
Reactors: A Data-Oriented Synchronous/Asynchronous
Programming Model for Distributed Applications

John Field1, Maria-Cristina Marinescu1, and Christian Stefansen2

1 IBM T.J. Watson Research Center
{jfield,mariacm}@us.ibm.com

2 Department of Computer Science, University of Copenhagen
cstef@diku.dk

Abstract. Our aim is to define the kernel of a simple and uniform programming
model—the reactor model—suitable for building and evolving internet-scale pro-
grams. A reactor consists of two principal components: mutable state, in the form
of a fixed collection of relations, and code, in the form of a fixed collection of
rules in the style of datalog. A reactor’s code is executed in response to an external
stimulus, which takes the form of an attempted update to the reactor’s state. As in
classical process calculi, the reactor model accommodates collections of distrib-
uted, concurrently executing processes. However, unlike classical process calculi,
our observable behaviors are sequences of states, rather than sequences of mes-
sages. Similarly, the interface to a reactor is simply its state, rather than a collec-
tion of message channels, ports, or methods. One novel feature of our model is the
ability to compose behaviors both synchronously and asynchronously. Also, our
use of datalog-style rules allows aspect-like composition of separately-specified
functional concerns in a natural way .

1 Introduction

In modern web applications, the traditional boundaries between browser-side presenta-
tion logic, server-side “business” logic, and logic for persistent data access and query
are rapidly blurring. This is particularly true for so-called web mash-ups, which bring a
variety of data sources and presentation components together in a browser, often using
asynchronous (“AJAX”) logic. Such applications must currently be programmed us-
ing an agglomeration of data access languages, server-side programming models, and
client-side scripting models; as a consequence, programs have to be entirely rewritten
or significantly updated to be shifted between tiers. The large variety of languages in-
volved also means that components do not compose well without painful amounts of
scaffolding. Our ultimate goal is thus to design a uniform programming language for
web applications, other human-driven distributed applications, and distributed business
processes or web services which can express application logic, user interaction, and ap-
plication logic using the same basic programming constructs. Ideally, such a language
should also simplify composition, evolution, and maintenance of distributed applica-
tions. In this paper, we define a kernel programming model which is intended to address
these issues and serve as a foundation for future work on programming languages for
internet applications.

A.L. Murphy and J. Vitek (Eds.): COORDINATION 2007, LNCS 4467, pp. 76–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reactors: A Data-Oriented Synchronous/Asynchronous Programming Model 77

The reactor model is a synthesis and extension of key ideas from three linguistic
foundations: synchronous languages [2, 4, 7], datalog [15], and the actor model [1].
From datalog, we get an expressive, declarative, and readily composable language for
data query. From synchronous languages, we get a well-defined notion of "event" and
atomic event handling. From actors, we get a simple model for dynamic creation of
processes and asynchronous process interaction.

A reactor consists of two principal components: mutable state, in the form of a fixed
collection of relations, and code, in the form of a fixed collection of rules in the style
of datalog [15]. A reactor’s code is executed in response to an external stimulus, which
takes the form of an attempted update to the reactor’s state. When a stimulus occurs, the
reactor’s rules are applied concurrently and atomically in a reaction to yield a response
state, which becomes the initial state for the next reaction. In addition to determining
the response state, evaluation of rules in a reaction may spawn new reactors, or generate
new stimuli for the currently executing reactor or for other reactors. Importantly, newly-
generated stimuli are processed asynchronously, in later reactions. However, we provide
a simple mechanism to allow collections of reactors to react together as a unit when
appropriate, thus providing a form of distributed atomic transaction.

As in classical process calculi, e.g., pi [12], the reactor model accommodates collec-
tions of distributed, concurrently executing processes. However, unlike classical process
calculi, our observable behaviors are sequences of states, rather than sequences of mes-
sages. Similarly, the interface to a reactor is simply its state (“REST” style [6]), rather
than a collection of message channels, ports, or methods. We accommodate information
hiding by preventing certain relations in a reactor’s state from being externally accessi-
ble, and by allowing the public relations to serve as abstractions of more detailed private
state (as in database views). A significant advantage of using data as the interface to a
component, and datalog as a basis for defining program logic, is that the combination is
highly “declarative”: it allows separately-specified state updates (written as rules) to be
composed with minimal concern for control- and data-dependence or evaluation order.

Contributions. We believe that the reactor model is unique in combining the following
attributes harmoniously in a single language: (1) data, rather than ports or channels
as the interface to a component; (2) synchronous and asynchronous interaction in the
same model, with the ability to generate processes dynamically; (3) expressive data
query and transformation constructs; (4) the ability to specify constraints/assertions as a
natural part of the core language; (5) distributed atomic transactions; and (6) declarative,
compositional specification of functionality in an “aspect-like” manner.

2 Reactor Basics

A reactor consists of a collection of relations and rules, which together constitute a
reactive, atomic, stateful unit of distribution. The full reactor syntax is given in Fig. 2.

Consider the declaration for OrderEntryA in Fig. 1. OrderEntryA defines a
class of reactors that are intended to log orders—say, for an on-line catalog application.
Reactor instances are created dynamically, using a mechanism we will describe shortly.

78 J. Field, M.-C. Marinescu, and C. Stefansen

def OrderEntryA = {
(* orders: id, itemid, qty *)
public orders: (int, int, int).
(* log: id, itemid, qty *)
log: (int, int, int).

log(id, itemid, qty) <-
orders(id, itemid, qty).

}

def OrderEntryA’ = {
(* ... same as OrderEntryA ... *)

not log(id, itemid, qty) <-
not orders(id, itemid, qty).

}

def OrderEntryB = {
(* ... same as OrderEntryA ... *)

(* orderIsNew is true if order has
not previously been logged *)

ephemeral orderIsNew: ().
orderIsNew() <-

orders(id, itemid, qty),
not -log(id, itemid, qty)

}

def OrderEntryC = {
(* ... same as OrderEntryB ... *)

(* delete any new order whose id is
duplicate of a prev. logged id *)

not orders(id, itemid, qty) <-
^orders(id, itemid, qty),
not -log(id, itemid, qty),
-log(id, _, _).

}

Fig. 1. Order entry: variations

Relations. The state of a reactor is embodied in a fixed collection of persistent relations.
Relations are sets of (τ1, ..., τn) tuples, where each τi is one of the types int, string,
enum-type-name, or ref reactor-type-name. The primitive types have the usual mean-
ings. Enumerations introduce a new type ranging over a finite set of constants. Reactor
references, of the form ref reactor-type-name, are described in Section 4. Relations are
empty when a reactor is instantiated. In addition to persistent relations, whose values
persist between reactions, a reactor can declare ephemeral relations. These relations can
be written and read in the same manner as persistent relations, but they are re-initialized
with every reaction.

In the case of OrderEntryA, its state consists of two persistent relations, orders
and log, each of which is a collection of 3-tuples of integer values. Relation orders
has access annotationpublic, which means that the contents of ordersmay be read
or updated by any client. By “update”, we simply mean that tuples may be added to or
deleted from orders; no other form of update is possible. Relation log, lacking any
access annotation, is private, the default, and may thus only be read or updated by the
reactor that contains log.

REACTOR ::= def reactor-type-name = { {DECL .}* }
ENUM ::= enum enum-type-name = { {atom-name ,}+ }
DECL ::= (RELATION-DECL | RULE-DECL) .

RELATION-DECL ::= [public | public write | publiac read] [ephemeral] rel-name : ({TYPE ,}*)
RULE-DECL ::= HEAD-CLAUSE <- BODY

BODY ::= {BODY-CLAUSE ,}+
HEAD-CLAUSE ::= [not] [var-name.]rel-name[ˆ] ({(_ | var-name | new reactor-name) ,}*)
BODY-CLAUSE ::= [not] [var-name.][ˆ|-]rel-name ({(_ | var-name) ,}*) | BASIC-PREDICATE

BASIC-PREDICATE ::= EXP (< | > | <> | =) EXP

TYPE ::= int | string | enum-type-name | ref reactor-type-name
EXP ::= var-name | NUMERIC-LITERAL | STRING-LITERAL | EXP (+ | - | * | / | %) EXP | self

Fig. 2. Reactor syntax

Reactors: A Data-Oriented Synchronous/Asynchronous Programming Model 79

The reaction process. A reaction begins when a reactor receives an update bundle
from an external source. An update bundle is a total map from the set of relations of the
recipient to pairs of sets (Δ+, Δ−), where Δ+ and Δ− are sets of tuples to be added
and deleted, respectively, from the target relation, and Δ+ ∩Δ− = ∅. An update bundle
should contain at least one non-empty set, i.e. completely empty update bundles are not
well-formed. In the examples that follow, an update bundle will typically contain an
update to a single relation, usually adding or deleting only a single tuple. However, an
update bundle can in general update any of the public relations of a reactor, and add and
delete arbitrary number of tuples at a time.

The state of a reactor before an update bundle is received is called its pre-state. A
reaction begins when an update bundle is applied atomically to the pre-state of a reactor,
yielding its stimulus state. The stimulus state of a reaction is (conceptually) a copy of
each relation of the reactor with the corresponding updates from the update bundle
applied. So, for example, in the case of OrderEntryA, if relation orders contained
the single tuple (0, 1234, 3) prior to a reaction, and a reaction is initiated by applying
an update bundle with Δ+ = {(1, 5667, 2)} and Δ− = ∅, then the stimulus value of
orders at the beginning of the reaction will be the relation {(0, 1234, 3), (1, 5667, 2)}.
We will refer to the “value of relation r in the stimulus state” and “the stimulus value
of r” interchangeably.

If a reactor contains no rules, the state of its relations at the end of a reaction—its
response state—is the same as the stimulus state, and the reaction stores the stimulus
values back to the corresponding persistent relations. Hence in its simplest form, a reac-
tion is simply a state update. However, most interesting reactors have one or more rules
which compute a response state distinct from the reactor’s stimulus state (Section 3).
Rule evaluation can also define sets of additions and deletions to/from the future state of
either local relations or—via reactor references—relations of other reactors. These sets
form the update bundles—one bundle per reactor instance referenced in a reaction—that
initiate subsequent reactions in the same or other reactors. Update bundles thus play a
role similar to messages in message-passing models of asynchronous computation.

It is important to note that from the point of view of an external observer, a reaction
occurs atomically, that is, no intermediate states of the evaluation process are exter-
nally observable, and no additional update bundles may be applied to a reactor until the
current reaction is complete.

Fig. 3 illustrates the life cycle of a typical collection of reactors, both from the point
of view of an external observer (the top half of the figure) and internally (the bottom
half of the figure schematically depicts reactor M during reaction i). The pre-state of
reactor M during reaction i is labeled -Si, its stimulus state is labeled ^Si, its future
state is labeled S^i, and its response state is labeled Si. The terms pre-state, stimulus
state, response state, and future state are meaningful only relative to a particular reac-
tion, because one reaction’s response state becomes the next reaction’s pre-state, and
references to a reactor’s future state are used (along with the pre-state) to define the
stimulus state for a subsequent reaction. The only “true” state, which persists between
reactions, is the response state. An external observer therefore sees only a sequence of
response states (more specifically, the response values of public relations). Each rule of
a reactor can refer programmatically to relation values in all four states: it can read the

80 J. Field, M.-C. Marinescu, and C. Stefansen

pre-state of a relation (schematically depicted as -r in Fig. 3), the stimulus state (^r),
and the response state (r); it can write the response state and the future state (r^).

3 Rules

Basic rule evaluation. Reactor rules (Fig. 2) are written in the style of datalog [15, 14].
The single rule of OrderEntryA can be read as “ensure that log contains whatever
tuples are in orders”. The right-hand side, or body of a reactor rule consists of one
or more body clauses. In OrderEntryA, there is only one body clause, a match pred-
icate of the form orders(id, itemid, qty). A match predicate is a pattern
which binds instances of elements of tuples in the relation named by the pattern (here,
orders) to variables (here, id, itemid, and qty). As usual, we use ‘_’ to repre-
sent a unique, anonymous variable. Evaluation of the rule causes the body clause to be
matched to each tuple of orders and binds variables to corresponding tuple elements.
Since the head clause on the left side of the rule contains the same variables as the body
clause, it ensures that log will contain every tuple in orders.

In general, a RULE-DECL can be read “for every combination of tuples that satisfy
BODY, ensure that the HEAD-CLAUSE is satisfied” (by adding or deleting tuples to the
relation in HEAD-CLAUSE). The semantics of datalog rule evaluation ensures that no
change is made to any relation unless necessary to satisfy a rule, and—for our chosen
semantics—that rule evaluation yields a unique fixpoint result in which all rules are
satisfied. Although our rule evaluation semantics is consistent with standard datalog
semantics, we have made several significant extensions, including head negation, refer-
ence creation, and the ability to refer to remote reactor relations via reactor references.

Returning to reactor OrderEntryA, let us consider the case where the pre-state
values of orders and log are, respectively, {(0, 1234, 3)} and{(0, 1234, 3)}, and
an update bundle has Δ+ = {(1, 5667, 2)} and Δ− = ∅. Then the stimulus value
of orders will be equal to {(0, 1234, 3), (1, 5667, 2)}. No rule affects the value of
orders, so the response value of orders will be the same as the stimulus value. In
the case of log, rule evaluation yields the response state {(0, 1234, 3), (1, 5667, 2)},
i.e., the least change to log consistent with the rule.

Now, starting with the result of the previous OrderEntryA reaction described
above, consider the effect of applying another update bundle such that Δ+ =
∅ and Δ− = {(0, 1234, 3)}. This reaction will begin by deleting (0, 1234, 3)
from orders, yielding the stimulus state orders = {(1, 5667, 2)},log =
{(0, 1234, 3), (1, 5667, 2)}. Evaluating the rule after the deletion has no net effect on
log (since the only remaining tuple in orders is already in log), hence we get the
response state orders = {(0, 1234, 3)} and log = {(0, 1234, 3), (1, 5667, 2)}. We
thus see that the effect of this rule is to ensure that log contains every orderid ever seen
in orders. If we wanted to ensure that log is maintained as an exact copy of the cur-
rent value of orders (which would mean that it is no longer a log at all), we could add
the additional negative rule depicted in definition OrderEntryA’ in Fig. 1. The neg-
ative rule of OrderEntryA’ has the effect of ensuring that if an orderid is not present
in orders, it will also be absent from log; i.e., it encodes tuple deletion. While nega-
tion is commonly allowed in body clauses for most datalog dialects, negation on the
head of a rule is much less common (though not unheard of, see, e.g., [16]).

Reactors: A Data-Oriented Synchronous/Asynchronous Programming Model 81

A
P

P
L

Y

Si^^Si

SiRules-Si

inbk

add

removeinbox

…-r…
…^r…
…r…
…r^…

reaction done

next
reaction

Si-1M

P

N

Mi-1 Mi Mi+1

inbn

network …

add

Mi

dispatch
bundle

Si Si+1

Fig. 3. Reaction schematic

Pre-state value and stimulus values of relations. Reactor definitions OrderEntryB
and OrderEntryC of Fig. 1 add additional rules that further refine the behavior of
OrderEntryA, using references to both pre-state and stimulus values of relations.
OrderEntryB defines an ephemeral nullary relation orderIsNew, which functions
as a boolean variable, initially false. The new rule in OrderEntryB sets orderIs-
New to true (i.e., adds a nullary tuple) if orders contains a value not found in log
prior to the reaction (i.e., in log’s pre-state value). The definition of OrderEntryC
further refines OrderEntryB by causing any new order whose orderid is a duplicate
of a previously logged orderid to be deleted. The new rule in OrderEntryC must
distinguish the stimulus value of orders, i.e., ^orders from its response value, i.e.,
orders, since the rule defines the response value to be something different from the
stimulus value in the case where a duplicate order id is present.

It is important to note that the result of rule evaluation is oblivious to the order
in which rules are declared. We believe this feature makes it much easier to update
the functionality of a reactor by changing the rule set without concern for control- or
data-dependencies. We see this feature demonstrated in the progression of examples
depicted in Fig. 1, where rules can be mixed and matched liberally to yield updated
functionality. Thus rules allow orthogonal functional “concerns” to be specified in an
aspect-like fashion [10].

Initialization, constants, and reaction failure. Consider the pair of rules r(x) <-
s(x) and not r(x) <- s(x). These rules are inherently contradictory, since they
require that x be both present and absent from relation r. In such cases, a conflict re-
sults. Because rules are conditionally evaluated, conflicts cannot in general be detected
statically and must be detected during rule evaluation. If such a conflict occurs, the re-
action fails: the reactor rolls back to its pre-state and no update bundles are dispatched.

Consider the reactor definition Cell depicted in Fig. 4. Each instance of a Cell is
intended to hold exactly one value. Instances of Cell contain two relations: a public
unary relation val containing the publicly-accessible value of the cell, and a private

82 J. Field, M.-C. Marinescu, and C. Stefansen

def Cell = {
public val:(int).
live:().

(* initializations *)
(*1*) live() <- .
(*2*) val(0) <- not -live().

(* singleton constraint: if not
satisfied, reaction fails;
reactor rolls back *)

(*3*) not live() <-
val(x), val(y), x <> y.

}

Fig. 4. Cell

nullary (i.e., boolean) relation live. Recall that a reactor’s relations are initially empty
when the reactor is instantiated. Rules (1) and (2) together define an idiom which will
allow us to initialize relations to non-empty values. First, consider rule (1). Rule (1) is an
unconditional rule, and is an instance of the shorthand notation depicted in Fig. 5(b).
Rule (1) defines live to be a a constant, since its response value evaluates to non-
empty (i.e., “true”) at the end of every reaction. Because of rule (1), -live in rule (2)
is nonempty only during the first reaction in which the Cell is instantiated. Hence val
will be initialized to 0 only once, in the reaction in which Cell is created. Thereafter,
-live will be non-null, and the initialization will not recur, allowing val to be freely
updated to arbitrary values.

Finally, consider rule (3) of Cell. The three clauses in its body collectively check
to see whether val contains more than one value, i.e., whether it is a singleton. If not,
the rule requires that its goal clause (left-hand side) be satisfied, i.e., that live be set
to empty (false). However, any such attempt is inconsistent with the assertion in rule (1)
that live is non-empty (true), hence any attempt to update Cell without maintaining
the singleton invariant will result in a conflict and reaction failure. We thus see that the
reactor model allows “assertions” and “integrity constraints” in the style of databases to
be expressed in precisely the same form as rules that express state updates. When some
assertion fails, the reaction rolls back. Fig. 5(d) depicts a notational convention that will
allow us to use FAIL to define rules that represent assertions.

4 Asynchronous Reactor Composition

Up to this point, we have not explained how update bundles are generated, only how
reactors react when an update bundle is applied. In this section, we show how updates
are generated, and explain how this is intimately connected to asynchronous interaction.

Single-reactor asynchrony. Consider the reactor definition Fibonacci in Fig. 6,
which computes successive values of a Fibonacci series. The relation series con-
tains pairs whose first element is the ordinal position of the sequence value, and whose
second element is the corresponding value of the sequence. The value of series is ini-
tialized using notational conventions (e) and (f) of Fig. 5. To compute the next element
of the series, we need to first identify the last two elements of the series computed thus
far. Universal quantification is required to determine the maximum element of a series;
however, the body of a datalog rule can essentially encode only existential properties.
To compute universal properties, we typically require auxiliary relations, thus, e.g., in
Fibonacci, we use the ephemeral relation notLargest to contain all the indices
of elements of series which are less than the maximum index.

Reactors: A Data-Oriented Synchronous/Asynchronous Programming Model 83

Notation Translation Comments

a r1(exp0) <- . . . ri(expi) r1(x0) <- . . . ri(xi) . . . ,
x0 = exp0, . . . ,
xi = expi.

Expressions expi are instances of non-
terminal EXP in Fig. 2; the xi are fresh
variables.

b head <- . head <- 0 = 0.
c r(x1, . . . xn) := body. r(x1, . . . xn) <- body.

not r(x1’, . . . xn’) <- body,
-r(x1’, . . . xn’), x1’ <> x1.

. . .
not r(x1’, . . . xn’) <- body,

-r(x1’, . . . xn’), xn’ <> xn.
d FAIL <- not live() <- Assumes the following definitions exist:

live: ().
live() <- not -live().

e body0:{
head1 <- body1.· · ·
headn <- bodyn.

}

head1 <- body1, body0.· · ·
headn <- bodyn, body0.

f INIT not -live() Assumes same definitions as (d).
g head1, · · · , headn <- body. head1 <- body.

· · ·
headn <- body.

Fig. 5. Notational conventions

def Fibonacci = {
(* complete series thus far: 1st elt.

is index, 2nd elt. is value *)
public read series: (int, int).
(* must be true for reactor to run *)
public write run: ().
(* holds indices in the sequence

less than the maximum *)
ephemeral notLargest: (int).

INIT: {
series(1,0), series(2,1) <- .
run() <- .

}

(* indices in series less than max *)
(*1*) notLargest(n) <- series(n, _),

series(n’, _), n’ > n.

(* compute next series value *)
(*2*) series^(n, x1+x2) <-

not notLargest(n),
series(n-1, x1),

series(n, x2).

(* halts if "run" set to false *)
(*3*) FAIL <- not -run(), not ^run().

}

Fig. 6. Self-Reacting Fibonacci

Note that the relation in the head of rule (2) computing the next value of the Fi-
bonacci sequence has the form series^. A relation name of this form refers to the
future state of the relation. The future state defines the contents of an update bundle
which is processed after the current reaction ends, in a subsequent reaction. One can
thus think of the future value of a relation as defining an asynchronous update or dis-
patching a “message”. As a result, successive values of the series are separately visible
to external observers as they are added to the list. Rule (3) results in failure if both the
pre-state and the stimulus values of run are false, thus preventing further updates to the
series from being generated. Instances of Fibonacci can react to two distinct classes
of update bundles: “internally” generated update bundles containing only new values
of the series, and client-generated update bundles which only affect the value of run.
A client cannot update series since series is not public. The Fibonacci reac-
tor does not produce update bundles affecting the value of run, since it has no rules
referring to the future value of run.

84 J. Field, M.-C. Marinescu, and C. Stefansen

In general, distinct reactors operate concurrently and independently. Given this fact,
it is possible for an update bundle to be generated by a client attempting to update the
value of run while a previous reaction by the same instance is in progress. Since re-
actions take place atomically, we must enqueue pending client updates until the current
reaction is complete. To this end, every reactor has an associated inbox queue containing
a multiset of pending update bundles. When a reaction is complete, the reactor checks
for a new update bundle in the queue. If it exists, the reactor dequeues it and uses it to
initiate a reaction. If no update bundle is present, the reactor performs no further com-
putation until a new update arrives. We make no assumptions about the order in which
inbox items are processed, except that they must be processed fairly. Fig. 3 illustrates
this process.

Reactor references and multi-reactor asynchrony. Until now, our examples have
only considered a single reactor type. Consider now the definitions for reactors Sam-
ple, Sensor, and Nonce depicted in Fig. 7. Reactor types Sample and Sensor

def Sample = {
(* rSensor: ref. to sensor; assumed

to be initialized by client *)
public rSensor: (ref Sensor).
(* samples collected thus far; nonces

distinguish sample instances *)
public log: (ref Nonce, int).
(* pulse: set to collect sample *)
public write ephemeral pulse: ().
(* response: holds sensor response *)
public write ephemeral response:

(int).

(* request sample when pulse set *)
(*1*) s.req^(self) <-

pulse(), rSensor(s).

(* process response:
add sample to log *)

(*2*) log(new Nonce, r) <-
response(r).

}

def Sensor = {
(* set when sample is to

be collected; value is ref.
to sample reactor *)

public write ephemeral req:
(ref Sample).

(* val: current sensor value *)
public val:(int).

(* send resp. when client sets req *)
r.response^(v) <- val(v), req(r).

(* sensor value is a singleton *)
FAIL <- val(x), val(y), x <> y.

}

def Nonce = {}

Fig. 7. Asynchronous query/response

encode a “classical” asynchronous request/response interaction. To enable two reactor
instances to communicate, we use reactor references such as those stored in relation
rSensor. Rule (1) of Sample has the effect of dispatching an asynchronous request
for the sensor value (maintained a Sensor reactor) whenever a client of Sample
updates pulse. The expression s.req^(self) in Rule (1) contains an indirect ref-
erence to relation rSensor: after the reactor reference stored in relation rSensor
is bound to variable s, we refer to relation req of the sensor instance indirectly using
the expression s.req. Since we refer to the future value of s.req, an asynchronous
update bundle is dispatched to the Sensor instance. The update bundle contains a
self-reference to the requesting Sample instance, which is generated by the self
construct.

Reactors: A Data-Oriented Synchronous/Asynchronous Programming Model 85

A Sensor instance responds to a request (in the form of an update to relation req)
by dispatching the current value of the sensor back to the corresponding Sample in-
stance. It does so by by setting the Sample’s response relation via the reactor refer-
ence sent by the requester. The response is asynchronous, since r.response^ refers
to a future value. The requester processes the response from the Sensor instance by
updating its log relation with the value of the response.

There are two ways of introducing references to reactors. The keyword self eval-
uates to a reference to the enclosing reactor. An expression of the form new reactor-
type-name instantiates a new instance of the given reactor type. Instantiation expres-
sions may only appear in the head of a rule. Rule (2) of Sample creates instances of
the trivial reactor Nonce. A reactor reference is globally unique, hence trivial reactors
such as Nonce can be used as sources of keys for relations. In particular, Sample uses
instances of Nonce to distinguish multiple instances of the same sensor value. While
Nonces contain no rules, in general, when a reactor is instantiated in a reaction, its rules
are evaluated along with the rules of the parent reactor, as we shall see in Section 5.

In order to instantiate and connect Sample and Sensor instances together, another
reactor must contain rules of the form s.rSensor(new Sensor) <- theSam-
pler(s) and theSampler(new Sample) <- . A request-response cycle be-
tween Sample and Sensor instances requires three distinct reactions: the reaction
in which a Sample client sets pulse (which dispatches the request to the sensor),
the reaction in which the sensor responds to the request, and the reaction in which the
requester updates the value of log.

5 Synchronous Reactor Composition

In the example in Fig. 8, an instance of MiniBank receives asynchronous requests to
transfer money between accounts. As with the example in Fig. 7, we use references to
“plumb” the reactors together. However, unlike the previous example, the remote refer-
ences in Fig. 8 refer to response values of relations, not future values. This means that
if a reaction is initiated by an update bundle containing a new req tuple at an instance
of MiniBank, the scope of the reaction will extrude to include both of the account
reactors (referred to by variables to and from, respectively). This results in a compos-
ite, synchronous, atomic reaction involving three reactor instances. Scope extrusion is

def Acct = {
(* account balance *)
public balance: (int).

(* balance is a singleton *)
FAIL <-

balance(x), balance(y), x <> y.

(* negative balances not allowed *)
FAIL <- balance(x), x < 0.

}

def Minibank = {
(* transfer request:transfer amount,

to account, from accout *)
public write ephemeral transferReq:

(int, ref Acct, ref Acct).

to.balance(x+amt) :=
^transferReq(amt, to, _).

from.balance(y-amt) :=
^transferReq(amt, _, from).

}

Fig. 8. Classic Transaction

86 J. Field, M.-C. Marinescu, and C. Stefansen

an inherently dynamic process, similar to a distributed transaction—see Section 6 for
details. MiniBank uses the notation of Fig. 5(c) to define “assignments” to singleton
relations.

Note that the rules in Acct encode constraints on the allowable values of balance.
In a composite reaction, all of the rules of all of the involved reactors must be satisfiable
in order for the reaction to succeed. If any of the rules fails, the composite reaction fails,
and all of the reactors revert to their pre-reaction states. A composite reaction is always
initiated at a single reactor instance at which some asynchronously-generated update
bundle is processed—in the case of the example in Fig. 8, reactor instance MiniBank.

The example in Fig. 9 shows how multiple user interface components can be instan-
tiated dynamically based on the current contents of an associated database. This mimics
the process of building dynamic, data-driven user interface components. The basic idea
of DataDisplay is that a button and an output field are generated for each item in a
database. ButtonWidget and OutputWidget are reusable user interface compo-
nents representing the button and output field generated for each item in relation db.
The buttons thus generated are “active”: pushing them causes the associated data to be
updated, which in turn results in updates to the UI. For example, rule (8) “wires” to-
gether corresponding button and database items such that when a button is pressed, the
corresponding data item is decremented. Rule (7) sets the value of the output field to the
value of the quantity currently maintained in the database. The rules for newly-created
reactors are evaluated as part of the “parent” reactor that created them.

6 Synchronous Reactions: Scope Extrusion and Locking Details

Scope Extrusion. In response to an update bundle, a reactor evaluates all its rules and
while doing so it may extrude the scope of the reaction to include other reactors. Ex-
trusion can happen in two ways: First, when a new reactor is instantiated it is included
in the scope of the reaction that caused it to be instantiated. Second, when the response
state of any relation (local or remote) is written, the reactor that contains that relation
and all reactors containing rules reading that relation are included in the scope of the
ongoing reaction. We say a relation is written whenever a rule produces a response-state
update for that relation regardless if this results in a state change or not (e.g. adding an
tuple that already exists constitutes a write). One important exception is the passive
read. A passive read is a read from the pre-state of a remote relation. It differs from
other remote reads in that writes to the remote relation in itself will not cause the reac-
tion to extrude to the reader.

A reaction is complete when all reactors included in the reaction have reached a state
that satisfies their rules. If one or more involved reactors cannot reach a state that sat-
isfies their rules, there has been a conflict and all involved reactors roll back to their
pre-state, i.e. the state they were in before the update bundle occurred or before they
were included in the reaction. If different reactors involved in the same composite reac-
tion separately define future values for relations of the same target reactor instance, the
updates are combined into a single update bundle, which will be dispatched at the end
of the composite reaction to the target reactor. In case the reaction rolls back, no update
bundles are produced. In this sense, from the point of view of an external observer, a

Reactors: A Data-Oriented Synchronous/Asynchronous Programming Model 87

def ButtonWidget = {
public label: (string).
public write ephemeral pressed: ().

}

def OutputWidget = {
public label: (string).
public val: (string).

}

def DataDisplay = {
(* database: itemid, quantity *)
public db: (int, int).

(* list of button / output widget
pairs,indexed by itemid *)

widgets: (int, ref ButtonWidget,
ref OutputWidget).

(* labels of widgets are constants *)
(*1*) o.label("Inventory: ") <-

widgets(_, _, o).
(*2*) b.label("Click to decr") <-

widgets(_, b, _).

(* projection of relns. on itemids *)
ephemeral oldDisplayItems: (int).
ephemeral currDbItems: (int).

(*3*) oldDisplayItems(i) <-
-widgets(i, _, _).

(*4*) currDbtems(i) <- db(i, _).

(* create new child widgets when new
item added to db *)

(*5*) widgets(i, new ButtonWidget,
new OutputWidget) <-

db(i, _),
not oldDisplayItems(i).

(* delete widgets if corresp. items
removed from db *)

(*6*) not widgets(i, _, _) <-
-widgets(i, _, _),
not currDbItems(i).

(* output val set to qty of
corresp. item *)

{*7*) o.val(toString(q)) :=
widgets(i, _, o), db(i, q).

(* button decrements qty. of
corresp. item *)

(*8*) db(i, q-1) :=
widgets(i, b, _),
b.pressed().

}

Fig. 9. Data-Driven UI

composite reaction has the same atomicity properties as a reaction involving a single
reactor. If a reaction updates the future state of (local or remote relations in) reactors
C1, . . . , Cn, it produces n different update bundles—one per target reactor—and each
Ci will have a separate and independent reaction to its own update bundle. Even if the
scope of Ci’s reaction should happen to expand to include some other Cj , Cj’s update
bundle will not be processed (or even visible) in that reaction.

Locking. Conceptually a rule reads all relations that appear in the body as well as any
relation that appears in negated form in the head. Thus a rule’s need for read access can
be determined statically. Whether a rule will write the head relation when evaluated can
generally only be determined at runtime, because the read has to match a non-empty
set of facts that satisfy the body for a write to occur1. For this reason we will use the
term read to refer to the static property, regardless of any optimization that might avoid
unnecessary reads. The term write, on the other hand, will be strictly reserved for the
dynamic property, i.e. a head relation is considered to be written only if the body yields
at least one match when evaluated.

When a reaction extends to include several reactors, the composite reaction should
remain atomic. The following locking conventions ensure this property. A reactor locks
when it agrees to react to an update bundle and remains locked for the duration of the
reaction until either a quiescent response state is found and committed or a conflict
causes the reactor to roll back to its pre-state. When a reactor is locked, it denies any

1 When a tuple t is present in a relation r, we say that r t is a fact.

88 J. Field, M.-C. Marinescu, and C. Stefansen

{ -R = ^R = R }
quiescent

{ -R = ^R = R }
read locked on r

{ }
reacting on r

{ reaction r requests read }
accept request from r

{ update bundle b available }
start reaction r

{ ^R = apply(-R,b) }

{ no conflict }
all in reaction commit,

dispatch update bundles,
and release all locks

{ conflict }
all in reaction roll back
and release all locks

{ reaction r requests lock release }
release lock

{ }
non-existing

instantiated by reaction r
{ -R = ^R = R = Ø }

{ reaction r requests write to response state }
join reaction

{ -R = ^R = R }

START

Fig. 10. Reactor state machine. Transitions are written {precondition}activity{postcondition}.
States are written {invariant}state.

interaction (read-access, write-access, and beginning to react to other update bundles)
with reactors that are not part of the same reaction. Refer to Fig. 10 for an overview.

Intuitively, reaction scope extends to include all reactors owning or (non-passively)
reading relations being written, while lock dynamically extends to include all reactors
owning relations being read (as well as all reactors in the reaction scope). When a re-
mote reactor is read, an exclusive lock on the reactor is acquired and held for the entire
duration of the reaction. Should the same remote reactor need to be written later in the
same reaction, this defensive locking strategy guarantees that references to the remote
reactor’s pre-state and response state will in fact refer to two consecutive states of that
reactor because it has not been free to serve any other reactions in the meantime. The
problem of deadlock naturally arises in this setting; a reactor implementation would
require that standard deadlock detection, avoidance, or recovery techniques (e.g., opti-
mistic concurrency control) be used.

7 Advanced Semantic Issues

The rule evaluation model for reactors extends standard datalog with head clause nega-
tion (to express deletion) and reactor references. In this section, we review key aspects
of standard datalog semantics and define our extensions. We evaluate the rules by for-
ward derivation (also called bottom-up derivation). This strategy applies all rules on the
facts to produce all possible consequences—the appropriate approach for our purpose
of creating a completely defined new state.

7.1 Head Clause Negation: Semantics Via Translation

We handle negation in head clauses by transforming reactor rules to normal datalog
rules. First, we treat each of the four states of a given relation as distinct relations
from the point of standard datalog semantics. The goal of reactor rule evaluation is to
determine a unique, minimal solution for the response and future values of local and
remote relations. Let ri represent the response or future value of a local relation we
wish to compute (we will consider reactor references shortly). Let rP

1 , ... rP
n denote

the contents of the persistent relations immediately prior to a reaction; if the reactor has
just been created the relations are empty by default. Let ^rΔ+

i , ^rΔ−

i be the addition

Reactors: A Data-Oriented Synchronous/Asynchronous Programming Model 89

and the deletion sets of the update bundle applied to the reactor. The basic idea for
determining the solution to ri is as follows: (1) introduce a pair of auxiliary relations
(rΔ+

i ,rΔ−

i) which contains the sets of tuples that will be added to and deleted from ri;
(2) eliminate negation in head clauses by transforming the program to a normal datalog
program containing references to rΔ+

i and rΔ−

i ; (3) evaluate the transformed program
using standard datalog semantics; (4) for ri a response state overwrite rP

i to include
rΔ+

i and exclude rΔ−

i ; for ri a future state copy (rΔ+

i ,rΔ−

i) into (^rΔ+

i ,^rΔ−

i).
We now describe our program transformation in detail. Given a reactor C with per-

sistent relations ri and ephemeral relations ti, let us redefine ^rΔ+

i , ^rΔ−

i , ^tΔ+

i and
^tΔ−

i to be the addition and the deletion sets of the update bundle applied to reactor C.
We can assume that ^rΔ+

i ∩^rΔ−

i = ∅ and ^tΔ+

i ∩^tΔ−

i = ∅ because this property is
checked by the originating reactor before creating new update bundles. Let -ri denote
the pre-, ^ri the stimulus, ri the response, and r^i the future state of the reaction.

Rewrite rules. Fig. 11 shows how our rewriting technique transforms a program with
negation in the head clauses to a program without them. Let us redefine rΔ+

i , rΔ−

i ,
tΔ+

i and tΔ−

i the sets of additions/deletions to the response state of the persistent and
ephemeral relations, correspondingly.

Rewrite: ri <- body as: rΔ+
i <- body (I)

Rewrite: not ri <- body as: rΔ−
i <- ri, body (II)

Rewrite: head <- ri, body as: head <- ri, not rΔ−
i , body (III)

Rewrite: head <- not ri, body as: head <- rΔ−
i , body

head <- not ri, body (IV)

Rewrite: r^i <- body as: r^Δ+
i <- body (VII)

Rewrite: notr^i <- body as: r^Δ−
i <- body (VIII)

Add: ri <- ^ri (V)

Add: ri <- r
Δ+
i (VI)

Fig. 11. Rewrite rules defining the semantics of reactor rule evaluation in terms of normal datalog

Rewrite rule (I) computes the set of tuples to be added to ri as the set of tuples that
the body clauses resolve to. Rule (II) computes the deletion set very similarly; the only
difference is adding a body clause which makes sure that a tuple gets deleted from a
relation only if it was already there. The extra clause ensures that this rewriting rule
does not introduce domain dependence—see further in this section for details. Rule
(VI) adds the new addition sets to the response state as soon as they are computed;
this ensures that the most current tuple additions are visible and propagating to the
rest of the reactor rules. We would like to similarly account for the deletion sets but to
reflect that in the response state we have to express it as negation in the rule head—
exactly what the program transformation technique is trying to eliminate. Therefore the
deletion sets must be accounted for and propagated via the reactor rules. As a result,
rule (III) restricts the matching for the tuples in ri to the ones that are not in the deletion
set; conversely, rule (IV) allows matching on tuples in the deletion set. The rest of the

90 J. Field, M.-C. Marinescu, and C. Stefansen

rules are trivial. For ti rules (I) to (VI) apply unchanged; rules (VII) and (VIII) do not
apply because ephemeral relations do not have a future state.

State updates. At the beginning of a reaction the following assignments take place:

-ri ::= rP
i , ^ri ::= ^rΔ+

i ∪ -ri \ ^rΔ−

i , ^ti ::= ^tΔ+

i

where ‘::=’ should be read as relation overwriting. Intuitively the first assignment over-
writes the pre-state of the current reaction’s persistent relations with the contents of the
relations prior to the reaction. The next assignments then apply the corresponding up-
date bundles to the pre-state to obtain the stimulus state. Note that the deletion set of
the update bundle ^tΔ−

i for ephemeral relations has no effect.
All assignments are done outside datalog and have the effect of keeping a snap-

shot copy of the pre-state and the stimulus state in case the rules need to read them or
the reaction rolls back. After the assignments take effect we can apply standard dat-
alog techniques to evaluate the program rules up to a fixpoint. If at any point during
the evaluation either rΔ+

i ∩ rΔ−

i �= ∅, r^Δ+

i ∩ r^Δ−

i �= ∅, tΔ+

i ∩ tΔ−

i �= ∅, or

t^Δ+

i ∩ t^Δ−

i �= ∅ the evaluation stops and the reaction rolls back. If we reach the
fixpoint (without either of the checks failing) we update rP

i to take into account the
deletion sets: rP

i ::= ri \rΔ−

i . Before quiescing, the reaction forms the update bundles

(r^Δ+

i ,r^Δ−

i) and (t^Δ+

i ,t^Δ−

i) for other reactors and for itself, if applicable.

7.2 Semantics of Normal Datalog Programs: Stratification and Safety

As a result of applying our rewrite technique, we are left with a normal datalog program
containing negation in body clauses only. Since it is possible to use negation to encode
logical paradoxes, we wish to apply a syntactic constraint to rules that will ensure that
a unique solution to collection of rules exists, without unduly affecting expressiveness.
We adopt the stratification semantics for normal programs with negation [15]. The main
idea behind stratification is to partition the program along negation such that for any
relation we fully compute its content before applying the negation operator on it. For
example, a program consisting of the rules q(x) <- p(x,y), not q(y) and
p(1,2) <- is not stratified because it contains recursion through negation.

Another desirable property of a datalog program is domain independence: a solution
should depend only on the known facts and not on the universal set of all facts. We
would also like to ensure finiteness, or at least weak finiteness: that the evaluation of
a rule from a finite set of facts yields a finite set of results, but infinite results caused
by infinite recursion cannot be ruled out. To ensure domain independence and weak
finiteness, we adopt the syntactic safety condition of Topor [14], which supports arith-
metic expressions and negation. Briefly, a rule is safe if all of its variables are limited.
A variable is limited if it occurs in a non-negated clause in the body, if is occurs in a
negated clause in the body and is not used elsewhere, or if it occurs in an expression
where a unique value of the variable can be computed given all the limited variables of
the expression. A program is safe if all of its rules are safe.

Reactors: A Data-Oriented Synchronous/Asynchronous Programming Model 91

7.3 Remote Reactor References

In a naive approach, every time a set of synchronously executing reactors Ci tries to
extrude its scope to a new reactor C which is executing, Ci (1) waits for C to quiesce
and accept the scope extrusion request, then (2) rolls back and restarts execution within
the new scope expanded to include C.

A less naive approach will first statically compute the transitive closure of all the syn-
chronously executing reactors based on the type information. The goal is to coordinate
the order of rule evaluation with the order of locking—see Section 6. The algorithm
will therefore compute the global stratification for the statically computed reactor clo-
sure; any time there is a choice of rules to evaluate next, the algorithm will choose the
one that is consistent with the global stratification. This will make sure that positive
information in relations is fully computed before evaluating its negation.

The program obtained by putting together the rules of all reactors Ck in a reaction
will contain remote references to relations in Ck . To make all remote references local
we define the following transformation. For every relation r in a reactor, the reactor
defines a shadow copy r~ and an implicit rule of the form r~(self,x) <- r(x).
Every remote reference c.r(x) to relation r can then be transformed into a local
access to r~(c,x). At this point the statically computed set of rules only contains local
references and it is treated as a single program to which we can apply the transformation
in Fig. 11.

7.4 Reactor Instantiation Details

The semantics of reactor instantiation must be defined with some care to ensure that
the number of reactors instantiated in a reaction is unambiguous. Consider a rule
whose head has the form r(x1, ..., xi, new M, xi+1, ..., xn), where M is a reactor
type name and xk, k ∈ [1...n] are variables bound in the rule body. Then a tuple
〈v1, ..., vi, α, vi+1, ..., vn〉 is a satisfying solution for the rule if and only if (1) α is
a reference to a reactor of type M, (2) α is globally unique, (3) α did not exist prior
to the current reaction, (4) 〈u1, ..., uj , α, uj+1, ..., um〉 does not satisfy any rule with a
head of the form s(y1, ..., yj , new M, yj+1, ..., ym), and (5) 〈u1, ..., ui, α, ui+1, ..., un〉
does not satisfy any rule with a head of the form r(x1, ..., xi, new M, xi+1, ..., xn), un-
less uk = vk for all k ∈ [1...n]. The basic idea behind this definition is that in each
reaction, for each instance of new in a rule head, a new, globally unique reactor refer-
ence is generated for each satisfying combination of values bound to variables in the
rule. The generalization of this semantics to rules containing multiple instances of new
is straightforward.

Consider the rules [1] r(new Foo, i) <- t(i), [2] s(y) <- r(y, _),
and [3] s(new Foo) <- . If relation t initially contains three tuples, then follow-
ing the instantiation semantics above, rule [1] causes three new reactors to be instanti-
ated. Similarly, rule [3]will generate one new reactor, distinct from those generated by
rule [1]. If relation s is initially empty, it will contain four distinct reactor references
at the end of the reaction: three from the reactors instantiated by rule [1], and one from
the reactor instantiated by rule [3]. If we were to duplicate any of rules [1]-[3], the
result of the reaction would remain the same, since the instantiation behavior of rules is
dependent on their semantics, not their syntactic form.

92 J. Field, M.-C. Marinescu, and C. Stefansen

Note that although the instantiation semantics distinguishes between new expres-
sions and variables in rule heads, it does not distinguish reference-bound variables from
other variables. Consider, e.g., the rules [4] t(new Bar, i) <- r(i) and [5]
s(new Bar, b) <- t(b, j). Rule [5] requires that there exist a unique, newly
generated reference for each b satisfying t(b, j). If r initially contains two tuples,
then rules [4] and [5] each instantiate two new reactors.

It will be convenient to assume that reactor references generated by the same reactor
are totally ordered, which allows them to be used as a source of ordered—but otherwise
uninterpreted—keys. The Nonce reactors used in Fig. 7 serve this purpose.

8 Extended Example: Three-Tier Web Application

Fig. 12 depicts an extended example which follows the structure of a conventional three-
tier web application for catalog ordering (note that this example makes extensive use of
the notational abbreviations of Fig. 5). Unlike the example in Fig. 9, which combined
“client” and “server” functionality in a single component, the example in Fig. 12 ex-
plicitly models a database (DB), web server (WebServer), and browser (Browser)
as distinct components. The browser and web server communicate entirely asynchro-
nously, while the web server and database communicate synchronously (i.e., transac-
tionally). “Page content” in the browser is modeled by the CompositeWidget reactor
type, which is instantiated with various primitive widget reactors (OutputWidget and
ButtonWidget from Fig. 9 and a new FormWidget), depending on the type of page
being displayed. Instances of CompositeWidget perform local (i.e., “browser-side”)
computation which performs basic form validation. Such functionality could easily be
replaced with more elaborate browser-based widgets, e.g., with AJAX-style asynchro-
nous behavior. One limitation of our current model is that all reactor references must
be strongly typed, which makes it difficult to model a web browser reactor that can ren-
der arbitrary pages, also represented as reactors. In the future, we will consider more
flexible type systems as well as weaker stratification requirements, which would allow
a completely generic browser to be defined.

9 Related and Future Work

Related Work. Fundamentally, reactors are “reactive systems” [8], combining and ex-
tending features from several, largely unrelated areas of research: synchronous lan-
guages, datalog [15], and the actor model [1].

Esterel [2], Lustre [4], Signal [7], and Argos [11] are prominent synchronous lan-
guages. In synchronous languages, the term causality refers to dependencies, and all
have restrictions on cyclic dependencies. Esterel only admits a program if all signals
can be inferred to be either present or absent (as opposed to unknown); this is referred
to as constructiveness. Esterel adopts a strict interleaving semantics, i.e. it assumes that
reactions cannot overlap temporally. In Esterel signals are broadcast instantaneously so
that all receptors of the signal will see it in the same instant and the signal will only
exist in that reaction. The reactor model, on the other hand, supports both synchronous
and asynchronous broadcasts (readers can react when a relation is changed) as well as

Reactors: A Data-Oriented Synchronous/Asynchronous Programming Model 93

def DB = {
(* trivial database: single value

containing item inventory *)
public inv: (int).

}

def WebServer = {
(* reference to the database *)
rDB: (ref DB)
(* server accepts two request types

from browsers: session initiation
and form submission *)

public ephemeral newSession:
(ref Browser).

public ephemeral formSubmit:
(ref Browser, int).

(* temp to hold new page *)
ephemeral newPage:

(ref CompositeWidget).

(* generate page on every reaction *)
newPage(new CompositeWidget) <- .
(* each has link back to server *)
c.rServer(self) <- newPage(c).

(* newSession creates three primitive
widgets for the new page *)

newSession(_), newPage(c): {
c.outWidget(new OutputWidget),
c.formWidget(new FormWidget),
c.buttonWidget(new ButtonWidget)

<- .
(* init primitive widget data,

in particular, copy current
inventory from db *)

o.label("Available: "),
o.val(toString(q)) <-

c.outWidget(o), rDB(d), d.inv(q).
f.label("Quantity to order: "),
f.val("1") <- c.formWidget(f).
b.label("Submit") <-

c.buttonWidget(b).
}

(* formSubmit checks whether
requested qty. is avail.; returns
appropriate responses *)

formSubmit(br, qr), newPage(c): {
c.outWidget(newOutputWidget) <- .
ephemeral reqOK() <-

qr >= q, rDB(d), d.-inv(q).
o.label("Success!") <-

reqOK(), c.outWidget(o).

d.inv(q’) := reqOK(), rDB(d),
d.-inv(q), q’ = q - qr.

o.label("Sorry!") <-
not reqOK(), c.outWidget(o).

}

(* submit new page to browser *)
br.showPage^(c) <- .

}

def Browser = {
(* request to display new page *)
public ephemeral showPage:

(ref CompositeWidget).
(* current page visible in browser *)
thePage: (ref CompositeWidget).

(* request to show new page updates
current page; link to browser *)

thePage(c) := showPage(c).
c.rBrowser(self) <- showPage(c).

}

def CompositeWidget = {
(* refs to server and browser *)
rServer: (ref WebServer).
rBrowser: (ref Browser).
(* widgets on page; the form and

button widgets are empty (not
used) on the response page *)

outWidget: (ref OutputWidget).
formWidget: (ref FormWidget).
buttonWidget: (ref ButtonWidget).

(* perform local validation: ensure
qty. requested less than inv. *)

ephemeral validateOK: ()
validateOK() <-

buttonWidget(b), b.pressed(),
formWidget(f), f.val(qty),
outWidget(o), o.val(inv),
toInt(qty) <= toInt(inv).

(* validation OK: submit to server *)
rServer.formSubmit^(br, toInt(qty))

<- validateOK(), rBrowser(br),
formWidget(f), f.val(qty).

(* validation fails: just reset qty.
to 1; do not submit *)

f.val("1") <- not validateOK().
}

def FormWidget = {
public label: (string).
public val: (string).

}

Fig. 12. Mini three-tier web application

synchronous and asynchronous point-to-point communication (by writing directly into
a public relation of the receiver).

Lustre and Signal also limit cyclic dependencies, but add sampling in the form of
the construct x = Exp when BExp meaning that Exp should be evaluated only

94 J. Field, M.-C. Marinescu, and C. Stefansen

when BExp is true. This facility provides a sophisticated way of reading values from
preceding reactions other than the immediately previous one. In the reactor model, such
predicates can be expressed directly as x(Exp) <- BExpwhere x should be a single-
ton relation. Argos is based on State Charts and hierarchical automata and distinguishes
itself from other synchronous languages by being graphical.

Generally speaking, the group of synchronous languages does not allow cycles in the
data flow graph – only pre-state to response-state connections are permitted when re-
ferring to the same variable. In the reactor model, stratification provides a more refined
classification that widely allows recursion while ruling out cases where the fixed point
could be ambiguous (of course, programs may still loop infinitely). Reactors provide
several features not found in synchronous languages, namely asynchrony, generativity,
and distributed transactions. We are not familiar with any other language that combines
these features.

Active databases [13] commonly express triggers of the form Event–Condition–
Action (ECA), where the action is carried out if on receipt of a matching event the
condition holds true. This can be expressed as action <- event, condition
in the reactor model. The reactor model eliminates the distinction between conditions
and events, and adds support for distribution, process generation, and synchronous com-
position.

Transaction Datalog [3] introduces transactions and database updates to datalog. In
Transaction Datalog, inserts and deletes are special atoms in rule bodies, and backward
derivation rather than forward derivation is used. To achieve concurrency in transac-
tions a concurrent conjunction operator, |, is added. In the reactor model, all rules
execute concurrently within the same reaction (subject to stratification) by default,
and thus sequentiality, rather than concurrency, must be programmed explicitly when
needed.

Future Work. While this paper has not focused on implementation, there are two broad
areas that are amenable to optimization: query incrementalization, and efficient imple-
mentation of synchronous composite reactions through low-overhead concurrency con-
trol. The former has already been studied in the datalog community (e.g., [5]), and we
intend to adapt those results appropriately to our setting. In the case of synchronous
reactions, recent results on efficient implementation of software transactions (e.g., [9])
are likely to be relevant.

Other issues we plan to investigate include: (1) contract/interface type systems; (2)
various abstraction facilities, such as reactor and rule parametricity and high-order
rules, that read, write, and deploy other rules; (3) more sophisticated access control
mechanisms; (4) function symbols (functors); (5) reactor garbage collection; (6) a truly
distributed implementation; (7) support for long-running (rather than atomic)
transactions.

Acknowledgments. The authors gratefully acknowledge the contributions of Rafah
Hosn, Bruce Lucas, James Rumbaugh, Mark Wegman, and Charles Wiecha to the de-
velopment of the ideas embodied in this work.

Reactors: A Data-Oriented Synchronous/Asynchronous Programming Model 95

References

1. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation.
Journal of Functional Programming 7(1), 1–69 (January 1997)

2. Berry, G., Gonthier, G.: The ESTEREL synchronous programming language: design, seman-
tics, implementation. Science of Computer Programming 19(2), 87–152 (1992)

3. Bonner, A.J.: Workflow, transactions and datalog. In: PODS ’99: Proceedings of the eigh-
teenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
New York, NY, USA, pp. 294–305. ACM Press, New York (1999)

4. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language for real-
time programming. In: POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, New York, NY, USA, pp. 178–188. ACM
Press, New York (1987)

5. Dong, G., Topor, R.W.: Incremental evaluation of datalog queries. In: Hull, R., Biskup, J.
(eds.) ICDT 1992. LNCS, vol. 646, pp. 282–296. Springer, Heidelberg (1992)

6. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine (2000)

7. Gautier, T., Guernic, P.L.: SIGNAL: A declarative language for synchronous programming of
real-time systems. In: Proceedings of the Functional Programming Languages and Computer
Architecture, London, UK, pp. 257–277. Springer, Heidelberg (1987)

8. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.) Logics
and models of concurrent systems. NATO ASI Series F: Computer And Systems Sciences,
vol. 13, pp. 477–498. Springer, Heidelberg (1989)

9. Harris, T., Marlow, S., Jones, S.P., Herlihy, M.: Composable memory transactions. In: ACM
Conf. on Principles and Practice of Parallel Programming, Chicago, pp. 48–60 (June 2005)

10. Kiczales, G.: Aspect-oriented programming. ACM Computing Surveys 28, 4es, 154 (1996)
11. Maraninchi, F., Rémond, Y.: Argos: an automaton-based synchronous language. Computer

Languages 27, 61–92 (2001)
12. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I-II. Information and

Computation 100(1), 1–77 (1992)
13. Paton, N.W., Díaz, O.: Active database systems. ACM Comput. Surv. 31(1), 63–103 (1999)
14. Topor, R.: Safe database queries with arithmetic relations. In: Proceedings of the 14th

Australian Computer Science Conference (1991)
15. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. 1. Computer Sci-

ence Press, ch. 3 (1988)
16. Wang, X.: Negation in Logic and Deductive Databases. PhD thesis, University of Leeds

(1999)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

