

High-level Specification and Efficient Implementation of Pipelined
Circuits

Maria-Cristina Marinescu

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
Tel: 617-253-8473
email: cristina@lcs.mit.edu

Abstract— This paper describes a novel approach
to high-level synthesis of arbitrarily complex pipelined
circuits, including pipelined circuits with feedback,
and the synthesis algorithm that makes the approach
viable in practice. Our approach provides a high-level,
modular specification language with an efficient imple-
mentation. In our system, the designer specifies the
circuit as a set of independent modules connected by
conceptually unbounded queues. He also specifies the
desired lengths of the queues in the final implemen-
tation. Our synthesis algorithm automatically trans-
forms the modular, asynchronous specification into a
tightly coupled, fully synchronous implementation in
synthesizable Verilog.

I. INTRODUCTION

An important conflict in hardware design is providing
simple, high-level way of specifying a system without sac-
rificing the efficiency of the resulting implementation. An
effecient implementation is usually synchronous and is ob-
tained as the result of globally scheduling all of the oper-
ations in the system. In contrast, designers usually find
it easier to specify the system as a collection of reusable,
concise, loosely-coupled components.

This paper describes an approach that meets both these
challenges and the synthesis algorithm that makes the
approach viable in practice. Our synthesis algorithm
targets arbitrarily complex pipelined circuits, including
pipelined circuits with feedback. The designer specifies
the circuit as a set of independent modules connected by
queues. Conceptually, the queues have unbounded length,
which decouples the modules in the design. The current
implementation expects the designer to also specify the
desired lengths of the queues in the final implementation.
It is important to understand the design advantages of
this approach: the asynchrony at the specification level
enables the designer to compose modules together into a

*This research was supported in part by NSF Grant CCR-
9702297.

Martin Rinard

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
Tel: 617-258-6922
rinard@lcs.mit.edu

complete system without the need to deal with complex

global issues such as the coordinated assignment of opera-

tions to clock cycles. The approach scales to large circuits,
and the circuits are easier to modify, debug, reuse, and
formally verify.

Unfortunately, implementing this abstraction directly
using asynchronous queues produces a circuit with sig-
nificant handshaking overhead between modules. Our
algorithm therefore automatically transforms the asyn-
chronous specification into an efficient synchronous im-
plementation in synthesizable Verilog. The key idea is to
automatically compose the module specifications to de-
rive, at the granularity of individual clock cycles, a global
schedule for the operations of the entire system, including
the removal and insertion of queue elements. The result-
ing implementation executes efficiently in a completely
synchronous, pipelined manner. We call the synchronous
implementation efficient if (1) it greatly improves over the
asynchronous implementation and (2) its merit figures are
comparable to those of an equivalent hand written Ver-
ilog model. Our algorithm is geared towards optimizing
for throughput and area.

We have built a prototype synthesizer that implements
our algorithm and we present experimental results from
this synthesizer.

This paper makes the following contributions:

e Approach: It presents a new approach to high-level
synthesis. This approach combines the best of both
worlds: a modular, asynchronous specification lan-
guage and an automatically generated synchronous,
fully pipelined implementation.

e Algorithms: It presents a relaxation algorithm for
decreasing the clock cycle time and a coordinated
global scheduling algorithm for mapping the individ-
ual operations of the modules into clock cycles. The
latter is the enabling technology for efficient pipelining,
as it allows the data to move together across the circuit
even when the pipeline buffers are full.

¢ Experimental Results: It presents experimental re-
sults that demonstrate the effectiveness of the technique
in practice.

The remainder of the paper is organized as follows. Sec-
tion IT illustrates how a system is specified using rewrite
rules. Section III presents the synthesis algorithm. Sec-
tion IV presents the experimental results. Section V dis-
cusses related work. Section VI draws the conclusions.

II. SPECIFICATION EXAMPLE

We illustrate our approach by presenting a short ex-
ample. Our example is a linear pipelined datapath with
associated control functionality. None of the techniques of
our approach is specific to this particular class of circuits.

Specifying the behavior of a system consists of two
steps:
¢ Module Specification: The designer specifies the be-

havior of each module as a set of update rules. Modules

communicate solely using FIFO queues.
e State Declarations: The designer specifies the state
of the system as a set of typed variable declarations.

A. Modules

Fig. 1 shows the three functional modules in our exam-
ple and the queues that interconnect them. Each module
is implemented by a set of update rules. An update rule
has an enabling condition and a set of updates to the
state. When the enabling condition evaluates to true,
the rule is enabled and can execute, in which case its up-
dates are atomically applied to the state. Conceptually,
the execution of the system repeatedly chooses an enabled
rule and executes it. This is a standard model of asyn-
chronous execution found, for example, in systems such
as Unity [7] and term rewriting systems [2]. In our im-
plementation, priority is given to rules according to the
textual ordering in the specification.

Queues provide buffered, first-in, first-out connections
between modules. There are several operations that mod-
ules can perform on a queue q:

e head(q): Retrieves the first element in the queue.
e tail(q): Returns the rest of q after the first element.
e insert(q,e): Returns the queue q after inserting the

element e at the end of q.

e notin(q,e): Returns true if the element e is not in q;
otherwise returns false.
e g = nil: Resets the queue to be empty.

We next illustrate the conceptual model of execution
in our system by discussing the operation of the rules in
our example. We would like to emphasize that this asyn-
chronous model of execution is used primarily to reason
about the abstract behavior of the modules and the cor-
rectness of the system and does not directly reflect the
actions of the generated circuit.

The condition for the rule in module IFM is true, which
means that the rule is always enabled. When it executes,
it fetches an instruction from the instruction memory and
inserts it into the instruction queue iq. It also increments
the program counter pc to set up the next fetch.

The two rules in the module ROFM remove instructions
from iq, fetch the register operands, and insert them into
rq. The first rule processes INC instructions, and the
second one processes JRZ instructions. Both rules use a
form of pattern matching similar to that found in ML and
Haskell. The enabling condition of the first rule is <INC
r> = head(iq) and notin(rq, <INC r _>). If the first
clause is true, the clause matches and binds the variable r
to the register name argument of the INC instruction, to
be used later in the rule when reffering to this operand.
The second clause, notin(rq, <INC r _>) uses the bind-
ing to check for a read before write hazard. If there is a
pending instruction waiting to execute that will write the
register r, the machine delays the operand fetch so that
it fetches the value after the write (this translates into
stalling!). If there is a pending instruction that will
write r, the instruction is in rq. The clause notin(rq,
<INC r _>) checks to make sure that there is no such in-
struction in rq, and the rule as a whole is enabled and
can execute only if there is no hazard. If enabled, the
rule atomically executes the block in the right-hand-side
of the arrow.

The other rules perform similar actions. The update
rf = rf[r->v+1] from the first rule in the compute and
writeback module sets element r of the register file rf
to be v+1. The update iq/rq = nil clears the queue(s)
ig/rq.

B. State

1 type reg = int(3), val = int(8), loc =
int(8);

2 type ins = <INC reg> | <JRZ reg loc>;

3 type irf = <INC reg val> | <JRZ val loc>;

4 var pc : loc, im : ins[N], rf : val[8];
5 var iq = queue(ins), rq = queue(irf);

Fig. 2. State Variables and Type Declarations for Example in
Fig. 1

Line 4 and 5 in Fig. 2 present the state declarations,
which consist of the following state variables: a program
counter pc, an instruction memory im, a register file rf,
and two queues, iq and rq. Lines 1 through 3 contain the
type declarations for these variables. The type declara-
tions include a 3 bit register name type reg, an 8 bit in-
teger type val, an 8 bit integer type loc which represents
the locations of instructions in the instruction memory,
an instruction type ins, and a type irf for instructions

I This is not a particularity of our algorithm, but rather what the
original description specifies. The machine could as easily generate,
for example, bypassing logic if this choice is explicitly made in the
specification.

INSTRUCTION FETCH MODULE - IFM

REGISTER OPERAND FETCH MODULE - ROFM

COMPUTE AND WRITEBACK MODULE - CWBM

<INC r> = head(iq) and
iq notin(rg.<INC r _>) -> q
iq = tail(iq), rq = insert(rq,<INC r rf(r)>)

(frue>>

iq = insert(iq.im(pc)).
pc=pc+1;

RESET <JRZr I> = headlig) and
notin(rq.<INC r _>) ->
ig = tail(ig), rq = insert(rq,<JRZ rf(r) 1>);

<INC r v> = head(rq) >
f = rf(r->v+1), rq = tail(rq);

<JRZ Vv I> = head(rq) andv=0->
pc =1, ig = nil, rq = nil;

RESET <JRZ v I> = head(rq) and v I= 0 ->
rq = tail(rq);

enabling ¢updo’res

condition

Fig. 1. Specification Example

whose register operands have been fetched from the reg-
ister file. The instruction type is a tagged union type,
similar to those found in ML and Haskell. To keep the
example clear, the instruction set contains only an INC in-
struction, which increments the value in its single register
argument, and a JRZ instruction, which tests the value in
its register argument and, if the value is zero, jumps to
the location in its location argument.

III. SYNTHESIS ALGORITHM

The synthesis algorithm takes an asynchronous specifi-
cation and converts it into a synchronous implementation
by generating a global schedule for all of the operations
in the rules. This schedule enables the synchronous and
concurrent execution of multiple rules per clock cycle and
produces a circuit that, when no hazards present, reads
and writes each queue in the same cycle. It implements
each queue as a finite hardware buffer.

The basic approach is to give each rule an opportunity
to execute at each cycle. The challenge is to ensure that
the final result at the end of the cycle correctly reflects
the sequential, atomic execution of all of the rules that
executed in that cycle. The algorithm meets this challenge
by symbolically executing the rules in sequence, with each
rule operating on the output of the previous? rule. The
derived expression for each state variable represents its
new value at the beginning of the next clock cycle.

The synthesis algorithm assumes that each operation
is implemented by a dedicated hardware component. It
is conceivable to modify the algorithm as to give the de-
signer the option of trading parallelism for silicon area.

The algorithm consists of six phases:

e Associating Versions With Each State Variable:
Order rules® for symbolic execution and compute the
version of each state variable that each rule accesses.
The first rule will read version 0 of the variables and
compute version 1. The second rule will read version 1
and compute version 2 and so on. By feeding the output

2Previous and next refer to the textual ordering of the rules in
the original specification.
30ur implementation uses textual ordering of the rules.

of the previous rule into the next rule, we establish an
initial schedule for symbolic execution.

Relaxation: The result of the operation performed
in the previous step suffers from an excessively long
clock cycle, as rule execution is completely sequential-
ized. The goal of relaxation is to shorten the critical
path within each clock cycle. Whenever possible, the
algorithm relaxes the calculation of the enabling con-
dition for each rule so that it is evaluated in the initial
state (at the beginning of the clock cycle) rather than
in the state created by the previously executed rule. To
maintain correctness, the updates still execute sequen-
tially if they operate on the same state variable. This
transformation ensures that each element of data tra-
verses at most one module per clock cycle, producing an
acceptable critical path for the circuit. By increasing
the parallelism in this way, we shorten the clock cycle
of the circuit, and, indirectly, increase its throughput.
Relaxation does not insert or remove delays in/from
the circuit.

Global Scheduling: In the initial specification,
queues have unbounded length. But the hardware im-
plementation must have a finite, specific number of
entries allocated for each queue. Given a designer-
specified length for each queue, the synthesis algorithm
must generate an implementation that does not exceed
that length. In the actual hardware, a given length
of 1 for each queue translates into the synthesis of a
standard pipeline.

Symbolic Execution: Next, the algorithm performs
symbolic execution of all of the rules in sequence. An
expression is generated for each state variable that re-
flects all of the possible updates of that variable for that
clock cycle. This expression represents the value of the
variable in the next clock cycle. Since only a subset
of rules may fire in a given clock cycle, the expressions
contain conditionals.

Optimizations: The synthesis algorithm next applies
a spectrum of optimizations, geared towards avoiding
unnecessary replication of hardware and eliminating
false paths in the implementation. These optimizations
currently include common sub-expression elimination

and mutual exclusion testing for the expressions de-
rived at symbolic execution. If an expression contains
a value that will never actually occur in practice be-
cause the conditions required to obtain that value are
mutually exclusive, its computation is eliminated from
the expression. The mutual exclusion testing is imple-
mented using resolution [3] and a set of reduction and
simplification rules.

Fig. 3 presents the result of the expression evaluation;
note the introduction of the temporary variables t1,
t2, t3, and t4. These variables will turn directly into
combinational logic in the final implementation of the
circuit.

let
t1 = <INC r> = head(iq,) and
notin(rq,,<INC r 1>)
t2 = <JRZ r 1> = head(iq,) and
notin(rq,,<INC r 1>)
t3 = insert(iqy,imy[pcyl)
t4 = tail(t3)
igs =

if <JRZ v 1> = head(rq,;) and v = 0 then nil
if t1 then t4

if t2 then t4

if length(iq,) < Niq then t3

iq,

Fig. 3. Result of Symbolic Execution for iq

else
else
else
else

e Verilog Generation: In the final phase we generate
synthesizable Verilog for the optimized expressions in
the previous step. Each state variable is implemented
as one or more registers, depending on its type; each
memory variable as a library block. Queues are imple-
mented as hardware registers. The derived expression
for each state variable evaluates to the new value that
gets written back into the state at the beginning of the
next clock cycle.

We next discuss the two more complicated phases of
the algorithm in turn.

A. Relaxation

The execution of a rule R can update state variables
tested by a subsequent rule R’'. If this is the case, then R’
has to wait for R to execute and update the state, before
testing its precondition. But if we can prove that the exe-
cution of R will not affect the state variables tested by the
enabling condition of R', we can relax the precondition of
R’ to test the state before R executed. This transforma-
tion exposes parallelism in the specification, reducing the
length of the critical path of the circuit.

In our example, relaxing the rules implements pipelin-
ing the fetch and execution over multiple clock cycles,
thus reducing cycle time.

Relaxation is the process of replacing each version of

each state variable with its earliest! safe version. An ear-
lier version of v;, named vy, is safe if the following prop-
erty holds:

If the rule’s enabling condition, P, is true
with v; replaced by vg, then it is also true with
vj, i.e. Pfvg/v;] implies P,.

This is an application of the following more general rule:
Assume a predicate Ple/d] (i.e. the predicate P with the
expression d replaced by another expression e) implies P.
Then for any rule with precondition P, we can (subject
to liveness concerns) use the predicate Ple/d] instead of
P.

This transformation is valid because of two reasons:

e Partial Correctness: If a rule in the transformed
numbering executes, the rule would also execute in the
original numbering and yield the same result. This
takes care of the safety issue.

e Liveness: Since the rule in the transformed numbering
tests the initial state, if a rule is enabled in the original
numbering but not in the transformed one, some rule
executes in the transformed numbering. This ensures
liveness.

The algorithm processes the rules in reverse order, re-
peatedly attempting to replace the current version of each
variable in the enabling condition of the rule, with the
previous corresponding version, starting from the imme-
diately preceeding rule. Fig. 4 shows how to obtain a
new expression from an initial expression Exp, by replac-
ing v; in Exp with its earliest safe version. P, stands for
the enabling condition of the rule that contains Exp. A
replacement is successful if either of the two is true:

e The enabling condition with the earlier version instead
of the current one implies the enabling condition with
the current version.

e The condition of the rule that computes the earlier ver-
sion and the current enabling condition are mutually
exclusive.

replace (v;,Exp)
if version(v;) = 0
then Exp
else v, = earlier-version(v;)
P, = rule-that-updates(v;)
if (Py,P) mutual exclusive
then replace(vy,Exp[vg/v;]1)
else if Pfv/v;] implies P
then replace (vy,Explvg/v;1)
else Exp

Fig. 4. Relaxation Algorithm

The relaxation algorithm is especially well suited for
use with queues. An element inserted at the tail of the

4Earlier here refers to the ordering established in the first step
of the algorithm.

queue does not affect the element that was at the head of
the queue before the insertion. Rules that test the first el-
ement of a queue remain enabled regardless of the number
of elements inserted at the tail of the queue, provided that
no rule previously removes the head of the queue. This
property allows such a rule to test the initial version of
the queue, rather than versions produced by earlier rules.

Conceptually, the algorithm could include an initial
phase that can in many cases order the modules/rules
so as to match the flow of data in the pipeline. Being
able to put the rules in this order is sufficient (but not
necessary) to ensure that they all test the initial version
of each queue.

Currently, the framework does not provide a flexible
support for trading concurrency for cycle time. By de-
fault, if two rules simultaneously evaluate their precondi-
tions to true, they are both going to fire in the current
clock cycle, either in parallel if there are no data depen-
dencies or sequentially if there are.

B. Global Scheduling

The scheduler augments each rule that inserts an ele-
ment into a queue to ensure that it never overflows any of
the buffers that implement the queues in hardware. The
basic approach is to assume all queues are within length
at the beginning of the clock cycle and schedule only those
rules for firing that are 1) enabled and 2) whose combined
execution leaves the queue within its length at the end of
the clock cycle. All the other rules remain unchanged.
As part of this process, queue insertions are prioritized.
In hardware, global scheduling corresponds to generating
the control signals for the combinational logic.

Global scheduling is the enabling technology for effi-
cient pipelining. The key insight is that, every clock cyle,
the number of rules that can execute and insert into a
queue q can be bigger than the number of empty slots in
q, without causing q to overflow. The condition is that
enough rules will also execute in that clock cycle and re-
move elements from q, leaving it within length at the end
of the clock cycle. Appying this mechanism boosts the
throughput of the circuit.

B.1 Acyclic Specifications

Acyclic specifications contain no cyclic queue paths. We
define this concept using a rule graph: the nodes in the
graph are the rules. There is a directed edge between
two rules if the first inserts items into a given queue and
the second removes items from the same queue. By def-
inition, the specification is acyclic if there are no cycles
in the rule graph. For acyclic specifications, the schedul-
ing algorithm ensure that the queues do not overflow by
computing an additional constraint as shown in Fig. 5.
We use R’ for rule R augmented with the correspond-
ing additional constraints and Room(q) for the number of
empty locations in ¢ at the begining of the clock cycle.

Function eval(R') returns 0 if R' is false and 1 if R’ is
true. index(X) returns the set of indices of all the rules
in X. The constraint counts the number of elements in
each queue at the beginning of each clock cycle. It also
considers queue removals and previous insertions to aug-
ment the enabling condition of each rule so that it does
not execute if it would overflow the queue.

for each rule R; [in topological sort order]
Q={q | R; inserts into ¢}
if Q != nil
then for each g€
I={R; | R, inserts into ¢}
D ={Rj; | Ry removes from ¢}
Select(R;,q) =
if (R; is the only rule in I) or
Vil,i2 € I,(¢1,i2) mutually exclusive
then "Vk € index(D).
Room(q) + eval(R},) > 0"

else "Vk € index(D).Vj € index(I).j < i.

Room(q) + Xeval(R),) > eval(R})"
else NOP

Fig. 5. Computing the Additional Constraints for a Rule in an
Acyclic Specification

B.2 Generalization for Cyclic Specifications

Introducing additional enabling conditions raises the pos-
sibility of deadlock. For acyclic specifications, this is not
an issue because the acyclicity ensures that the queues
will eventually drain, enabling rules that were originally
suspended for lack of space. But this line of reasoning
does not hold for cyclic specifications. The key insight
is that the additional enabling conditions need not intro-
duce deadlock if there is a way to coordinate the removals
and insertions of elements from all of the queues in the
cycle so that the removal of each element leaves room for
the insertion of the element behind it. The algorithm for
cyclic specifications therefore analyzes groups of rules to-
gether to generate a global schedule that allows all of the
data in a cycle to move together through the cycle.

We use the example in Fig. 6 to illustrate the operation
of the algorithm for cyclic specifications. To simplify the
presentation, we present the rules by themselves, omitting
the module decomposition. We also omit the rule(s) that
remove from queue z and any rules that do not affect the
contents of queues x and y.

This example is modelled after a random number gener-
ation process that starts with two numbers (2 and 3) and
repeatedly adds 3, then 5 to each number, retaining the
lower 4 bits after each addition. The computation records
the values of the numbers when their bottom 2 bits be-
come 0. In our implementation, each number is stored
in a queue, and the designer specifies that each queue

state x : queue(int) = 2 ;

state y : queue(int) = 3 ;

state z : queue(int);

0: t = head(x) -> y = insert(y, (t+3)&15), x
= tail(x);

1: t = head(y) -> x = insert(x, (t+5)&15), y
= tail(y);

2: t = head(x) and (t&3 = 0) -> z =
insert(z,t), x = tail(x);

3: t = head(y) and (t&3 = 0) -> z =

insert(z,t), y = tail(y);

// implementation constraints
length(x) = 1;
length(y) = 1;

Fig. 6. Cyclic Example

has a single entry. Because of the cyclic nature of the
specification, the numbers must move through the queues
together — if they attempt to move separately, there is
no room in the queues. The synthesis algorithm must
therefore schedule the rules involved in the cycle (rules 0
and 1) together to coordinate their queue insertions and
removals.

e Idea: The key idea is to find, for each rule that inserts
an element into a queue ¢, the maximal sets of rules that
have to execute together to preserve the “non-overflow”
invariant of ¢, at the end of each clock cycle. To do
this, the algorithm starts from each rule and traverses
the rule graph on all possible paths, gathering for each
rule that we go through, the conditions that would let
that rule fire. We stop if either a rule is not an append-
ing rule, so will always fire when its initial enabling
condition becomes true, or if we already traversed that
rule on the current path, so we already considered that
the rule fires. Once we reach such a point there’s no
additional information on that path in the circuit that
was not already collected at the first traversal. Nothing
needs to be added to yield a correct solution. When all
paths reach such points, the set of all rules that have
to fire together becomes provably maximal.

e Algorithm: The scheduling algorithm processes each
rule in the cyclic specification in turn. Fig. 7 shows the
algorithm that produces the additional enabling condi-
tion for arule R;. C'rtPath keeps the currently explored
path, for purposes of termination. This variable is ini-
tially empty for each symbolic execution of a rule. The
symbolic execution of a rule terminates if either one of
the two scenarios below is true:

e R is a non-appending rule and in this case new Ry, =
Ry.
e Ry is arule previously examined on the current path.

This means we already assumed Ry fires on that
path, so there’s no need to explore further, therefore
newRy = true.

SymbolicExecution (R;,CrtPath)
Q ={q | R; inserts into ¢}
if Q != nil
then for each g€ @)
I={R; | R; inserts into ¢}
D ={Rj; | Ry removes from ¢}
S = if (R; is the only rule in I) or
Vil,i2 € I, (i1,42) mutually exclusive
then D
else DUI
for each rule R, €S
newCrtPath = CrtPath U Ry,
newR, = if Ry € CrtPath
then true

else SymbolicExecution(Ry,newCrtPath)

newSelect(R;,q) = Select(R;, q)[newRy /R},]
Select(R;,q) = newSelect(R;,q)
newR; = (R; and Select(R;,q))
R; = newR;
else R;

Fig. 7. Computing the Additional Constraints for a Rule in a
Cyclic Specification

IV. EXPERIMENTAL RESULTS

We have implemented a prototype synthesis system
based on the algorithms presented in this paper. The al-
gorithm generates synthesizable Verilog implementations
at the RTL level. We wrote the specification of a 32-bit
datapath, RISC-style, linearly pipelined processor with
a complete instruction set®, ran it through our synthesis
algorithm, then synthesized the resulting Verilog model
using the Synopsis Design Compiler to an industry stan-
dard .25 micron standard cell process. To serve as a ref-
erence point, we also synthesized, in the same environe-
ment, the Santa Clara University SCU RTL 98 DSP, a
hand-written, standard 32-bit fixed point DSP that im-
plements the same basic functionality. Table 8 shows area
and clock cycle numbers for the two applications. Notice
that the synthesized area is roughly the same, while clock-
cycle-wise, our processor is within 3 percent slower than
the hand coded version.

It took us less than five hours to develop the specifi-
cation for the processor, which we believe is significantly
faster than developing the DSP model by hand. Our spec-
ification contains 15 lines for state declarations and 21
lines of rule definitions for module specifications. The
SCU RTL 98 DSP application, on the other hand, con-
sists of approximately 885 lines of Verilog code. Our au-

5The instruction set contains load, store, jump, ALU, multiply
and variable shift operations.

Fig. 8. Comparative Clock Cycle and Area Estimates

Architecture Cycle (MHz) Area
RISC Pipelined Processor 88.89 23195.25
SCU RTL 98 DSP 90.91 22999.50

Fig. 9. Clock Cycle and Area Estimates for a Few Basic Data
Processing Elements

Benchmark | Cycle (MHz) | Area
Bubblesort 107.06 5434
FFT 104.42 5411
FIR 105.01 3757

tomatically generated implementation consists of about
1200 lines of synthesizable Verilog.

We have also tried our synthesis algorithm on several
non-processor benchmarks. Table 9 shows cycle time and
area numbers for a specification describing bubblesort for
eight 8bit numbers, a butterfly network similar to the
ones used in bitonic sorting networks and in FFTs, and a
cascaded FIR with 16 coefficients.

The running time of our system is roughly proportional
to the complexity of the generated control. For all ap-
plications except the pipelined processor, our system re-
quired less than one minute to generate the Verilog out-
put. For the processor, it took roughly half an hour. We
tested the generated Verilog for each application, includ-
ing the pipelined processor, using the Cadence NCVerilog
simulator.

V. RELATED WORK

HDLs like VHDL or Verilog [14] use a model of con-
currency in which processes communicate using signals.
A signal is a direct physical connection with no buffering
and with dynamic synchronization overhead. Designed for
formal verification and synthesis of communication pro-
tocols, SUAVE [1] improves the communication features
of VHDL by providing bounded or unbounded message
buffers. The synchronous communication model is simi-
lar to those of CSP [13] and Occam [6]. Our approach is
different in that it displays an asynchronous communica-
tion model at design level, while generating a synchronous
implementation.

Another approach uses software languages, such as C
and C++. The Olympus/Hercules system is designed to
support mainly ASIC synthesis from HardwareC [15], a
C-like syntax behavioral language. HardwareC supports
concurrency by providing synchronous queues with block-
ing send and receive constructs. In Scenic [9], the seman-
tics of concurrency is similar to that of CSP and pro-

cesses communicate via signals. In both approaches, the
synchronous communication semantics force the designer
think about the global timing when describing the system.

Systems based on hierarchical PBSs [18] (Production
Based Specification) specify the control implicitly via the
production hierarchy. The simplicity of PBS comes from
the local nature of each production, allowing the designer
not worry about the explicit construction of the global
flow. PBS is closer to our description language in the
sense that both describe external behavior rather than
particular implementations of a system. Moreover, the
actions for a given behavior are described locally, even if
possibly simultaneous actions can be described elsewhere.
On the other hand, the framework is synchronous.

Systems like Ptolemy [5], GRAPE [16], SPW [20] from
Cadence or COSSAP [19] from Synopsys start from block
diagram languages based on a dataflow semantic and are
targeted to DSP design, mostly for minimizing memory
usage and buffer memory. In SDF (Synchronous Data
Flow), a static schedule for the block diagram is found
that fires each actor in the dataflow graph at least once
and does not change the net number of tokens queued on
each edge. In our approach, not every update rule has
to fire every clock cycle, the number of elements in the
queues may vary in time and the desired lengths for the
queues are specified by the designer. Unlike DDF (Dy-
namic Data Flow), which implements a run-time sched-
uler, our approach provides a statically scheduled model.

In synchronous languages like Esterel [4], Lustre [11],
Signal [10] and Statecharts [12], the programmer thinks
about a program as reacting instantaneously to external
events. Processes are tightly coupled and deterministic,
communication being realized by instantaneous broad-
casting.

Classic work on pipelining optimization by Patel [17],
Davidson, Shar and Thomas [8] starts from a given reser-
vation table for the task flows in a system and develops
methodologies for increasing the throughput of a pipeline.
In our approach there is no initial knowledge of what gets
assigned to each pipeline stage, at each clock cycle; there
is no notion of synchronicity.

Several specification and verification systems have
taken an approach similar to ours, based on describing the
behavior of a system by a state transition system [7, 13].
One way to view our approach is that it extends the ad-
vantages of these systems to provide automatic synthesis
of an efficient hardware implementation, when previously
there were only used for specification and verification.

VI. CONCLUSIONS

This paper illustrates a new approach for hardware syn-
thesis. The designer uses a design language based on con-
necting modules with asynchronous queues. The synthe-
sis algorithm eliminates the inefficiency associated with
a direct asynchronous implementation by automatically

generating a coordinated global schedule for all opera-
tions in the system. This schedule is used to generate an
efficient and fully pipelined synchronous implementation.

The primary advantages of this approach include good
support for concurrency, modularity, debugging, and
reuse in the design language. The use of update rules
provides support for formal verification and concurrency,
and enables concise, behavioral descriptions. This gives
the resulting implementation a better chance to correctly
reflect the designer’s intent. The synthesis algorithm is
the key to enabling the designer to use a convenient de-
sign language while obtaining an efficient hardware im-
plementation of the design. The global scheduling and
relaxation algorithms maximize the throughput. Relax-
ation also reduces the clock cycle time by parallelizing the
evaluation of the enabling conditions of the rules. Global
scheduling eliminates the need for handshaking hardware,
while applying optimizations at a global level optimizes
the combinational logic. Our experimental results pro-
vide encouraging evidence that the approach can deliver
efficient implementations of high-level specifications. The
approach also greatly improves on design time and dis-
plays reasonable run-times of the synthesis algorithm.
Our approach is well-suited to systems that are naturally
described as composition of interacting sub-systems. The
class of pipelined circuits is one such system, as FIFO is
a natural way to isolate pipe stages.

REFERENCES

[1] P. Ashenden, R. Esser, and P. Wilsey. Communication and
synchronization using bounded channels in SUAVE. In Pro-
ceedings of the 1999 International Hardware Description Lan-
guages Conference and Ezhibit (HDLCONY9), 1999.

[2] F. Baader and T. Nipkow. Term rewriting and all that. Cam-
bridge University Press, 1998.

[3] M. Ballantyne. Automatic deduction. Technical Report STAN-
CS-82-937, Dept. of Computer Science, Stanford Univ., Stan-
ford, Calif., October 1982.

[4] F. Boussinot and R. de Simone. The ESTEREL language. In
Proceedings of the IEEE, pages 79(9):1293-1304, September
1991.

[5] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy:
a framework for simulating and prototyping heterogeneous sys-
tems. Intl. J. of Computer Simulation, 1995.

[6] A. Burns. Programming in Occam 2. Addison-Wesley, Read-
ing, Mass., 1988.

[7] K. M. Chandy and J. Misra. Parallel program design: a foun-
dation. Addison-Wesley, Reading, Mass., 1988.

[8] E.S. Davidson, L.E. Shar, A.T. Thomas, and J.H. Patel. Ef-
fective control for pipelined computers. In Proceedings of the
1975 Spring COMPCON.

[9] A. Ghosh, J. Kunkel, and S. Liao. Hardware synthesis from
C/C++. In Design, Automation and Test in Europe Confer-
ence and Ezhibition, 1999.

[10] P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire.
Programming real time applications with Signal. In Another
Look at Real Time Programming, Proceedings of the IEEE,
Special Issue, September 1991.

[11] N. Halbwachs, P. Caspi, and D. Pilaud. The synchronous
dataflow programming language Lustre. In Another Look at
Real Time Programming, Proceedings of the IEEE, Special Is-
sue, September 1991.

[12] D. Harel. Statecharts: a visual approach to complex systems.
In Science of Computer Programming, pages 8:231-274, 1987.

[13] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood Cliffs, N.J., 1985.

[14] Douglas J. Smith (VeriBest Incorporated). VHDL and Ver-
ilog compared and contrasted Plus modeled example written
in VHDL, Verilog and C.

[15] D. Ku and G. De Micheli. HardwareC: a language for hardware
design. Technical Report SCSL/CSL/TR-90-419, Computer
Systems Laboratory, Stanford Univ., Stanford, Calif., August
1990.

[16] R. Lauwereins, P. Wauters, M. Ade, and J. A. Peperstraete.
Geometric parallelism and cyclo-static data flow in grape-ii. In
Proc. IEEE Workshop on Rapid System Prototyping, Greno-
ble, France, June 1994.

[17] Janak Patel. Pipelines with internal buffers. In Proceedings
of the Fifth Annual Symposium on Computer Architecture,
ISCA78.

[18] Andrew Seawright and Forrest Brewer. Synthesis from
Production-Based Specifications. In Proceedings of 29th De-
sign Automation Conference, 1992.

[19] Synopsys. COSSAP designing environment.
http://www.synopsys.com/products/dsp/cossap-ds.html.

[20] Cadence Design Systems. Cadence SPW model manager.
http://www.cadence.com/datasheets/cierto-mdm.html.

