the true value of F' should still
agree once the gold standard data is removed.

A second benefit of our approach comes in cases where the counts of items with
a given property that a worker reports are smaller than the number of gold standard
items with that property in a HIT (C;; < Gy;). In these cases, a worker’s F;; estimate
will be negative, which is not possible. Aside from boundary situations where some
worker error results in negative F;; estimates that are close to 0, we can discard such
workers as spammers.

This benefit is value-dependent, since attackers who submit lower count values
are more likely to be identified by the approach than attackers who submit high
counts. However, there is symmetry to the value dependence: assuming we can
determine early on which property the attackers will say is least frequent, we can
increase our likelihood of identifying attackers by providing a higher proportion of gold
standard examples of that property. This benefit works against individual attackers
and coordinated attacks by outright removing some workers with negative fraction
estimates.

Our approach is not without drawbacks. The most direct is that, while utilizing
more gold standard on average can increase the number of identified spammers and
spread out the coordinated responses of attackers, it also decreases the amount of
new information we learn with each HIT. If on average we use G gold standard items
per HIT, and have R items per hit total, then to estimate selectivity using a sample
of S items total, we require

S
=

HITs to process this data. As G grows, the number of required HITs to have
workers provide information on S items grows. Additionally, collecting gold standard

data takes time (and possibly money), which in practice limits the maximum value
of G.

We explore the costs and benefits of this approach in Section [6.7.3
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6.5.2 Random Gold Standard Selection

For our gold standard technique to be effective, we need to introduce a different
fraction of gold standard data into each HIT, while keeping the average amount of
gold standard data used per HIT at some level. This allows users to control how
much of their budget is spent on gold standard data.

Given a user-specified average number of gold standard items pu, we intersperse
Gi; = p+ G gold standard items into each task, where G is a random integer chosen
uniformly from the range [—g ... g]. We require that the user pick u > gand R—pu > g
to prevent G;; from falling below 0 or exceeding 1. In our experiments we use g = .2R.

6.6 Further Exploring the Design Space

In our experiments, we will explore the various interfaces and algorithms we have
outlined. In order to fully understand where in the design space our experiments lie,
it helps to identify other representative solutions that we have not explored but could
make for interesting directions for future work.

Interface details. The label-based interface is relatively common in crowdsourced
workflows, as it is already used for filtering and labeling tasks. The count-based
interface, however, is novel to our application, and there are several variations on it
that we can explore.

Our current interface design asks workers to tell us “About how many of the [N]
[item type| displayed [have some property]?” One could explore various wordings of
this prompt, ranging from less precise questions to ones that suggest an exact answer
is required. In our initial design iterations, we did not find a notable effect from the
wording of this prompt.

The mode by which workers report a count, be it as an exact count, a rough
count, or a percentage, could also affect accuracy and worker mental load. In our
initial brainstorms and prototypes, we were told by test subjects that estimating the
percentage of a dataset that has some property would be difficult, as it is difficult for
them to think in percentages. We never explored this input mechanism or others on
systems like MTurk, however, and it would be interesting to study these approaches.
A count-label hybrid. Whereas the label-based interface requires workers to click
on a radio button to label each item they look at, the count-based interface allows
workers to scan a densely packed collection of items in a grid. For features that readily
pop out at the worker, the count-based interface requires less input, and can thus be
completed faster. We could generate a label-based version of this interface that allows
a dense presentation of this information while still getting per-item feedback. One
version of this design would lay items out on a grid, exactly as they are displayed
in the count-based interface. Users would be instructed to click on all items with a
given property, allowing them to scan the items and only provide input on items with
that property. It would be interesting to study the accuracy and speed with which
workers can provide labels for items using this interface.

Exploring the factors behind interface efficacy. We have designed experiments
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to identify when the count-based interface allows us to quickly estimate the fraction
of items with a property in a dataset. We do not, however, experiment with the ways
in which workers use the items presented in the interface to generate their responses.
Exploring this path might allow us to design better interfaces and interactions.

One experiment would help determine if, when presented with hundreds of items
at a time, workers bias their attention to only the items at the top, bottom, or other
visual grouping of items. We could determine if worker attention by location varies
by biasing the location in which we place various items and seeing how this affects
accuracy.

Another bias in worker responses might be toward round numbers. Are workers
more likely to respond to our count requests in multiples of 5 or 107 We could
measure this by varying the actual count in any task and seeing how worker response
histograms shift with different counts.

6.7 Experiments

We now quantify and compare the various methods presented in this chapter across
two image datasets and a text dataset. The goal of these experiments is to un-
derstand how the convergence rates and accuracy of count-based and label-based
counting/selectivity estimation compare on these different datasets. We show that
the count-based approach has similar accuracy and much faster convergence than
the label-based approaches on imagery, but does far worse on textual data (tweets).
Finally, we simulate the effect of sybil attacks, and show scenarios in which our ran-
domized gold standard approach averts the attacks.

6.7.1 Datasets

We utilize three datasets in our experiments, each of which is aligned with one of the
three motivating examples in Section

Face Gender. The dataset we use for most of our performance evaluation is the
GTAV Face Database [T1]. This dataset contains 1767 photos of 44 people. For each
person, there are between 34 and 65 images of that person in different poses. We
manually labeled each person in the dataset as male or female, so that we could use
our estimation techniques to determine the number of images in the dataset of a given
gender. Some sample images from this dataset can be seen in Figures and [6-2|

Shapes and Colors. To test the difficulty of perceptual tasks, we generated an
image dataset of shapes. Our generated dataset consists of triangles, circles, squares,
and diamonds. The fill color of each shape is either yellow, orange, red, green, blue, or
pink. Additionally, each shape has an outline that is one of these colors. For variety,
shapes are sized to fit various proportions inside a 100x100 pixel box. An example
can be seen in Figure [6-3] We generated 1680 such sample shapes.

Tweet Categorization. To test our approaches on non-image data, we also ran our
approximation techniques on tweet text. Our tweets come from an initial collection
of approximately 4200 from André et al., who studied the value of tweet content to
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Figure 6-3: Example shapes in our Shapes and Colors dataset.

Twitter users’ followers [I5]. Tweets in this study were categorized using Crowd-
Flower into eight categories. The authors of that paper found several tweets to which
it was hard to assign a single label, so we selected a subset of 2530 tweets in the
three most stable categories: Information Sharing, where a user links to a piece of
information (e.g., Awesome article explaining the credit crisis: http://.. .)), Me
Now, where a user says what they are doing now, (e.g., Just finished cleaning the
apartment!), and Question to Followers, where a user poses a question (e.g., What is
your favorite headphone brand?). We use our estimation techniques to determine the
faction of tweets in these three categories. “Coding” tasks, where a crowd is asked
to categorize various items, are common in the social sciences, and we could imagine
our techniques being useful in these situations.

For all datasets, since we have ground truth data on their labels, we can generate
artificial datasets by sampling at different frequencies of labels. For example, we can
generate a version of the face dataset with 10% males or 50% males by sampling more
heavily from a subset of the data. For the faces and shapes dataset, all samples are
of size 1000, meaning that regardless of the property distribution, we always select
1000 images on which to estimate properties. On the tweet dataset, our samples are
of size 2500 tweets.

6.7.2 Estimating Counts

To better quantify the error of our different algorithms, we tested several estimation
scenarios on MTurk, varying different parameters. For each parameter setting, we
generated 1000 HITs. We tried two variations of the worker interface: label-based
and count-based, as shown in Figures and [6-2] For the count-based interface we
used per-HIT batch sizes of: 5, 10, 25, 50, 75, 100, 125, and 150. For label-based
we used batch sizes of: 5, 10, 15, and 20. In label-based scenarios, we collected both
redundant labels (generating 200 HITs, asking 5 different workers to complete each
HIT) and no-redundancy labels (generating 1000 HITs, asking 1 worker to complete
each HIT)E|. Redundant labels are reconciled (i.e., the crowd’s answer is determined)
using Ipeirotis et al.’s approach [46] (the same technique as QualityAdjust in earlier

3Some item labelings are redundant across HITs in the no-redundancy case, but we do not take
advantage of this to improve our item labels. We simply treat each HIT as providing another count
toward our estimate.
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Figure 6-4: Bar chart of average error by approach, with error bars for minimum and
maximum values. Numbers above each bar represent batch size. LabelNoR means la-
beling with no redundancy. LabelR means labeling with 5-worker redundancy. Thresh
means count-based worker input with spammer detection. Avg means count-based
worker input with no spammer detection. Thresh and Avg have the same inputs.

chapters). We ran tests using the Faces, Shapes, and Tweet datasets. Finally, to
understand the effect of selectivity on performance, we sampled the Faces dataset
such that it had 1%, 10%, 25%, 50%, 75%, 90%, and 99% male faces. To ensure
repeatability, we ran each experiment at least twice during business hours in the
Eastern US time zone. For all experiments, we paid workers $0.01 per HIT without
trying higher pay increments because batching more than one item per HIT was
possible even at this lowest pay increment.

Overall Error. We start by studying the errors of various approaches on the Faces
dataset. Figure [6-4] shows the error rates of the label- and count-based approaches.
For the label-based approach, we report the errors with redundant labels (LabelR) and
without (LabelNoR). For the count-based approach, we feed worker values into the
thresholding-based spammer-detection algorithm described in Section (Thresh)
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and into a simple averageﬂ of all worker-reported counts (Awvg). The bar charts
displayed in this figure represent the average error across the experiments we ran,
with the error bars representing the minimum and maximum error values. Error is
calculated as the absolute difference between the estimated fraction and the ground-
truth result of each experiment using all 1000 HITs in each experiment. We break
the results down by the batch size of the various approaches.

We see that when using labeling, getting multiple labels per item does not appear
to reduce the overall error. That is, we do not have evidence of heavy spamming
of these interfaces, and we do have evidence that across several experiments, non-
redundant labels have commensurate error rates to redundant labels. For the count-
based approaches, we see that taking a simple average across all worker-provided
counts generates error rates up to 25%. Feeding that same count data into the spam-
detecting thresholded approach generates error rates on par with the label-based
approaches. In terms of error rates on 1000 HITs, it is possible to achieve similar
results using label- and count-based approaches, although the count-based approach
requires spam detection. The same count-based spam detection approach could be
used on the non-redundant label-based approach should spammers strike.

Interface Latency. While the largest batch size we tried in the count-based interface
was 150, we limited label-based interfaces to batching at most 20 items per HIT.
Anecdotally, even at a batch size of 20, we would sometimes run into situations where
workers would take a long time to pick up our tasks because they were bordering on
undesirable. More importantly, as evidenced by Figure |6-5, workers took longer to
label 20 images than they did to report counts on 150. In this figure, we show different
experiments along the X-axis. Along the Y-axis, we display a box-and-whiskers plot
of the number of seconds to complete each HIT. For each experiment, the edges of the
box represent the 25th (bottom) and 75th (top) percentile, while the red line inside
each box represents the median seconds to complete a HIT. The whiskers, or ends of
each dotted line, represent the minimum and maximum seconds to complete a HIT
in that experiment. Maximums are often not shown, because of pathological cases
where workers would pick up a HIT but not submit it until a maximum of 5 minutes
was up.

The different experiments are labeled on the X-axis. Experiments labeled C150,
..., Ch are count-based with batch size 150, ..., 5. Experiments labeled 120, ..., L5 are
label-based with batch size 20, ..., 5. In this section, we focus only on experiments for
Face 0.1 (Faces with males representing 10% of the dataset); the other experiments
are described below.

First, we see that the count-based batch 150 approach takes workers less time,
in general, than the label-based batch 20 approach. Decreasing batch size generally
reduces the time it takes workers to complete each task. For any equivalent batch
size, the count-based approach takes less time than the label-based one. The fact
that we paid $0.01 per HIT regardless of batch size suggests MTurk is not a market
with fine-granularity pricing for tasks. Because label-based batches larger than 20

4We tried the median and the average of the middle 5% and 10% of answers, and found their
results to be just as vulnerable to spammers as the average.
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Figure 6-5: Box-and-whisker plots of the number of seconds workers took to complete
different tasks. The top of each box represents the 75th percentile completion time
and the bottom represents the 25th percentile. Red lines indicate medians. Whiskers
(error bars) represent minimum (bottom) and maximum (top) values.

were not guaranteed to be picked up by workers in reasonable time, and because
workers were spending longer on these tasks than on batch 150 count-based tasks, we
decided to limit our batching at these values. The fact that counting is so much faster
than labeling for images suggests that people are quickly scanning and estimating the
quantities the HITs ask about, rather than manually iterating through each item and
explicitly counting frequencies. This scanning behavior is the desired effect of our
count-based interface design.

Another factor to consider is the end-to-end query time, or how long it takes to
complete these HITs from start to finish. In our experiments, completing 1000 HIT's
in the count-based interface with batch size 150 takes about as long as 1000 HITs
in the label-based interface with batch size 20 (30-40 minutes). For smaller batch
sizes, 1000 HITs of counting 25 takes about as long as labeling 5 (15 minutes). In
our experience, these end-to-end times go down as an employer gets a reputation for
reliably paying for work and for providing many similar work units.

Spam Detection Example. In Figure we show an example where our spam
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Figure 6-6: As we vary the number of HITs sampled from 1000 (X-axis), we measure
the empirical 95% confidence intervals (Y-axis) of two algorithms on samples of that
size. Given the same input data with a lot of spammer-provided values, the spammer-
detection algorithm (Thresh) arrives at the correct estimate while a simple average
of inputs (Avg) does not.

detection algorithm reduces error. Here, the two top workers finished 349 and 203
HITs of the 1000 HITs with error rates of about 46% and 26% respectively. In this
figure we see that even after 1000 HITs, simply averaging across worker responses,
more than half of which are spam, results in an inaccurate response. Applying our
threshold-based spam detection technique allows us to arrive at the actual fraction
of items with high accuracy. This happens because the algorithm is able to identify
both of the high-error, high-output workers, and multiplies their contribution to the
overall average by zero.

The chart also shows the convergence rate of the two approaches. Along the X-
axis, we vary the number of HI'Ts we sample from the 1000. For each X-axis value, we
take 100 subsamples of that size from the 1000 HITs, and run Avg and Thresh on each
of those subsamples. We plot the value of the 2nd smallest and 3rd largest estimates
based on these subsamples, providing a bootstrapped (sampled) measurement of the
95% confidence interval of the approach at each HIT size. Note that the gap between
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Figure 6-7: As we vary approaches and batch sizes, what 95% confidence interval
width (Y-axis) do we acheive in a given number of HITs (X-axis)?

the lower and upper lines is smaller in the case of our threshold-based approach. From
this, we can conclude that in addition to getting an accurate estimate with a large
amount of HITs, we also converge on the correct value with a small number of them.

By using Thresh, the error in this example is reduced from 16.64% to 0.06% (a fac-
tor of about 265). The largest absolute improvement of the spam detection algorithm
in our dataset brings an error from 26.74% to 1.77% (a 24.97% improvement).

Convergence Rates. As evidenced by the lack of a pattern in error rates amongst
batch sizes for each technique in Figure [6-4, we did not find that batch size had a
significant impact on the accuracy of our estimates at the limit (after 1000 HITSs).
As long as workers were willing to take on a count-based task, the error across batch
sizes did not vary. When error rates did vary drastically, those errors are attributable
to spammers, which are detected by algorithms such as Thresh.

Since the label- and (spammer-eliminated) count-based approaches achieve similar
error rates at the limit, what separates them is how quickly they converge on the true
value. We explore the convergence rate of various approaches in Figure [6-71 In this
chart, we measure the rate of convergence of various approaches when the fraction of
males is 0.1. As we vary the sample size of the 1000 total HI'Ts along the X-axis, we
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Figure 6-8: Bar chart of average error per approach, broken down by selectivity of
males in the dataset. See Figure for a description of the graph elements.

measure the 95% confidence interval width (e.g., the gap between the top and bottom
lines in Figure , using the same subsampling method as the previous experiment.

We see that the fastest convergence rate is acheived with a count-based inter-
face after spammer elimination with a batch size of 150 (the yellow line closest to
the bottom left). The next fastest convergence rate is achieved by the label-based
approach with no redundancy and a batch size of 20, followed by the batch size 5
count-based and non-redundant label-based approaches. The two approaches with
the slowest rates of convergence are the batch size 20 and batch size 5 redundant
label-based approaches. Essentially, because they provide no additional protection
against spammers, the 5 redundant HITs for each label derive value from only 1 of
every b HITs. Most importantly, we see that to be within 0.05 of the correct answer,
the batch 150 count-based approach requires about 5 HITs, whereas the next fastest
approach takes about 50. Similarly, we reach a confidence interval of .01 in less than
100 HITs with count-based batches of size 150, whereas the next fastest approach
takes almost 600 HITs.

Varying Frequency of Males. In Figure we show the error rates of the differ-
ent approaches as selectivity changes. While there is no clear trend for the label-based
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Figure 6-9: As we vary the selectivity of males, what 95% confidence interval width
(Y-axis) do we acheive in a given number of HITs (X-axis)?

interfaces, the spam-detected count-based technique (Thresh) sees a slight trend to-
ward higher errors as selectivities approach 0.5. We explore further by studying the
convergence rate and interface latency as selectivity changes.

In Figure [6-9, we show the convergence rate of the 95% confidence interval when
we vary the frequency of males in the Face data set. The results are symmetric for
selectivity .75, .9, and .99, and we omit them to make the graph clearer. We see slower
convergence of the confidence interval as the selectivity approaches 0.5. This suggests
that there are less errors in estimating the fraction of items with very frequent or very
infrequent occurrences. As the number of males approaches 50% of the data, workers
have to perform more work to spot subtle differences in distribution. To understand
this intuitively, imagine having to find a photo of a male amongst a sea of female
photos (a relatively easy task), versus having to find all of the male photos in a
sea of 50% male/50% female photos (a task that is difficult to perform with 100%
accuracy). If the distribution is instead lopsided toward males or females, a quick
glance can identify the outliers (less frequent) items in the dataset.

A second observation backs this hypothesis. In Figure [6-5] we see that the time
workers spend in the count batch 50-based interface for male selectivities of 0.1 and
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0.5 are about equal. If workers spend equivalent amounts of time on tasks that are
easier to spot-check (e.g., identify 5 males of 50 pictures) than more nuanced tasks
(e.g., are there 20 or 25 males out of 507), the higher-selectivity tasks will see less
accurate results.

A natural question arises: if the confidence interval becomes wider at higher
frequencies, is there still a benefit to the count-based approach over the label-based
one? The result is a rough draw at the highest level of batching for both techniques.

Generalizing Our Results. To see how well the results on the Face dataset gener-
alize, we ran similar ones on the Shape and Tweet datasets. We were able to achieve
similar conclusions on the Shape dataset, with very similar error and convergence
rates, but our findings on the Tweet dataset revealed important differences.

On the Shape dataset, we tried two variations. Using a batch size of 50 for
counting and 20 for labeling, we had workers approximate the border color and shape
of two sampled distributions. For shape frequency estimation, we generated a dataset
with 10% triangles, 30% circles, 30% squares, and 30% diamonds. For shape outline
estimation, we generated a dataset with shape outline colors of 10% yellow, 30%
orange, 30% red, and 30% green. These tasks are of different difficulty: given that
the primary color of each shape is its fill color, identifying outline color is harder
than determining its shape [79]. Still, we found similar result and accuracy trends
to the ones on the Face dataset. Additionally, as evidenced in Figure (see C50
Shape and C50 Color), workers spent about as much time on these tasks as they
did on batch 50 counts of faces at different selectivities. This further supports our
hypothesis that across selectivities and visual task difficulties, workers tend to spend
a constant amount of time per task, varying only with batch size. Since all tasks were
priced at $0.01 per HIT, we can not determine if workers would have worked for a
longer time in exachange for more money in these scenarios.

Results from the Tweet dataset were more surprising. Workers were asked to label
and count tweets into one of the three categories described in Section [6.7.1, This task
is harder than other estimation tasks described so far, since each tweet has to be read
and analyzed, without any visual “pop-out” [79] effects.

Even though the task was harder, in Figure|6-5| we see that workers spent less time
on the Tweet counting (C50 Tweet) and labeling (L20 Tweet) tasks than they did on
the image tasks with equivalent batch sizes. In particular, workers spent significantly
less time on the count-based tasks than the equivalently sized count-based image
counting tasks.

The error rates on the tweet datasets were also interesting. The label-based ap-
proach saw larger error rates than label-based image counting techniques, but still
provided usable outcomes. The count-based approaches, on the other hand, saw error
rates of up to 50%, signaling that workers were not accurately providing count esti-
mates on tweets in our interface. These two error rate results are consistent with our
timing results: as workers spent less time on a more difficult task, their error rates
made the count-based interface less dependable.

Given our ability to reproduce the low error rates and fast convergence rates of
the count-based interface on another image dataset, and the poor performance of
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Figure 6-10: As we increase the number of coordinated attackers (X-axis), the spam
detection algorithm eventually reports the attackers’ values (Y-axis).

the count-based approach on the tweet dataset, we offer a hypothesis and guidance
for future usage. Text classification, which has no skimmable affordances, can not
accurately be counted using the count-based interface. The label-based interface,
which calls for a classification of each individual tweet or body of text, is able to draw
a worker’s attention to each item and acheive better accuracy.

6.7.3 Sybil Attacks

Coordinated attacks by a single worker with multiple identities (so-called “sybil at-
tacks”) or multiple workers attacking in concert make our count-based approach less
able to catch spammers, since such coordinated attacks can skew our estimate of the
true mean. In Section [6.5| we described a technique for placing random amounts of
gold standard data into each HIT to filter out such attackers, and we now quantify
the benefit of this approach.

Sybil attacks are not yet common on platforms like MTurk, but there are reports
of sophisticated Turkers who deploy multiple accounts to subvert worker quality de-
tection algorithms [48]. Because (to the best our knowledge) we did not experience
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of a coordinated attack?

any sybil attacks in our actual experiments on MTurk, we ran a series of simulations.
We simulate a crowd of 30 workers estimating the fraction of items with a given
property (actual fraction= 0.5). Figure shows the effect of this coordinated at-
tack as we increase the number of attackers on the X-axis. The attackers do not
count the items shown to them, instead agreeing to report the same fraction. The
fraction they coordinate on (from 0.1 to 0.9) is shown on different lines. We use the
same spam-detection technique employed in the previous experiments and described
in Section without our gold-standard-based provisions to detect sybil attacks.

We see that as the number of coordinated attackers increases, the results become
less and less accurate, eventually converging on the fraction that the attackers co-
ordinate on. Larger attack fractions are farther from the overall mean when there
are still workers accurately performing their task, and so our spammer elimination
technique filters them out for longer. With a large enough fraction of the attackers,
however, the algorithm is always subverted.

In Figure [6-11} we see what happens when we add random amounts of gold stan-
dard data to each HIT, depicted in two scenarios. The dotted lines represent coor-
dinated attackers providing response fractions equal to 0.9 pitted against HITs with

100



various amounts of gold standard data ranging from 0% to 90% of each HIT on aver-
age. The solid lines represent coordinated attacks from attackers who provide a false
value of 0.1, again pitted against HITs with varying average gold standard amounts.

We see that when attackers provide an incorrect value of 0.1 (solid lines), adding
between 10% and 30% gold standard data nearly eliminates their effect. This shows
the first benefit of gold standard data: outright identifying spammers. If attackers
say that 10% of a dataset contains males, for example, when we have inserted on
average 20% images of males to each HIT, the adjusted fraction for each attacker will
be negative, and we can discard those workers’ responses. Note that these results
follow a similar pattern for different values of the true fraction, with the patterns in
Figure shifted up or down with higher or lower true fractions.

When attackers instead provide an incorrect value of 0.9 (dotted lines), it takes
more gold standard data to neutralize their attack. This is because the benefit of
outright spammer elimination is not available: inserting on average 20% males into
tasks for which attackers claim to see 90% males will not result in a negative fraction
after correction. Still, the other benefit of the gold standard approach kicks in with
enough gold standard data (around 40%-70%): attackers who agreed on a single
attack value are spread out by the random amounts of gold standard data on each
HIT, reducing the coordination in their attack and making them easier to spot with
spam elimination techniques.

As we discuss in [6.5, we could eliminate attackers colluding on a high value by
estimating the inverse class or providing gold standard data of both types of classes.
For example, if workers approximate 90% males, then they are claiming 10% females.
Introducing a small amount of gold standard females would allow us to spot the
spammers.

6.8 Takeaways and Discussion

Our results show that for estimation problems on datasets that exhibit visual “pop-
out” effects such as images, count-based estimation is as accurate as label-based
estimation, but arrives at an accurate result up to an order of magnitude faster. For
datasets that require crowd workers to examine each item in detail, such as text clas-
sification, the label-based approach provides better accuracy. In our experience, the
label-based approach works better with no redundant labels, instead using each ad-
ditional HIT to sample more of the dataset and increasing the amount of information
we learn.

Human vision and psychology research has seen many studies of people’s perfor-
mance at visual search tasks. A related finding from Wolfe et al. suggests that for rare
(low-selectivity) items, error rates will increase [78]. Our findings suggest a different
pattern, though the scenario is also different. In situations such as security scans
or radiology, rare detection events (e.g., bombs or tumors) require a report, while
frequent events are to go unreported. In our tasks, both rare and frequent events
must be acted on by reporting a count or a label. Thus, more frequent items require
counting more, resulting in higher fatigue and mistakes than low-frequency items.
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We thus found higher error rates for frequent/high-selectivity items than rare items
that pose less of a threat of being miscounted. Item frequency is not the only factor
in human perception. The “pop-out” effect [79] also matters. Due to the effect, the
relative prevalence of colors, shapes, location, and orientation of items affect reaction
time and accuracy of finding a particular item. an interesting direction for future
work would be to design two tasks that are only different because one presents a data
item as text and the other presents the data item as an image. These two tasks would
help us measure the precise effects of pop-out in our counting scenarios.

Our spam detection algorithm successfully and significantly improved count-based
estimation accuracy, in some cases by more than two orders of magnitude, over tech-
niques such as taking the average or median worker result. While we did not expe-
rience label-based spammers, if the label-based approach is susceptible to spammers
in the future, we can apply our count-based spammer elimination technique to the
counts of non-redundant labels, thus eliminating spammers without requiring redun-
dant labels.

In simulations, we showed how effective sybil attackers can be at subverting the
spammer elimination technique. We also showed that applying random amounts of
gold standard data to every HIT can eliminate the effect of these attackers. Finally, we
discussed that it is important to use gold standard data from the least frequent class
in our dataset, so that spammers attacking an infrequent property will be identified
with less overall use of gold standard data.

To put our findings into context, we can get to within 5% of the fraction of items
in a dataset using about 10 HITs. Labeling datasets that require 1000 HITs takes
on the order of an hour at higher batch sizes. It would take less than five minutes
to process 10 HITs on a system like MTurk. Thus, in addition to saving more than
an order of magnitude of work in picking the correct operator to process first, we can
also make the operator selection decision quickly, saving query processing time and
money.

One area for future development is in scaling up count- and label-based approaches
to higher-cardinality groupings. Both interfaces are overwhelming to workers when
more than five categories are available, and we are interested in interfaces that avoid
this.

In this work, we study how to estimate counts for two data types: images and
text. As we discover in our experiments, different interfaces are more effective for
estimating properties of different data types. One extension of our work would be in
broadening the space to other types, such as audio or video. Audio and video are
two data types that humans can not batch process easily, and would likely require a
different estimation interface. Imagine sampling a clip from each audio or video whose
property one wants to estimate. One could then, for example, stream 10 clips at a
time to each worker, experimenting with a serialized or parallelized presentation of the
clips, and ask workers how many clips have a given property. Such an interface would
reduce the overhead associated with switching between videos, but lose accuracy by
only displaying clips.

Finally, given that our spammer detection technique does not require redundant
labels, it would be interesting to see how we can improve result quality in domains
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other than selectivity estimation. Using our technique, one could imagine an image
labeling task that has high coverage but does not require redundantly labeling each
item. Instead, once a worker is determined to be a spammer because their answer
distribution differs from the crowd’s, we could ask another trusted worker for an
assessment.

6.9 Conclusion

In this chapter, we have shown that, for images, a count-based approach with a large
batch size can achieve commensurate accuracy to a label-based approach using an
order of magnitude less HITs. For text-based counts, we found that the label-based
approach acheives better accuracy. We present a spammer detection algorithm that
improves accuracy by up to two orders of magnitude without requiring redundant
worker responses. In simulations, we show how a randomized gold standard data ap-
proach can reduce the effects of a coordinated attack by multiple workers or one worker
with multiple identities. This work pushes crowdsourced computation into database
optimizers, saving crowd-powered database users significant time and money.
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Chapter 7

Discussion and Future Work

So far, we have shown how crowd-powered workflows can benefit from database tech-
niques such as declarative query languages and optimization. We have also seen that
database functionality can be enhanced by increasing the functionality of commonly
used operations such as sorts and joins. In this chapter, we explore further research
directions for systems such as Qurk, and discuss research that is motivated by looking
at user needs in the broader crowd labor market.

7.1 How Crowdsourced Labor is Different

As the crowdsourced labor market grows, we see questions about the legal status of
crowd work, and calls for more protection of both employers and workers. Zittrain
explores several extreme real and hypothetical situations that help us define the axes
on which both acceptable and unacceptable crowdsourcing practices lie [80,81]. In one
example, Zittrain describes a face-matching technology similar to the join interface
described in Chapter [5] The technology behind the join logic can serve as a powerful
and innocuous tool in clustering a personal photo collection. At the other end of
the spectrum, however, the technology could be converted into a nefarious memory
game found on a children’s educational game website, with a photoset provided by a
tyrranical government that wishes to match photos of dissidents from a protest with
a government ID database.

While most uses of crowdsourcing are not as extreme, they do fall along a spectrum
of ethics and laws that require us to think harder about the rights of workers and
employers. Quinn and Bederson outline some of the challenges faced by both parties
and describe some considerations that system and platform designers should take
into consideration [19]. We continue this discussion by identifying how crowdsourcing
ecosystems are different from traditional employment markets through the lens of
computer systems.

The Blessing and Curse of Abstraction. Abstraction is one of the tenets of
software design, and data independence is one of the tenets of database system design.
When we combine the two, it becomes easy to solve multiple problems with a single
solution, but difficult to give workers and employers the agency to decide with whom
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and on what to work.

The Internet and Web standards on which crowdsourcing platforms are built are
internationally understood. This means that crowdsourced labor can span compa-
nies, social norms, and national boundaries. A crowd-powered image-matching user
interface can be used by a photography studio or an autocratic regime without any
functional effect on the crowd worker’s progress or perception. Two particularly
salient features of a datasource that would help workers decide whether to help pro-
cess it are the originator (e.g., the Government of Iran), and the stated purpose of
the task (e.g., to track dissidents). Getting reliable answers to both of these ques-
tions would be difficult in the most important situations, but it suggests interesting
research in database provenance.

Abstraction is also a thorny issue for crowd employers. Crowd workflow designers
think of workers in terms of price, speed, work quality, work history, and expertise.
Limiting worker properties to those that affect the workflow’s output is useful in
designing effective systems, but also allows us to avoid answering harder questions.
Qurk makes no distinction between a 27-year-old man in the Phillipines and a 12-
year-old girl in Pakistan. With demographic information, employers could select
workers that meet various moral and regulatory guidelines. This information is also
a double-edged sword: if an optimizer discovers that males younger than 40 are
best at performing a task, what restrictions on gender and age discrimination should
apply? Traditional employment mechanisms are regulated in most countries to force
employers to consider such worker properties or avoid them to prevent dsscrimination,
but we have yet to tackle such issues in the crowdsourced world.

Zittrain suggests that at a minimum, we should allow crowd workers the moral

agency necessary to decide which tasks to complete, and allow them to participate
in collective bargaining to effect change when necessary. This requires that platforms
and intermediaries collect information such as the source of a dataset and the purpose
of a task. To allow employers the same moral agency in hiring, we propose adding
demographic information to a worker’s profile, with the understanding that we need
to explore ways for that information to not be used for discrimination.
Reduced Worker Interaction. Crowd labor is most tangibly different from other
forms of labor in that it removes a need for worker-worker and worker-employer inter-
action. Crowd workers interact with systems and interfaces rather than employers,
which changes their ability to act and react according to traditional social norms.
Workers also see less interaction with one-another: gone is the watercooler, the un-
scripted and informal assistance from a coworker, and the ability to discuss and pro-
pose improvements to tasks and processes with peers and superiors. Crowdsourcing-
based startups are implementing virtual versions of some of these interactions, but
it is important to quantify which interactions matter and how to re-implement them
for the virtual world.

To the extent that this reduced interaction negatively impacts crowd work and
crowd workers, it opens up avenues for research in human-computer interaction and
computer supported collaborative work. How can we provide a virtual watercooler
for the crowd? What systems can we build to allow workers to coach one-another?
How do we identify bottom-up mechanisms for improving the work environment and
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process?

Who Regulates Crowd Work? Many of the difficult questions in crowd work
are made more difficult by the lack of clear regulatory entity for crowd labor. If an
employer is in Monrovia, a crowd labor platform is in Istanbul, and a crowd worker
is in New York, which countries regulate the interaction? Even if all three parties
reside in America, how does the Fair Labor Standards Act apply? Which portions of
the legislation is the crowd employer to uphold, which portions is the crowd platform
responsible for,; and which do both have to follow? Felstiner addresses many of these
questions from the perspective of the American legal system [38], but more work
remains in answering the difficult international issues that arise.

One set of rules that is more difficult to apply is child labor laws. Does a child
in a developing nation with computer literacy, access to a computer, and enough
language skills to utilize MTurk or oDesk benefit more from participating in crowd
work or a potentially corrupt education system? What if the work they perform has
training modules that are at least equivalent to what the child would receive in an
apprenticeship? Does the level of danger the child is in differ from what they would
be exposed to if working in a sweatshop? It is likely that knowledge work-based crowd
labor raises yet-unanswered questions in employment and child labor regulations.
Reduced Friction, Increased Mobility. One argument against regulating crowd
work as much as we regulate other forms of employment is that there is less overhead
in establishing an employer-worker relationship in crowdsourced environments. Em-
ployers do not have to advertise work opportunities as extensively as they have to for
traditional employment relationships. A worker does not have to travel for the work.
Workers and employers do not have to read, understand, fill out, and sign complex
agreements before each new job.

The low overhead to start work means that workers and employers have less fric-
tion in deciding to end one relationship and start another. Assuming a minimum
amount of agency on both sides to get past the previously discussed abstractions,
an unsavory worker or employer should be discovered early on in a relationship that
could be ended quickly. Given this freedom to roam, it is possible that the extremes
raised in this discussion are self-regulated without much external intervention.

7.2 Breaking out of Microtasks

It is not difficult to draw analogies between some kinds of crowdsourced work and the
industrial production line. Many repetitive tasks on systems like MTurk require little
training overhead to get started, have a large supply of workers suited to perform
a task, utilize queueing theory metrics to identify performance, call for repeatable
processes, and gravitate toward predictable error rates. As one follows these analo-
gies to their natural conclusion, the draw of designing workflows through the use of
microtasks increases. The smaller the task any one worker performs, the easier it is to
verify that workers’ quality, and the easier it is to use basic methods such as latency
and throughput to quantify productivity.

For tasks such as image labeling or filtering, the microtask model is reasonable.
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While crowdsourced markets are a great source of labor for these microtasks, it is
also possible to do more with the crowd, ranging from building a picture book [3]
on MTurk to hiring a development team on oDesk. As we move toward performing
more creative tasks on crowdsourced platforms, however, we will not be able to rely
on microtasks. While microtasks make it easy to measure and predict metrics, they
make it difficult for workers to have enough context to do high-quality work on more
creative tasks.

As an example, consider Soylent’s Shortn. The Find-Fix-Verify pattern helps keep
workers on task while aggregating their work into a higher-level creative task such
as paper editing. In some respects this pattern shines: a fresh pair of eyes can look
at every paragraph and identify hard-to-find mistakes. In other respects, arguably
those for which we needed the higher-order thinking of an editor in the first place,
the system fails. Since Find-Fix-Verify is paragraph-based, it is possible for a worker
to remove a sentence from a paragraph that seems unimportant, but cause a problem
in a later paragraph that references the idea raised in the removed sentence. While
providing workers with more context and giving them more freedom to see how their
contributions affect the bigger picture may avoid such mistakes, it directly conflicts
with the design requirements of microtasks.

We need a workflow that allows us to build a crowd-powered Shortn without re-
moving as much context from tasks and still maintaining result quality. In speaking
with two startups about their crowd-powered workflow design, a common design pat-
tern emerges: Work-Review-Spotcheck. In the context of Shortn, the workflow would
be implemented as follows. Entry-level workers are assigned a paragraph each, and
told to shorten the paragraph. Their work is reviewed by a trusted party, initially
bootstrapped by the person requesting the workflow, but eventually by other crowd
workers who have proven themselves. The reviewer corrects mistakes and sends sug-
gestions to the entry-level worker, who iterates on their work. To ensure that reviewers
are still providing high-quality feedback and catching errors, we can periodically have
reviewers spotcheck one-another, providing oversight amongst reviewers.

The Work-Review-Spotcheck model has several benefits that future research can
quantify. Entry level workers provide useful work while learning. Workers are incen-
tivized to do better through three mechanisms: bonuses for good work, promotion to
reviewer status, or promotion to more complex tasks such as paper sections instead
of paragraphs. Employers receive work that is vetted by high-quality workers.

There are also some issues with the Work-Review-Spotcheck model. The first
involves how we bootstrap the reviewers. For example, it might be frustrating for a
user who wants an automated version of Shortn to be asked to review the crowd’s
work until a stable base of reviewers is identified. Bootstrapping is less of an issue
for organizations that run such workflows consistently, since at steady state, there
will be a pool of reliable workers. A second issue involves workflow latency. The
asynchronous process of giving feedback and improving on previous work with the
feedback might take longer than Find-Fix-Verify, but we might be able to design a
version of Work-Review-Spotcheck in which inexperienced and experiences workers
collaborate side-by-side.

Designing workflows that provide more context to workers allows for worker growth
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and improved work quality with added context. To avoid bootstrapping and latency
concerns, we can look to integrate these workflows into a longer-term employment
model, where employers interact with workers over longer time horizons. We discuss
this employment model next.

7.3 Moving Toward an Employment Model

As researchers, our typical crowdsourced usage patterns are sporadic, one-off process-
ing tasks. During the course of a project, we run several experiments on systems like
MTurk, analyze the results, and move on to other topics or workflows. This usage
pattern is not necessarily atypical: it can also be found in an organization that tem-
porarily needs help processing a dataset (e.g., a journalist that needs to label several
thousands of images she just received from a contact). Still, this usage pattern causes
us to think about workers in an adversarial way: we only see a few task submissions
from each worker, we have to build redundancy into our workflows to ensure we do
not trust any one worker’s output, and we often do not have the time to put workers
through training modules. Because it is easier to apply canned worker quality metrics
than it is to design task-specific training modules, the adversarial relationship also
extends to larger crowd employers.

Several trends will move us from an ad-hoc ephemeral worker scenario to a longer
employment-style relationship with workers. First, companies such as MobileWorks,
and even more general-purpose platform providers like MTurk and CrowdFlower now
provide specific APIs for popular tasks such as image labeling or text classification.
These providers have an incentive to think about their relationship with workers who
do such tasks as a long-term one, as this can improve their result quality. Ipeirotis
and Horton argue that providing such task-specific APIs with a sliding price scale
depending on the desired result quality will improve the market for the most popular
crowdwork [45]. Second, as crowdsourced workflows are popularized, some organi-
zations will build crowdsourced components into their everyday workflows, putting
crowdsourced labor pools in the common path of these organizations rather than the
one-off limited-sized task that they need completed.

In a world with longer-term relationships between employers and crowdworkers,
several research opportunities develop. The guiding light of this research involves
augmenting the adversarial “what workers should I filter due to bad results?” regime
to one that includes the question “how can I improve the output of my workers?”
Rather than redundantly asking small, verifiable questions as we do with Find-Fix-
Verify in order to weed out lazy workers, we can move toward Work-Review-Spotcheck
workflows in which entry-level workers are guided by more experienced workers to
improve their skills.

The concept of training-based workflows was touched on by Dow et al. as they
studied how to “Shepherd” crowd workers by providing them with feedback on their
work [36]. Worker feedback is key in a training-based workflow. Another research op-
portunity is to classify the feedback a worker has received across several tasks, trans-
parently identifying how that worker has performed along various axes (e.g., “Practice
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your capitalization, and keep up the good work on avoiding sentence fragments!”).
Given a long-term relationship with a worker, employers can design training modules
that both onboard new workers and assign workers to training modules depending on
their identified weaknesses.

Research supporting an employment model of crowd work celebrates a notion of
upward mobility that we point to in effective workplaces. Providing workers visibility
into the promotion process required in workflow patterns that rely on more experi-
enced crowd workers to play the role of reviewers and trainers provides an incentive to
improve oneself. While the research community has spent significant effort exploring
notions of fault tolerance and redundancy in crowdsourced workflows, there remain
several opportunities in studying long-term training-based workflows.

7.4 Alternative Optimization Objectives

In this dissertation, we explored various algorithms and optimizations that trade off
the cost, time, and quality of crowd-provided responses. Beyond research prototypes,
an organization has to consider other tradeoffs, such as the longetivity, happiness,
and alertness of their workers, and is often compelled by regulation to make other
guarantees such as a minimum wage or maximum work week. One of the benefits
of utilizing a system to manage interactions with crowd workers is that, assuming a
policy is encodable (e.g., workers should only work 40 hours per week), the system
can more accurately enforce the policy than a human would. We now explore a few
high-level objectives that could be encoded into a system like Qurk.

Minimum Wage Requirements. Traditional workplace regulations might require
employers to provide a minimum hourly wage for workers. Beyond regulation, a
minimum hourly payout establishes an expectation at the outset of an employer-
crowd worker relationship that defines the minimum payout a worker can expect. A
pay-per-task model with a minimum wage requirement leaves in place an incentive
mechanism for workers to complete more work so that they can be paid above the
minimum while contributing to a relationship of trust.

Qurk could enforce such a payment mechanism through employer-paid bonuses.
For each hour logged by a worker, the system could provide a bonus to any workers
whose task-based pay does not meet the minimum. This mechanism would likely
necessitate better metrics and employer reporting interfaces to ensure that workers
whose cost-normalized quality is too low are trained to improve performance.
Context. As we discuss in Section [7.2] microtasks make it difficult for crowd workers
to have enough context about the larger task they are completing to perform optimi-
ally. Still, microtasks make it easier to verify crowd work, and there are cases where
we would like to decompose large tasks.

With some understanding of the problem being deconstructed into microtasks,
Qurk could optimize for context. Consider executing Soylent’s Shortn using a Find-
Fix-Verify workflow at the paragraph level. If inter-paragraph context is a concern,
Qurk could, instead of showing a crowd worker a random paragraph as they complete
several tasks, show them a paragraph from the same section as previous paragraphs
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they have completed. The benefits of microtasks are still readily available, but the
crowd worker now has more visibility into how their contributions affect the higher-
level process. To generalize this solution, tasks could be defined with a desired order
and affinity to other tasks. When a worker seeks another task, the system could,
instead of showing a random task, bias task selection toward subsequent tasks with
high affinity.

Training. In Section 7.3, we discuss the idea of a training-based employment model
for crowd work. In such a model, we do not simply reject bad work and workers, but
identify their mistakes, provide them with feedback, and assign them to go through
specialized training modules.

If Qurk were mistake- and training-aware, it could optimize task assignment based

on this information. For example, Qurk could classify a worker’s mistakes as being
indicative of being bad at punctuation. It could then assign reviewers to provide
the worker with punctuation-oriented feedback, and require the worker to complete
a training module on punctuation.
Predictable Talent Pool. In addition to low latency and cost Qurk can optimize
for predictable throughput and quality. As we move beyond crowd-powered workflows
that are built for ad-hoc purposes on finite datasets, the long-term predictability of
the system becomes more important. An organization might have a sense of the rate
of incoming tasks that require human attention, and wants to predictably be able to
handle the load by the end of a business day, for example.

For Qurk, such throughput predictions go hand-in-hand with quality metrics.
Over time, Qurk can learn the aggregate quality of its longest-participating workers,
and take into account the training and ramp-up time required for new workers to
adjust to the tasks they are asked to perform. As a user requests throughput levels
that go beyond what the high-quality crowd can provide, the system should be able to
bring on and train new workers in advance of the throughput bump so that they are
trained and able to produce high-quality work by the time of the expected throughput
increase.

7.5 Designing with and for the Crowd

There are largely three parties involved in crowdsourced labor: crowd platform providers,
crowd employers, and crowd workers. As facilitators, platform providers have an in-
centive to research and design for themselves. A significant research and design effort
has gone into supporting crowd employers, as easy, effective, and understandable task
generation processes are a necessary component of scaling up crowd work. The last
group, the crowd laborers, has seen some attention from the economics and social
sciences fields, but has received almost no attention from systems builders.

Within the crowd worker community, several efforts to improve crowd workers’
lives suggest that the current tools at workers’ disposal are not sufficient. The ex-
istence of worker-hosted message boards such as Turker Nation show that crowd
workers are willing to share information with one-another, and that platform-based
communication mechanisms are insufficient. Irani and Silberman have taken an ac-
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tive position in building tools to facilitate information-sharing between workers. They
built TurkOpticon [12], a browser plugin that allows Turkers to see the ratings other
workers have given to potential employers. In order to better understand workers’
needs, they also asked Turkers to write up a bill of rights [68]. Such efforts can give
us better insight into how we can build tools to benefit crowd workers.

Building systems for and alongside crowd workers is important for several reasons.
First, it allows us to address their concerns directly, allowing us to tackle ethical and
economic issues faced by crowd workers that it might take regulators years to enforce.
Second, optimizing with only task generation in mind can lead to locally optimal but
globally sub-optimal solutions in crowdsourced markets. For example, if workers can
only sort available tasks by quantity and price, a worker who wishes to perform tasks
that will improve their language skills will have a difficult time finding an appropriate
task. Finally, designing alongside crowd workers will give us more insight into the
process and preferences of the crowd, which might result in better crowd-powered
workflow design.

Given the benefits of designing with and for the crowd, we now explore some
design directions from the crowd’s perspective.

Task-specific Backgrounding. What happens in a worker’s mind at the critical
moment when they decide to take on a task? Horton and Chilton touch on this ques-
tion from the economic perspective, identifying the distribution of worker reservation
wages, or hourly wage below which that workers are not willing to take on work [43].
Embedding with and interviewing workers in order to observe the other factors that
go into task selection may inform the design of worker-oriented tools.

Reporting. Workers in the process of finding tasks to perform on platforms such
as MTurk are aided by a listing of available HIT groups that is sortable by how old
a task is, how much money is paid per HIT, and how many HITs are available in
a particular HIT group (e.g., “1043 remaining image labeling tasks for John Doe at
$0.01 per image”). Chilton et al. explored how workers use the available task search
mechanisms in MTurk [28]. More broadly, how does a task discovery dashboard
designed alongside crowd workers look?

One could add more information to the dashboard, such as data about employ-

ers with whom the worker has had a good relationship in the past, employers that
have been rated highly by other workers, or the effective hourly wage of tasks from
each employer. This information would provide valuable information and incentivize
employers and workers to be respectful of one-another. Identifying task types that a
worker has a particular skill at, preference for, or desire to become better at, would
also be helpful to workers.
Collaboration. Given the level of information-sharing on message boards such as
Turker Nation, it would be interesting to see just how much crowd workers are willing
to work together. Can information-sharing in real-time help workers identify unsavory
or particularly rewarding employers? Can we help workers organize into self-training,
self-evaluating groups that vouch for the quality of work that a certified group member
can provide? Is “pair crowd work” where two workers are able to contribute to a
task side-by-side, perhaps with different levels of experience or expertise, desirable to
workers and can it improve result quality for employers?
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Optimizers for Workers. The database community has decades of experience
building cost-based optimizers, and several efforts to apply these to managing crowd-
powered workflows are starting to bear fruit. What if we built optimizers for crowd
workers? Instead of searching for tasks to perform in a sorted list, what if crowd
workers identified their preferences for task type, wage, employers, and training paths,
and an optimizer automatically presented them with tasks that, as a whole, optimize
for their desires? The challenges in building such a crowd-empowering optimizer are
twofold:

1. Encoding workers’ desires in a method that is both intuitive to workers and
meaningful for the optimizer, and

2. Explaining to workers how a selection of several tasks optimized for their pref-
erences.

Goal-setting and Upward Mobility. Two related practices that traditional work-
places espouse are setting longer-term goals (e.g., “I want to learn to program in
Scala”), and Upward Mobility (e.g., “My ultimate goal is to become a Creative Di-
rector one day”). An important question is whether crowd workers want to view
their relationship with crowd labor as one that enables upward mobility, and if they
want crowd work to help them grow professionally. If the workers want their work to
facilitate this sort of growth, then how can a crowd-empowering optimizer take the
learning and professional goals of crowd workers into account as we select tasks for
them?

7.6 More System Support

As Qurk is described in this dissertation, it is an end-to-end implementation of a
crowd-powered workflow engine with a query language, data model, basic crowd-
powered operator set, and some crowd-aware optimizations included. There are sev-
eral areas of research in expanding the system.

Whole Plan Budget Allocation: Qurk can determine and optimize the costs of
individual query operators. We can also perform cross-operator optimizations by
combining or reordering operators through the selectivity estimation engine in the
Qurk optimizer. In practice, crowd-powered workflows include several operators, and
a user will want to assign a single payout amount for the entire workflow.

The single budget-multiple operator problem is an interesting and only lightly
explored one, especially in the face of unpredictable worker performance and response
latency constraints. In the Deco system [65], Parameswaran et al. explore the cost
and latency of various query plans, which is a good first step toward budget allocation.

An additional consideration arises when there is too much data to process with a
given budget. We would like Qurk to be able to decide which data items to process in
more detail. This optimization would require modelling how the user values different
data items and optimizing against this cost function.

113



Iterative Debugging: In implementing queries in Qurk, we found that workflows
would fail because of poor worker interface design or the wording of a question.
Crowd-powered workflow engines could benefit from tools for iterative debugging.
One of the design goals of TurKit [55] is to facilitate iterative development, where pre-
vious worker responses are cached and reused as programmers tweak crowd-powered
workflows.

A fruitful direction for future work in this area is in the design of a SQL EXPLAIN-

like interface that annotates operators with signals such as worker agreement, latency
and throughput, cost per result, and other indicators of where a query has gone astray.
Additionally, it is important to generate representative datasets for trial runs on new
workflows before expending the entire budget on a buggy user interface element. This
work would expand on prior research by Olston et al. in sample tuple generation for
Pig workflows [61], taking into account complexities such as worker disagreement and
result uncertainty.
Runtime Optimization: The techniques we have explored in this paper have re-
flected a mostly static view of per-dataset crowd-powered workflow optimizations. In
practice, timing and pricing dynamics, as well as the types of workers available on a
crowd platform at a given time of day, will vary.

An interesting direction for future research is in runtime pricing and optimization.

If it appears that one type of task takes longer to complete than others, Qurk can
offer more money for it in order to get a faster result, or have workers perform
more of the task type that is bottlenecking a workflow to improve throughput. An
alternative design that is useful in cases where response latency is not critical would
be to schedule tasks so that they run during times when more workers are available
online to potentially reduce costs.
Task Result Cache: Once a HIT has run, its results might be relevant in the
future. For example, if the products table has already been ranked in one query, and
another query wishes to rank all red products, the result of the old HITs can be used
for this. Additionally, as explored in TurKit, queries might crash midway, or might
be iteratively developed. In such scenarios, a cache of completed HITs can improve
response time and decrease costs.

While the cache can make it easier to iteratively improve workflows and reduce

unnecessary repetitive costs, cache invalidation is an art. Cache invalidation with
crowd-provided answers is a semantic challenge. For example, survey results for
presidential candidates might not be valid the day after a scandal is revealed, whereas
product reviews are likely stable until a new product model is released. To provide
users with the ability to cache results that are semantically meaningful, we can modify
the Qurk query language to support cache expiration policies at both the UDF and
query level.
Model Training: In Chapter [4] we described how machine learning models may
be able to substitute for worker responses after a training phase bootstrapped from
worker results. For example, a sentiment analysis algorithm can reach the precision
of human raters with enough training data, but is essentially free to utilize relative
to crowd workers.

From an architectural perspective, Qurk supports learning models, and can trade
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off crowd responses with model responses depending on result precision and recall.
A good amount of work remains in exploring how far we can take general-purpose
learning models in place of human responses, how to utilize active learning to reduce
the training phase, and what forms of result quality to use in deciding when to move
from human- to machine-generated results.

7.7 Limitations of Experimental Results

In order to conduct repeatable experiments that were fair to all study conditions,
we made the decision not to modify experimental conditions based on observations
made in previous experiments. Most importantly, while we had access to worker
quality metrics after every experiment, we did not ban or filter out workers with poor
performance in subsequent experiments. In practice, biasing toward workers who have
provided accurate results in the past would improve work quality over time, much
in the same way that building a stable working relationship with employees does in
traditional firms. Were we to implement basic worker selection metrics, we suspect
the cost-normalized result quality would increase. Because utilizing worker quality
information should improve result quality, we believe that the results presented in this
dissertation would be of a similar quality if repeated, and could increase in quality as
worker quality metrics are applied to worker selection on larger datasets.
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Chapter 8

Conclusion

Crowdsourcing has seen high uptake in recent years, and shows great promise in its
integration into data processing systems. Adding a human in the loop of a previously
automated or previously impossible task is challenging, both in terms of encoding
the logic for dealing with human input and in terms of designing and optimizing
human-powered tasks.

In this dissertation, we explored how declarative workflow management systems
can make the crowdsourcing process easier to use and more efficient to execute. We
identified meaningful properties of such systems by exploring the data and query
models of Qurk alongside its architecture. Using Qurk, we were able to explore the
implementation of interfaces and algorithms that optimize human-powered operators
such as sorts and joins. Finally, we saw that human-powered workflows can be op-
timized by adapting traditional database optimization techniques such as selectivity
estimation, and in the process learned about humans’ ability to count using different
user interfaces.

In the end, we find a symbiosis: crowds make novel forms of data processing
possible, and declarative workflow management systems can optimize the process of
working with crowds.
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