
JudoSTM: A Dynamic Binary-Rewriting Approach to
Software Transactional Memory

Marek Olszewski, Jeremy Cutler, and J. Gregory Steffan
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario M5S 3G4, Canada

{olszews, cutler, steffan}@eecg.toronto.edu

Abstract

With the advent of chip-multiprocessors, we are faced
with the challenge of parallelizing performance-critical
software. Transactional memory (TM) has emerged as a
promising programming model allowing programmers to
focus on parallelism rather than maintaining correctness
and avoiding deadlock. Many implementations of hard-
ware, software, and hybrid support for TM have been pro-
posed; of these, software-only implementations (STMs) are
especially compelling since they can be used with current
commodity hardware. However, in addition to higher over-
heads, many existing STM systems are limited to either
managed languages or intrusive APIs. Furthermore, trans-
actions in STMs cannot normally contain calls to unobserv-
able code such as shared libraries or system calls.

In this paper we present JudoSTM, a novel dynamic
binary-rewriting approach to implementing STM that sup-
ports C and C++ code. Furthermore, by using value-based
conflict detection, JudoSTM additionally supports the trans-
actional execution of both (i) irreversible system calls and
(ii) library functions that may contain locks. We signifi-
cantly lower overhead through several novel optimizations
that improve the quality of rewritten code and reduce the
cost of conflict detection and buffering. We show that
our approach performs comparably to Rochester’s RSTM
library-based implementation—demonstrating that a dy-
namic binary-rewriting approach to implementing STM is
an interesting alternative.

1. Introduction
As chip-multiprocessors become increasingly ubiqui-

tous, researchers are faced with the daunting task of making
it easier to exploit them through parallel programs. Tradi-
tionally, programmers have relied on lock-based synchro-
nization for protecting accesses to shared data in concurrent

applications. However, parallel programming with locks
requires considerable expertise to obtain scalable perfor-
mance. Typically, programmers must resort to fine-grained
locking—a method that is difficult to implement correctly,
often falls prey to problems such as deadlock and priority
inversion, and can hinder modularity since locks must often
span software component boundaries.

Transactional memory (TM) has emerged as a promis-
ing solution to the parallel programming problem by sim-
plifying synchronization to shared data structures in a way
that is scalable, safe, and easy to use. When programming
an application with TM, a programmer encloses any code
that accesses shared data in a coarse-grain transaction that
will be executed atomically; the underlying TM system ex-
ecutes transactions optimistically in parallel while remain-
ing deadlock free. Optimistic concurrency is supported
through mechanisms for checkpointing, conflict detection,
and rollback, which comprise the foundation of TM sys-
tems and have been the subject of continued research into
hardware [2, 10, 19], software [5, 8, 11, 17, 18, 22, 25], and
hybrid [4, 14, 23] approaches. Software-only implementa-
tions of TM (STMs) are especially compelling since they
can be used with current commodity hardware, and provide
an opportunity to gain experience using real TM systems
and programming models.

1.1. Challenges for STM Systems
STMs have several challenges remaining, the most

significant being the large overheads associated with a
software-only approach. However, the following two ad-
ditional key challenges for STMs have so far received little
attention.

Support for Unmanaged/Arbitrary Code Many STM
designs [9, 11, 17] target managed programming languages
such as Java and C# to reduce overheads by leveraging the
availability of objects, type safety, garbage collection, and
exceptions. However, these systems do nothing to support

TM for the majority of programmers who work in unman-
aged languages such as C and C++. Fortunately there has
been a growing interest in supporting these languages: both
OSTM [8] and RSTM [18] support object oriented C and
C++ applications, respectfully. However, only recently has
a solution targeting arbitrary (i.e., non-object oriented) C
and C++ code been proposed [25]. Unfortunately, the de-
sign requires programmers to hand-annotate all functions
that might be called within a transaction, precluding sup-
port for calls to pre-compiled code.

Support for Library and System Calls For TM to
achieve wide adoption, programmers must be able to use
modular software components, including the crucial ability
to use pre-compiled and legacy libraries—without such sup-
port, programmers must re-implement STM-friendly ver-
sions of any required library code at great development
and verification cost. The development of STM-capable li-
braries will be slowed by the lack of STM standards in pro-
gramming model, API, and hardware interface (if applica-
ble). Furthermore, if library code contains system calls they
must be hand-modified to follow the semantics of open-
nested transactions [20].

1.2. STM via Dynamic Binary-Rewriting
In this paper we introduce JudoSTM, a novel STM sys-

tem that uses dynamic binary-rewriting (DBR) to instru-
ment applications for transactional execution. With DBR,
code is transformed to support transactional execution on-
the-fly at run-time—hence DBR intrinsically supports arbi-
trary unmanaged code, as well as static and dynamic shared
libraries. Concurrent with our work, preliminary work by
Ying et al. has demonstrated that DBR can be used to
augment a compiler-based STM to support legacy library
code [26]. With a DBR-based STM, programmers can im-
mediately enjoy the software engineering benefits of using
transactions even when programming with existing legacy
component binaries.

Unfortunately, DBR does introduce additional over-
heads. While the cost of the rewriting process can be
quickly amortized, the resulting code is typically slower to
execute than before, even when not instrumented. While a
portion of this extra overhead is due to an increase in branch
instructions and code duplication, the majority is due to the
cost of translating the targets of indirect control instructions
such as returns, indirect jumps, and call instructions. Since
targets vary during execution, the translation of targets must
also be done at runtime at a significant cost. However, our
optimized implementation of the translation mechanism—
and other recently-proposed methods [12, 24] concurrent
with our work—can significantly reduce this overhead. In
Section 2 we will demonstrate that the performance of DBR
is quite acceptable for implementing a STM.

JudoSTM detects conflicts by comparing the values of
memory locations accessed by each transaction, ensuring
that they have not been modified after they were origi-
nally read within that transaction. We call this approach
value-based conflict detection [6]. Since value-based con-
flict detection allows each transaction to independently ver-
ify its read-set without posing any requirements on concur-
rent transactions, it can be used to detect conflicts between
arbitrary transactions. However, value-based conflict de-
tection is expensive: unlike other conflict detection algo-
rithms, its overheads cannot be reduced by grouping multi-
ple accesses to adjacent regions of memory to verify them
simultaneously. Instead, a compare instruction must be ex-
ecuted for each memory location accessed. To reduce this
overhead, we present a novel technique that emits custom
transaction-instance-specific read-set validation code to re-
duce the number of instructions and data accesses required
to verify a read-set. This same technique is also used to
reduce the cost of committing write-buffered data.

In addition to supporting legacy and unmanaged code, a
DBR-based STM such as JudoSTM can offer the following
desirable features.

Sandboxing and Optimistic Read Concurrency Op-
timistic read concurrency (also referred to as invisible-
readers) has been shown to improve performance by re-
ducing inter-processor communication [18]. If a transaction
executes with optimistic read concurrency, it must perform
expensive read-set validation after each read to prevent it
from operating on inconsistent data. Not doing so allows
it to use inconsistent data to make control-flow decisions
that, for a conventional STM, may lead execution to a re-
gion of code which has not been transformed for transac-
tional execution—execution of such code cannot be rolled
back and is therefore unsafe. Some degree of safety can be
obtained with support from trap handlers or with safe load
instructions [5]; however, only a truly sandboxed transac-
tion can execute safely when operating on inconsistent data.
Since DBR transforms all code at runtime it can efficiently
implement truly sandboxed transactions with the help of
trap handler support, enabling optimistic read concurrency
without performing incremental read-set validation.

Privileged Transactions Blundell et al. [2] proposed that
TM systems should support system calls since programmers
are typically unaware of when their code may make such
calls, especially when compiling and linking system com-
ponents and libraries separately. Consequently they also
proposed a hardware TM design that allows a single unre-
stricted transaction (i.e., one which is allowed to make sys-
tem calls) to execute concurrently with simpler restricted
ones. JudoSTM similarly supports a single transaction that
can make system calls which we call a privileged transac-
tion. Since system calls may perform I/O (which cannot be

undone), a privileged transaction cannot be rolled back once
it makes a system call. Instead, JudoSTM ensures that any
other non-privileged transactions are aborted should a con-
flict be detected. Since the system call escapes the control
of JudoSTM, we cannot instrument its memory writes to
verify the read-sets of the non-privileged transactions. As a
result we cannot detect conflicts by comparing the memory
addresses accessed by each of the transactions, or by com-
paring data versions [5] or access timestamps [25]; instead
we depend on JudoSTM’s value-based conflict detection
mechanism, which allows us to detect conflicts despite sys-
tem calls in a privileged transaction that escapes JudoSTM’s
control.

Legacy Lock Elision A store that does not change the
contents of the overwritten memory location is called a
silent store. These types of stores have been shown to be
quite common in general-purpose applications [15]. For
a TM system that employs write-buffering, any sequence
of stores to a single address that ends with a store of the
original value can be compressed down to a single silent
store at commit time. A compelling example of such a se-
quence can occur during the acquisition and release of a
test-and-set or compare-and-exchange lock that maintains
its state using two values, such as 1 and 0, to represent
locked and unlocked states. If a transaction were to exe-
cute legacy code containing such a lock, it would first ac-
quire it by atomically writing a 1, assuming the lock is
un-contended, and later free it by writing a 0. A write-
buffered STM could replace these two writes with a silent
store at commit time, overwriting the lock without chang-
ing its state. Hence by performing value-based conflict de-
tection, JudoSTM can efficiently ignore existing lock ac-
quisitions in legacy software, allowing it to optimistically
execute any lock-protected code across multiple concurrent
transactions instead of detecting false conflicts. For locks
that are coarse-grained, eliding them in this way can dra-
matically reduce transaction aborts.

1.3. Contributions
This paper makes the following contributions: (i) we

present a novel STM system based on dynamic binary-
rewriting that supports both statically and dynamically
linked arbitrary C and C++ code; (ii) we demonstrate the
feasibility of such an approach by comparing a prototype
to the Rochester Software Transactional Memory (RSTM)
system; (iii) we propose the use of value-based conflict de-
tection to efficiently support the transactional execution of
already thread-safe library code and unobservable and irre-
versible code such as system calls; (iv) we introduce a new
technique for improving the performance of software write-
buffering and conflict detection by emitting and executing
custom transaction-instance-specific verification and write-
buffer commit code.

2. Judo
JudoSTM is built on Judo, our x86 DBR framework.

Like most DBR systems, Judo lazily rewrites portions of
an application just-in-time (i.e., right before the code is
about to execute) into a code-cache from where it is ex-
ecuted. Within the code-cache, Judo is free to augment
rewritten code with arbitrary instrumentation for a variety
of purposes. Judo rewrites all control instructions within
the code-cache to point to their code-cache equivalent tar-
gets; however, if a rewritten branch has a target that itself
has yet to be rewritten, the rewritten branch will instead tar-
get stub code that invokes the just-in-time compiler (JIT) to
rewrite the actual target. Hence Judo is able to sandbox an
application, guaranteeing that any code that executes will be
instrumented including any calls to legacy libraries or code
executed by accident.

Like all DBR systems, Judo incurs overhead. However,
since the cost of JITing can be quickly amortized we find
that JITing alone is not the most significant component of
total overhead. Instead, much of it can be attributed to (i)
inferior code layout that results in extra branch instructions
and code duplication, and (ii) the cost of indirect branch tar-
get translation that must be performed at runtime for each
indirect branch, call, and return instruction. There has been
much recent research on DBR, particularly on reducing
these overheads. Judo implements many of these optimiza-
tions in addition to more novel ones described in further
detail here. A more complete description of Judo’s imple-
mentation is available in a previous publication describing
Judo’s predecessor JIFL [21].

2.1. Trace-Level JITing
Similar to both Pin [16] and HDTrans [24], Judo JITs at a

trace granularity. These traces should not be confused with
DynamoRIO’s dynamically profiled hot traces [3]—instead,
Judo selects traces statically at JIT time, although their se-
lection can be indirectly influenced by previously executed
code through the current contents of the code-cache. Many
trade-offs exist when deciding trace sizes. JITing at a ba-
sic block granularity will reduce the size of the code-cache,
since only code that is guaranteed to execute is rewritten
and cached. However, basic block JITing can introduce new
branches between basic blocks that were previously con-
nected with fall-through edges, and place basic blocks ac-
cording to their first execution order which may be unrep-
resentative of future executions. Alternatively, JITing large
traces will likely reduce code-cache locality by JITing su-
perfluous code that will never execute.

In Judo we attempt to balance these trade-offs by creat-
ing small traces that follow the original basic block layout.
Judo JITs a small number of adjacent basic blocks together
and connects them with the normal fall-through edges of
conditional branches and call instructions. A trace is termi-

0x08000000:

jmp (%eax)

(a) Original indirect
branch

0xB7000000:

mov %edx, edx_save
mov %ecx, ecx_save
mov (%eax), %edx
lea 0x498689F0(%edx), %ecx
jecxz 1
lea 0x49868AF0(%edx), %ecx
jecxz 2
jmp indirect_dispatcher

1: mov edx_save, %edx
jmp 0xB6F97610

2: mov edx_save, %edx
mov ecx_save, %ecx
jmp 0xB6797510

..
.

(b) Translated branch when only
few targets have been detected

0xB7000000:

mov %edx, edx_save
mov %ecx, ecx_save
mov (%eax), %edx
movzx %dl, %ecx
jmp buckets(,%ecx,4)

0xB8000000

buckets:

..
.

..
.

0xB8000000:

lea 0x498689F0(%edx), %ecx
jecxz 1
lea 0x49868AF0(%edx), %ecx
jecxz 2
jmp indirect_dispatcher

1: mov edx_save, %edx
jmp 0xB6F97610

2: mov edx_save, %edx
mov ecx_save, %ecx
jmp 0xB6797510

..
.

(c) Translated branch when many targets have been detected

Figure 1. Indirect branch predication in Judo

nated early if an indirect branch/call, or return instruction
is encountered, or if a fall-through target is already in the
code-cache. Judo will not create traces that span uncondi-
tional branches; however, it will combine unconditionally
linked traces if they are JITed consecutively. Of related
schemes, this trace selection strategy is the most similar
to that of HDTrans [24], except that HDTrans has unlim-
ited basic blocks within a trace. We found that imposing
a limit can significantly improve the performance of cer-
tain applications through improved code-cache locality and
reduced pollution in unified upper-level caches. To mini-
mize code duplication, Judo maintains a mapping between
all re-written instructions and their original addresses (for
basic blocks that are not instrumented with per-basic block
instrumentation)—allowing jumps to target the middle of
JITed traces rather than duplicating the targeted portions of
such traces.

2.2. Indirect Branch Chaining
Indirect branches (such as that pictured in Figure 1(a))

can have multiple varying targets which must be translated
to their code-cache equivalents every time the branch is exe-
cuted. Judo makes use of predicated indirect branch chain-
ing, a popular method of reducing the cost of translation
that quickly translates and jumps to commonly-used tar-
gets through a sequence of comparison and jump instruc-
tions. Judo performs comparisons using the widely adopted
lea/jecxz approach originally used in DynamoRIO [3],
which does not affect condition flags. Each compari-
son requires two registers that Judo frees-up by spilling
the resident values to global variables (edx save and
ecx save), and later restoring them only for targets where
they are live. Like Pin and HDTrans, Judo incremen-
tally inserts new comparisons as new targets are detected.
However, in Judo new instructions are emitted adjacent
to each other in pre-allocated memory (as shown in Fig-
ure 1(b)), thus improving code-cache locality and eliminat-
ing the need for the extra jump instructions required by the
predicated chains of dynamically-allocated memory used in
Pin and HDTrans.1

If a substantial number of unique targets are encountered
for a specific branch, Judo reduces the number of compar-
isons required to translate the target address by rewriting
the branch to perform the lookup using a local executable
hash table (shown in Figure 1(c)) that resembles the global
sieve used in HDTrans [24]. Like the sieve approach, we
use the movzx (move and zero-extend) instruction, since it
does not overwrite the condition flags, as a hash function
to convert an original branch target into a per-branch 256-
entry table index that is used to indirectly branch to a shorter
sequence of lea/jecxz comparisons.

2.3. Judo Performance
In Figure 2 we compare the performance of Judo and

DynamoRIO on SpecINT2000 benchmarks; to demonstrate
best-case performance, each was measured without actually
applying instrumentation. Each of the benchmarks were
compiled with gcc v3.3.6 at the -O2 optimization level, and
executed with the largest input file. Judo incurs only 15%
overhead, compared to 26% for DynamoRIO. Furthermore,
in rare cases (MCF and TWOLF) Judo can speed up execution
by up to 7%: we attribute these speedups to the improved
spatial code locality of the code-cache, which results in a
smaller instruction working set and in turn less pollution in
the unified caches. Both the benchmarks benefit from freed
cache capacity due to their memory intensive nature. These
promisingly-low overheads are what originally inspired us
to build on Judo to develop JudoSTM.

1Note that we found our linear pre-allocated memory approach to out-
perform predicated chains of dynamically-allocated memory, even when
elements are ordered optimally through dynamic profiling.

1.
26

1.
06

1.
04

1.
03

1.
41

0.
95

1.
25

1.
53

1.
15

1.
03

2.
20

1.
11

1.
05 1.
07

1.
50

1.
05

1.
41

1.
31

1.
26

0.
93

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

mcf gcc vpr gzip bzip2 vortex twolf crafty eon Geometric
Mean

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e

Judo DynamoRIO

Figure 2. Dynamic binary rewriting performance comparison

#define atomic \
int __atomic_count = 0;\
asm volatile ("":::"eax", "ecx", "edx", "ebx",\

"edi", "esi", "flags", "memory");\
judostm_atomic_start();\
for (; __atomic_count < 1; judostm_atomic_stop(),\

__atomic_count++)

Figure 3. Definition of JudoSTM’s atomic
macro used to specify transactions

3. JudoSTM
Next we describe how we built on the Judo DBR frame-

work to implement JudoSTM. In particular we explain how
to program with JudoSTM, how we arrived at various de-
sign decisions for JudoSTM, and how it is implemented—
including detailed descriptions of support for efficient read-
set validation and commit, system calls, and library calls.

3.1. Programming with JudoSTM
JudoSTM is implemented as a self-contained static li-

brary which can be linked to any application requiring STM
support. When using JudoSTM, a programmer need only
include our judostm.h header file, and can then compile
the program using any compiler.

To specify transactions, JudoSTM supports the
commonly-used atomic{} syntax. Since JudoSTM
does not have compiler support, it defines the atomic
keyword using the macro definition shown in Figure
3. To insert calls to our runtime system both before
and after the transaction statement block, the macro is
defined as a for loop that executes its body once, after
a call to judostm atomic start and before a call to
judostm atomic stop. We find that the loop is typi-
cally eliminated by the compiler even at low optimization
settings. The macro also contains GAS advanced inline as-
sembly to specify that all of the registers may be clobbered,
thus forcing the compiler to automatically checkpoint
live input registers to the stack. We do not checkpoint
live local input variables which have been spilled to the

stack, and therefore encourage programmers not to create
transactions that write to input variables in case they do
not get checkpointed; doing so is easy and does not limit
program expressibility. However, this limitation could be
easily overcome with compiler support, for example by
using a comprehensive checkpointing algorithm [25].

3.2. JudoSTM Design Decisions
JudoSTM’s design is succinctly described as a write

buffering, blocking, invisible-reader STM using value-
based conflict detection. The following describes our ra-
tionale for choosing this point in the STM design space.

Value-Based Conflict Detection Value-based conflict de-
tection was chosen because it is critical for allowing un-
observable code, such as system calls, to execute safely in
parallel with other speculative transactions. Furthermore, it
efficiently ignores silent stores which has the nice benefit
of allowing JudoSTM to elide legacy locks within transac-
tions. Finally, value-based conflict detection is especially
attractive for ordered transactions, since the oldest transac-
tion need not execute with instrumentation for this conflict
detection scheme.

Read Buffering JudoSTM uses a read buffer to store the
initial value of each address loaded while executing a trans-
action. Upon commit, the read-set is validated by compar-
ing the memory locations read by the transaction with the
contents of the read buffer. While a transaction is execut-
ing, all accesses to previously-read locations must be redi-
rected into the read buffer. The need for this indirection
may seem unnecessary at first—but it is required to prevent
conflicts from going undetected in the presence of three or
more transactions (or two where one is privileged), which
may cause a subtle read/write/read/write race condition as
illustrated by the following example.

Consider two transactions that both access a global vari-
able. Suppose that a transaction (transaction1) is
executing concurrently with a second privileged transac-
tion that has made a system call (transaction2)—
since transaction2 is privileged its writes are not

buffered. Assume that both transactions are operating
on the same global variable (A). First transaction1
reads A and copies it to the read buffer for eventual
read-set validation. Next transaction2 increments A,
and transaction1 reads it again directly from mem-
ory. If transaction2 modifies A back to its original
value before transaction1 performs read-set valida-
tion, transaction1 will fail to detect the conflict. To
solve this problem, the second read is instead redirected to
the read buffer—this way transaction1 will still com-
mit but will have executed with a consistent view of A (i.e.,
the original value of A before transaction2 modified
it). Therefore JudoSTM must introduce this level of indi-
rection for all memory accesses that may conflict.

Write Buffering We also chose to use a write-buffer roll-
back mechanism instead of an undo-log approach because
of the write-buffer’s compatibility with the level of indi-
rection already required by value-based conflict detection.
While undo-logging has been shown to exhibit impressive
results for low contention applications [7, 25], it suffers sig-
nificantly in high contention scenarios where many con-
flicts trigger expensive rollbacks [5]; under these condi-
tions, write-buffering fairs much better. Furthermore, recent
implementations of write-buffering have been shown to per-
form competitively even in low contention scenarios [5].

Blocking To support system calls, which cannot be rolled
back, JudoSTM requires a blocking design. While block-
ing does reduce dependability, recent STMs [5, 22, 25]
have also implemented blocking designs to improve perfor-
mance. Blocking transactions were originally championed
by Ennals [7] who argued that many of the perceived neg-
ative attributes of blocking—such as convoying and prior-
ity inversion—are either largely irrelevant on future chip-
multiprocessor hardware or acceptable to the majority of
programmers in exchange for better performance.

Commit JudoSTM supports two types of commit: coarse
and fine-grained. In coarse-grained commit, a single global
lock is used to synchronize transaction validation and com-
mitting to enforce that transactions atomically either suc-
ceed or abort. To allow read-only transactions to commit in
parallel, and to minimize the bus traffic caused by writes to
the lock, read-only transactions do not acquire the lock. In-
stead, they check to ensure that the lock is not held by any-
one at the start and after validating their read-set, and that
no transaction committed any data between the two points.
By using the upper 31 bits in the lock word for storing com-
mit version numbers, we can perform both checks with just
three instructions. Additional, memory fence instructions
are inserted to prevent the comparisons from executing out-
of-order with the read-set validation.

For fine-grained commit, JudoSTM uses a hash to map

the address space into 8192 regions (a.k.a. strips) and as-
sociates a lock with each region. To commit, a transaction
acquires the locks associated with the regions that it will
write to. Similarly, a transaction verifies that the locks as-
sociated with the regions being validated are not acquired
by other transactions during read-set validation. To prevent
deadlock, rather than sorting the order of acquisitions, we
instead rely on bounded spin-wait times.

Conflict Resolution JudoSTM resolves conflicts differ-
ently depending on which commit variant is used. For fine-
grained commit, JudoSTM re-runs the failed transaction by
executing its native (un-rewritten) code while holding the
commit lock. Doing so is desirable because it prevents live-
lock and eliminates an extra (costly) lock acquisition while
still allowing other transactions to execute (but not commit)
concurrently. For coarse-grained commit, JudoSTM must
acquire all locks to execute a transaction natively and there-
fore only does so after 1000 failed attempts.

Invisible Readers Since Judo can effectively sandbox ar-
bitrary code, JudoSTM can sandbox transactions and hence
safely implement invisible readers without having to verify
the read-set after each load. We additionally use trap han-
dler support to detect and recover when faults such as in-
valid pointer dereferencing occur. We currently exploit cus-
tom light-weight per-thread fault handler support that we
added to our Linux Kernel; however, this support can al-
ternatively be implemented using standard unix signal han-
dlers, though possibly at a small performance cost.

3.3. Instrumenting a Transaction
When a thread first enters judostm atomic start,

it is assigned a unique thread ID which it writes to a thread-
local global variable. This thread ID is used to uniquely
identify the transaction while it executes, allowing it to ac-
cess any per-thread data it requires. It is also used to jump
to a per-thread privatized transaction start routine that saves
the contents of the stack and frame pointer registers and
enables a per-thread fault handler. Finally, execution is
handed-off to the Judo runtime system which instruments
and executes the transaction in a per-thread private code-
cache. Despite some inefficiency due to code duplication,
we claim that private code-caches are desirable for DBR-
based STMs since they enable efficient thread-private in-
strumentation, and since it will likely not be beneficial to
have more threads than processors.

During execution JudoSTM instruments every instruc-
tion which it believes may access global memory, ignoring
stack accesses which are implicitly write-buffered on the
stack. As a heuristic, JudoSTM assumes that all instructions
that implicitly or explicitly use the stack or frame pointers
do not access global memory. We found this assumption to
hold for any code that we tested; however, ensuring that this

...
cmp $0x256, 0x80B10CFC
jne,pn judostm_trans_abort
cmp $0x1, 0x80B10CA4
jne,pn judostm_trans_abort
cmp $0x80B10CFC, 0x80B10BB8
jne,pn judostm_trans_abort
cmp $0x80B10CA4, 0x80B10BCC
jne,pn judostm_trans_abort
ret

Figure 4. Example of emitted transaction-
instance-specific read-set validation code

is the case is essential to making JudoSTM robust. Ying et
al. describe a number of methods for determining when this
assumption might be broken [26], which we plan to investi-
gate in future work.

To provide the level of indirection required by both
value-based conflict detection and write-buffering, instruc-
tions that do not access the stack are rewritten to use an ef-
fective address obtained through a hash table lookup. We
use two linear-probed open-address hash tables: one for
looking-up read accesses, and one for looking-up writes.
Judo inlines the first portion of the lookup instrumentation,
so that a hit in the hash table requires only five extra in-
structions plus any instructions needed to save and restore
the %ecx, %edx, and eflags (condition flags) registers
should they be live after the instrumentation. If this code
misses, then a function is called that continues probing the
hash table. If the effective address is absent then the target
data is stored in the read/write buffer and the hash tables are
updated accordingly.

Arbitrary C/C++ code can often alias stack variables and
access them with pointers other than the frame and stack
pointers. Like regular stack accesses, these need not be
write-buffered since they can be rolled back implicitly along
with the stack. In fact, write buffering is undesirable in
this case since it can lead to stack corruption during com-
mit time [25], and can make regular stack instructions—that
use frame or stack pointers—access inconsistent data since
they are not redirected to the read/write buffers. Hence,
JudoSTM must check all newly-discovered effective ad-
dresses to ensure that they are not on the stack before redi-
recting them to the read/write buffers. Currently, we do not
support sharing of stack local data between threads; how-
ever, such sharing can be detected using a page protection
mechanism [26].

Because JudoSTM does not insert read-set validations
after each memory read, transactional threads that have read
inconsistent data can sometimes enter infinite loops. To pre-
vent such loops, JudoSTM inserts instrumentation to val-
idate the transaction’s read-set on every backward branch
edge; to reduce overhead, this instrumentation is guarded by
inc and jne instructions which increment a byte counter

...
movl $0x0, 0x80B10CA4
movl $0x80B10CFC, 0x80B10BCC
movl $0x80B10CA4, 0x80B10BB8
ret

Figure 5. Example of emitted transaction-
instance-specific commit code

and jump over the instrumentation until the branch is en-
countered 256 times.

3.4. Efficient Validation and Commit
When a transaction completes its execution, it acquires

the commit locks (either the single coarse-grain commit
lock or the appropriate fine-grain commit locks), verifies its
read-set, copies its write-set to main memory, and then re-
leases the commit lock(s). Minimizing the duration of this
critical section is therefore crucial, and JudoSTM does so by
emitting transaction-instance-specific code that performs
read-set validation and the commit operation. This code
is emitted incrementally in straight-line sequences as the
transaction executes. Time spent in the commit-time crit-
ical section is minimized because the sequences are emitted
ahead of time specifically for the dynamic instance of each
transaction, and the emitted code contains only the bare-
minimum of control flow instructions.

For read-set validation, a straight-line sequence of cmp
and jne instructions (as in Figure 4) is emitted to compare
all values read by the transaction with the contents of their
original locations in memory. Should any comparison fail,
the corresponding jne instruction jumps to an abort han-
dler that flushes the read and write buffers, unrolls the stack,
and restarts execution. To improve ILP we statically hint
each jne branch with a branch not taken prefix. In addi-
tion, to minimize L1 data cache traffic, we store the values
and their corresponding effective addresses as immediates
in the cmp instruction. Finally, this list of immediates actu-
ally constitutes our read buffer since they are emitted each
time a new read address is discovered.

We use a similar approach for commit code, for which
we emit a straight-line sequence of mov instructions (as in
Figure 5) that directly copy the contents of the write-buffer
to their corresponding memory locations. Again, the write-
buffer is comprised of the list of immediates encoded di-
rectly in the mov instructions.

To expedite the creation of validation and commit code, a
large buffer of each sequence is pre-allocated and initialized
with the appropriate instructions so that only the immediate
values need be filled in during transaction execution. Im-
mediates are written into the instructions in reverse order as
the transaction executes—this way JudoSTM can track the
top-most instruction as the sequence fills, and can later use
an indirect call to jump directly to the start of the sequence.

Each pre-allocated sequence ends with a ret instruction so
that execution properly returns at the end of the sequence.
While executing this frequently-emitted code will increase
instruction cache misses, this cost is quickly amortized for
large read and write-sets. Furthermore, JudoSTM attempts
to prefetch these instructions while waiting for the commit
lock.

Finally, it is important to note that even though it re-
lies on emitting code, this technique is not limited to DBR
frameworks, and could be easily used by a compiler-based
STM to expedite committing the write-buffer to memory.

3.5. Supporting System Calls
JudoSTM allows a single privileged transaction to exe-

cute system calls and be executed concurrently with other
non-privileged transactions; however, since the privileged
transaction cannot rollback, no other transaction can com-
mit until the privileged transaction is complete. Therefore,
JudoSTM rewrites all system call traps (int80 instruc-
tions) with jumps to its own system call handler. This han-
dler acquires either the single coarse-grained commit lock,
or all fine-grained commit locks, validates the read-set, and
finally jumps to the original trap instruction (in the original
code). This ensures that the system call and the remainder
of the transaction execute while the commit lock(s) are held,
ensuring that no conflict can occur. Other transactions can
continue to execute and detect conflicts (using value-based
conflict detection) concurrently with the privileged trans-
action; however, they must still await the commit lock(s)
before they can complete.

3.6. Transactional Memory Management
Since JudoSTM supports shared libraries, it can also

dynamically instrument the gnu libc malloc() and
free() functions, enabling them to execute optimistically
via the write-buffer. Furthermore, because JudoSTM sup-
ports system calls, malloc()will continue to execute cor-
rectly even when it needs to extend the heap via a call to
sbrk() or mmap(). Supporting the native malloc()
implementation eliminates the need for custom transaction-
aware allocators [13], garbage collectors, or quiescing [5].
Through JudoSTM, malloc() and free() execute with
full transaction semantics: memory allocations or frees will
only be externally visible upon successful completion of a
transaction. This prevents the heap from “blowing up”2 in
the case of frequent failed transactions, and eliminates any
risk of accessing stale pointers. In addition, memory that
is dynamically allocated within a transaction can be freed
outside of any transaction, and vice-versa.

Unfortunately, the gnu libc malloc() has yet to be
optimized for scalable concurrent execution. As a result, we

2For the heap to “blow up” means for it to grow exceedingly larger than
necessary because of poor memory recycling.

found that a significant portion of transaction aborts were
caused by conflicts related to concurrent memory allocation
requests. As a temporary solution, we recommend when-
ever possible to link with a dynamic memory allocation li-
brary that is designed for scalable parallel execution. In this
paper we use the Hoard highly scalable parallel memory al-
locator [1]. Because JudoSTM eliminates all lock prefixes
in the re-written code, the JITed version of Hoard becomes
a highly-efficient non-blocking transactional memory allo-
cator.

4. Evaluation
In this section we compare the performance of JudoSTM

to both a conventional lock-based execution and also to the
RSTM system [18] on a set of micro-benchmarks.

4.1. Experimental Framework
We measure JudoSTM on a multiprocessor machine with

four 2.8GHz Intel Xeon MP processors and 16GB of main
memory. Each processor implements a 12K µOps instruc-
tion trace cache, 8KB L1 data cache, 512MB L2 and 2MB
L3 unified cache. JudoSTM and the lock-based imple-
mentations are wrapped in the RSTM C++ API frame-
work to ensure fair comparisons. Each system was built
with the compiler that gave the highest performance at the
-O3 optimization level: the RSTM and lock-based systems
were compiled using g++ v4.1.2, while for JudoSTM g++
v.3.3.6 was used. We measure throughput in transactions-
per-second over a period of 10 seconds for each benchmark,
and vary the number of threads from one to four. All results
are averaged over a set of ten test runs. In all experiments
involving RSTM, the Polka contention manager is used
with eager acquire, invisible readers, and the epoch-based
RSTM memory manager. JudoSTM was linked with Hoard
3.6.2.

Micro-benchmarks We evaluate using a subset of micro-
benchmarks available with the RSTM API. These include a
simple counter (COUNTER), as well as three different inte-
ger benchmarks: a sorted linked list (LINKEDLIST), a hash
table with 256 buckets (HASHTABLE) and a red-black tree
(RBTREE). For the integer benchmarks each thread per-
forms an equal mix of insert, remove, and lookup opera-
tions. The COUNTER benchmark comprises short trans-
actions that simply increment a single shared counter—
for this reason we only consider coarse-grained locking for
COUNTER (which in this case is equivalent to fine-grained
locking). COUNTER provides a base comparison for the
performance of each parallelization method in the case of
high contention. In the LINKEDLIST benchmark, transac-
tions traverse a sorted list to locate an insertion or removal
point; when found, either a new node is inserted or an ex-
isting node is removed, and the relevant pointers are up-

1 2 3 4
Threads

1x106

1x107

Tr
an

sa
ct

io
ns

 /
Se

co
nd

JudoSTM (Coarse)
JudoSTM (Fine)
RSTM
Coarse-Grained Locks

(a) Counter

1 2 3 4
Threads

1x105

1x106

Tr
an

sa
ct

io
ns

 /
Se

co
nd

JudoSTM (Coarse)
JudoSTM (Fine)
RSTM
Coarse-Grained Locks
Fine-Grained Locks

(b) LinkedList

1 2 3 4
Threads

1x106

1x107

Tr
an

sa
ct

io
ns

 /
Se

co
nd

JudoSTM (Coarse)
JudoSTM (Fine)
RSTM
Coarse-Grained Locks
Fine-Grained Locks

(c) HashTable

1 2 3 4
Threads

1x106

1x107

Tr
an

sa
ct

io
ns

 /
Se

co
nd

JudoSTM (Coarse)
JudoSTM (Fine)
RSTM
Coarse-Grained Locks

(d) RBTree

Figure 6. Benchmark comparisons (Note the log scale)

dated. The HASHTABLE benchmark is implemented using
256 buckets with linked list overflow chains and a simple
modulus hash function; as there are roughly an equal num-
ber of insertion and removal operations in our experiments,
the hash table is maintained at roughly 50% capacity dur-
ing execution. Finally, in the RBTREE benchmark, insert
and remove operations generate one or more modifications
to other tree nodes during the height-balancing phase. For
RBTREE a fine-grained locking solution is non-trivial and
is not provided by RSTM.

4.2. Performance
Figure 6 presents the throughput results for each of the

four micro-benchmarks. Note that the y-axes are in a log-
scale. In every scenario JudoSTM performs competitively
with RSTM.

Counter In COUNTER, high contention causes all syn-
chronization methods to perform poorly as more threads
are added. Both versions of JudoSTM perform relatively

strongly in this worst case scenario, degrading less than
RSTM with additional threads.

LinkedList In LINKEDLIST, the coarse-grained version
of JudoSTM scales close to linearly, obtaining a through-
put of 3.5x its single threaded performance at four threads.
Because of a large number of conflicts, this version bene-
fits from its contention heuristic which causes the transac-
tion to execute natively after a rollback. JudoSTM’s fine-
grained commit implementation suffers due its higher over-
head coupled with the large number of transaction aborts;
however, it is still able to outperform RSTM and fine-
grained locking at three and four threads.

HashTable The HASHTABLE micro-benchmark is per-
haps the most interesting as it represents a low contention
scenario. Here we begin to see the benefit of using fine-
grained commit, which performs up to 34% better than
coarse-grained commit. At four threads, JudoSTM’s fine-
grained commit beats coarse-grained locking by 46%, and
performs similarly to RSTM despite having significantly

0ns

50ns

100ns

150ns

200ns

250ns

300ns

350ns

400ns

450ns

HashTable (Coarse) HashTable (Fine)

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

pe
r T

ra
ns

ac
tio

n

Transaction Initialization
Transaction (Native Code)
Transaction (Code Cache)
Buffering
Synchronization
Validation
Commit

Figure 7. Execution breakdown of HashTable
on 4 processors

more single threaded overhead than RSTM.

RBTree In RBTREE, both versions of JudoSTM scale
fairly well, approaching the performance of coarse-grained
locking at four threads. In contrast RSTM fails to scale at all
performing over 2x slower than JudoSTM at four threads.

4.3. Examining Execution

Figures 7 and 8 show the average execution breakdown
of a transaction for both fine and coarse-grained commit
variations of JudoSTM for both HASHTABLE and RB-
TREE. In all cases, JudoSTM spends the majority of its time
buffering reads and writes, and synchronizing commits with
other transactions. Thanks to the per-transaction-instance
emitted validation and commit code, JudoSTM spends only
3.7% of its time, on average, validating and committing read
and write-sets.

For HASHTABLE, the coarse-grained commit implemen-
tation spends 53% of its time attempting to acquire the sin-
gle commit lock (Synchronization). Because of the large
amount of parallelism in HASHTABLE, fine-grained Ju-
doSTM is able to reduce its synchronization time by 28.5%
through acquiring more locks which are each less con-
tended, despite the additional time needed to compute the
set of locks that need to be acquired. However, in the higher
contention case represented by RBTREE, the overhead of
fine-grained commit increases the time spent on synchro-
nization by 49.2%. Furthermore, the increased chance of
deadlock further degrades performance by triggering more
transaction re-executions reflected by the greater amount of
time spent executing the transaction and buffering its reads
and writes.

0ns
50ns

100ns
150ns
200ns
250ns
300ns
350ns
400ns
450ns
500ns
550ns
600ns
650ns
700ns
750ns
800ns
850ns
900ns

RBTree (Coarse) RBTree (Fine)

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

pe
r T

ra
ns

ac
tio

n

Transaction Initialization
Transaction (Native Code)
Transaction (Code Cache)
Buffering
Synchronization
Validation
Commit

Figure 8. Execution breakdown of RBTree on
4 processors

5. Future Work
JudoSTM does not currently provide strong atomicity.

As a result, programmers must be cautious not to concur-
rently call functions that operate on shared memory, from
both inside and outside of atomic blocks, even if they are
thread safe (e.g. malloc). While JudoSTM’s use of value-
based conflict detection does enable transactions to detect
conflicts between themselves and non-atomic code, in this
case it is possible that conflicts are introduced between read-
set validation and the completion of the write-set commit.
Hence extending JudoSTM to provide a stronger level of
safety is interesting work for the future.

6. Conclusion
As transactional memory systems move closer to main-

stream use, we must make them easier to integrate into typ-
ical programming environments—hence for software trans-
actional memory (STM) systems it is important to support
arbitrary C and C++ code, as well as library functions that
may themselves contain system calls and locking code. We
have presented JudoSTM, a STM system based on Judo,
our dynamic binary-rewriting framework. Judo implements
several key optimizations including trace-level JITing and
highly efficient indirect branch chaining, allowing it to incur
only a modest overhead, and thus serve as a feasible base
for an STM system. JudoSTM is a write-buffering, block-
ing, invisible reader STM that uses value-based conflict de-
tection and is programmed using only a simple atomic{}
macro and may be built with any compiler. JudoSTM sup-
ports several desirable features including sandboxing, op-
timistic read concurrency, legacy lock elision, and trans-
actions that can execute system calls. We have demon-
strated that JudoSTM performs comparably to Rochester’s

RSTM library-based implementation—demonstrating that a
dynamic binary-rewriting approach to implementing STM
is an interesting alternative.

References

[1] E. Berger, K. McKinley, R. Blumofe, and P. Wilson. Hoard:
A scalable memory allocator for multithreaded applications.
Technical report.

[2] C. Blundell, E. C. Lewis, and M. M. K. Martin. Unre-
stricted transactional memory: Supporting i/o and system
calls within transactions. Technical Report CIS-06-09, De-
partment of Computer and Information Science, University
of Pennsylvania, Apr 2006.

[3] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastruc-
ture for adaptive dynamic optimization. In Proceedings of
the International Symposium on Code Generation and Opti-
mization, Washington, DC, USA, 2003.

[4] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An
effective hybrid transactional memory system with strong
isolation guarantees. In Proceedings of the 34th Annual In-
ternational Symposium on Computer Architecture. Jun 2007.

[5] D. Dice and N. Shavit. Understanding tradeoffs in soft-
ware transactional memory. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization,
Mar 2007.

[6] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and
C. Zhang. Software behavior oriented parallelization. In
PLDI ’07: Proceedings of the 2007 ACM SIGPLAN confer-
ence on Programming language design and implementation.

[7] R. Ennals. Software transactional memory should not be
obstruction-free. Technical Report IRC-TR-06-052, Intel
Research Cambridge Tech Report, Jan 2006.

[8] K. Fraser. Practical lock freedom. PhD thesis, Cambridge
University Computer Laboratory, 2003.

[9] R. Guerraoui, M. Herlihy, and B. P. P. Contention. Man-
agement in sxm. In Proceedings of the 19th International
Sympposium on Distributed Computing, Sep 2005.

[10] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional memory co-
herence and consistency. In ISCA ’04: Proceedings of the
31st annual International Symposium on Computer Archi-
tecture, pages 102–113, June 2004.

[11] M. Herlihy, V. Luchangco, M. Moir, and I. William N.
Scherer. Software transactional memory for dynamic-sized
data structures. pages 92–101, Jul 2003.

[12] J. D. Hiser, D. Williams, W. Hu, J. W. Davidson, J. Mars,
and B. R. Childers. Evaluating indirect branch handling
mechanisms in software dynamic translation systems. In
Proceedings of the International Symposium on Code Gen-
eration and Optimization, Mar 2007.

[13] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C.
Hertzberg. Mcrt-malloc: a scalable transactional memory
allocator. In Proceedings of the International Symposium on
Memory management, New York, NY, USA, 2006.

[14] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen.
Hybrid transactional memory. in proceedings of the 11th. In
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP), Mar 2006.

[15] K. M. Lepak and M. H. Lipasti. On the value locality of store
instructions. In Proceedings of the International Symposium
on Computer Architecture, New York, NY, USA, 2000.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. f Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with dy-
namic instrumentation. In Proceedings of the Conference on
Programming Language Design and Implementation, New
York, NY, USA, 2005.

[17] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive
software transactional memory. In Proceedings of the In-
ternational Symposium on Distributed Computing, Cracow,
Poland, Sep 2005.

[18] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisen-
stat, W. N. Scherer III, and M. L. Scott. Lowering the
overhead of software transactional memory. Technical Re-
port TR 893, Computer Science Department, University of
Rochester, Mar 2006.

[19] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D. Carl-
strom, L. Hammond, C. Kozyrakis, and K. Olukotun. Char-
acterization of tcc on chip-multiprocessors. In Proceedings
of the 14th International Conference on Parallel Architec-
tures and Compilation Techniques. Sept 2005.

[20] Y. Ni, V. Menon, A.-R. Adl-Tabatabai, A. Hosking, R. Hud-
son, E. Moss, B. Saha, and T. Shpeisman. Open nesting in
software transactional memory. In Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Mar 2007.

[21] M. Olszewski, K. Mierle, A. Czajkowski, and A. D. Brown.
Jit instrumentation—a novel approach to dynamically in-
strument operating systems. In EuroSys 2007, Mar 2007.

[22] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh,
and B. Hertzberg. Mcrt-stm: a high performance software
transactional memory system for a multi-core runtime. In
Proceedings of the Symposium on Principles and Practice
of Parallel Programming. Mar 2006.

[23] A. Shriraman, V. Marathe, S. Dwarkadas, M. L. Scott,
D. Eisenstat, C. Heriot, W. N, S. III, and M. F. Spear. Hard-
ware acceleration of software transactional memory. Tech-
nical Report 887, Department of Computer Science, Univer-
sity of Rochester, Dec 2005.

[24] S. Sridhar, J. S. Shapiro, E. Northup, and P. P. Bungale. Hd-
trans: an open source, low-level dynamic instrumentation
system. In Proc. of the International Conference on Virtual
Execution Environments, New York, USA, 2006.

[25] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-
Tabatabai. Code generation and optimization for transac-
tional memory constructs in an unmanaged language. In
Proceedings of the International Symposium on Code Gen-
eration and Optimization, Mar 2007.

[26] V. Ying, C. Wang, and Y. Wu. Dynamic binary translation
and optimization of legacy library code in an stm compila-
tion environment. In Proceedings of the Workshop on Binary
Instrumentation and Applications. Oct 2006.

