From Statecharts to ESP*. Programming With Events,
States and Predicates For Embedded Systems

Vugranam C. Sreedhar and Maria-Cristina Marinescu
IBM TJ Watson Research Center, Hawthorne NY 10532

ABSTRACT portant concepts: (1) the notion of explicit and hierarchical states,
Statecharts are probably the most popular mechanism for behavior model-(2) conditional execution of actions, and (3) asynchronous events.
ing of embedded system components. Modeling a component involves usingESP™ reifies these concepts and treats them as first-class elements of
a mainstream language for features that statecharts cannot express: detailethe languageESP* provides a unified programming language that
behavior of conditions and actions, object-orientation and distributed com- supports not 0n|y statechart concepts, but also advanced program-

puting features. D_ebugging is done at the level of the gengrated native COde'ming language concepts inspired from existing work on predicate
Rather than treating statecharts as a separate programming model from the

native programming model, we extend a (Java-like) language with support d'SpatCh’_ m_ultlple and dynamic classification [5, 9]’ and type_states.
for key concepts of statecharts: (1) explisiates (2) asynchronousvents ESP” is intended to be a language for modeling, analyzing and
and (3) conditional execution. This paper presdP*, a language that implementing embedded components, and supports legacy Statechart
supports statecharts and a set of other advanced programming concepts tonodels via straightforward translatioBSP* was motivated by the
make programming embedded systems easier. The paper also shows how t9r0b|ems that we faced during our Consumng engagements in indus-
translate statecharts ESP™. try. One of the main difficulties faced by our clients is the “out of
Categories and Subject Descriptors:D.2.2 [Software Engineer- synch” that arises between the code generated from statecharts and
ing]: Design Tools and Techniques the original statechart model when the code is modified after it is gen-
General Terms: Languages, Design. erated. Incidentally, debugging and performance tuning of embedded
application is almost always done on the generated code rather than
on the statechart model. In this context, we believe that our approach
1. INTRODUCTION has several advantages: (1) The user does not need to master two

The electronic industry has entered a new era with the convergence ofdifereént programming models, (2) We can provide better debugging

three critical areas: computers, consumers, and communication. Thean,d softvyare maintenanpe capabilities if thg application is written
amount of electronic content and the complexity of the embedded using a single programming model. (3) We directly support features

software in automobiles, planes, medical devices and other productsOf object-orientation, concurrency and strong typing. (4) A language

that have traditionally developed around mechanical product innova- such a_fSP* can help ?nd USErs Wi.th the acceptance of r.“Ode””g'
tion is increasing exponentially. A key complexity faced by these replacing a documentation burden with a unified programming model

industries is the ability to model the behavior of large and complex ?at can Zsirnplifg the implgmtlentation Olf en;bedded;oftwgre. h
embedded system components. ection 2 introduces a simple example. Section 3 introduces charts

Statecharts and related state machines such as State Diagrams a d chart-states. Section 4 presents predicate methods and predicate

probably the most popular approach for modeling embedded sys- 'SP"?“C“- Section 5 d|s<_:usses asynchronous programmiBgh .

tem components. Modeling an embedded component involves us_Sectl*on 6 presents a_5|mple translatlor: sgheme from statecharts to
ing: (1) Statecharts to describe the state machine and (2) a main-ESP” programs. Section 7 comparesp with related work.

stream language (C, C++, Java) to describe more detailed behaviorz_ EXAMPLE

such as the statechart actions and conditions. The dual programming_ i o .
model forces the end user to master both statecharts and the nativd NiS Section presents the Statechart specification and the require-

programming model. Moreover, because there is very little support MeNts of a simple coffee vending machine (CVM). The CVM that we

for debugging statechart models, end users must debug the genertS€ as our running example is expected to at least: (1) Not dispense

ated native code. Finally, since statecharts do not directly supportdrinks if the customer has not deposited enough money. Change is
useful features of object-orientation and distributed computing, end "éturned after the coffee is dispensed. (2) Not dispense the drink if a
users must rely on the native programming model for such features. CUP i notin place. (3) Accept drink selection. The CVM has three
Rather than treating statecharts as a separate programming moddiuttons for selecting one (or more) of the following types of drinks:
from the native programming model, we start from a Java-like lan- CAFE DECAFEandCHOCIf a customer presses more than one button
guage and bring some of the key concepts of statecharts as first-clas@nd the particular combination is not allowed, no drink is dispensed

elements within our language. Statecharts bring together three im-21d CVM returns the money. Since it is not obvious what size, com-
position or price a mix of drinks should have if allowed, there must

be an explicit specification for each possible drink mix. For instance,
CAFEandCHOQresult in a standard size cup of mocha—a 50-50%
Permission to make digital or hard copies of all or part of this work for ~ Mix of coffee and chocolate with a price of 85 cents.
personal or classroom use is granted without fee provided that copies are Figure 1 illustrates a hierarchical statechart for a subset of the CVM
not made or distributed for profit or commercial advantage and that copies requirements. A statechart consists of a finite collection of states
bear this notice and the full citation on the first page. To copy otherwise, to and transitions. Throughout this paper we use the original statechart

republish, to post on servers or to redistribute to lists, requires prior specific model. We assume that statecharts are “normalized” according to
permission and/or a fee.)

EMSOFT05 September 19-22, 2005, Jersey City, New Jersey, USA. Sekerinski and Zurob [11]. A state can be either (Eiraple state
Copyright 2005 ACM 1-59593-091-4/05/00085.00. which cannot be further decomposed, (2yamposite statevhich

Keywords: Statechart, Multiple Classification, Predicate Dispatch

chart PowerSwitch = {ON, OFF}
chart CoffecType &= {NONE, CAFE, DECAFE, CHOC}
class CoffeeMachme has PowerSwitch, CoffeeType {
int money = 0 ; CoffecMachine(...) {...} // constructor
void powerOn() { PowerSwitch = ON; Control = NONE};
void powerOff() { PowerSwitch = OFF};
void selectMocha() { if PowerSwitch = ON
then CoffecType = CAFE&CHOC};
void makeCoffee() when CoffecType = CAFE && moncey >= 75
{CoffecType = BREWED} /*1%/
void makeCoffee() when CoffecType = DECAFE && money >= 65 {...}
void sclectCafe {CoffecType = CAFE ; } ...}

Figure 2: Subset Charts and Predicate Methods

insert{c)[isValid(c)]/m = m+value(c)

[o i T

poweron
m=0

powerofl)
m=0

NOT

Temovecup

[cup=YES]/

dispense(),
CHOC |“makechoc(),r=m-65 |retmmCoin(r)
[onN | ENJOY /

Figure 1: Statechart for a simple coffee vending machine

chart Coin = {EMPTY, NOTEMPTY}; chart Cup= {YES, NO}
chart Control &= {NONE,CAFE,DECAFE,CHOC, BREWED,ENJOY}
with {NONE -> CAFE; NONE -> DECAFE; NONE -> CHOC;
NONE -> CAFE&CHOC; CAFE -> BREWED,
DECAFE -> BREWED, CHOC ->> BREWED,
BREWED -> ENJOY; CAFE&CHOC -> BREWED}
chart PowerSwitch = {ON has (Coin, Cup, Control), OFF}
class CVM has PowerSwitch{ CVM() {} // empty constructor
void powerOn() { PowerSwitch = ON; Control = NONE};
void powerOfl() { PowerSwitch = OFF};
void selectMocha() { PowerSwitch.ON.Control = CAFE&CHOC};
void brewBeverage() { PowerSwitch.ON.Control = BREWED}}

can be further decomposed into nested states, (8) astate, or (4)
anand -state. Atransitionis a labeled binary relation between states.
A transition labelis a triplet(e[c] /a), wheree is anevenf c is acon-

dition, anda is aset of actions A transitions; “%* s, is enabled
in states; if when the event occurs ins; the conditionc is true .
Once enabled, the transition takes place and the new stateThe
set of actions: is executed as part of the state transition.

The statechart in Figure 1 has two states: one for power off (OFF)
and one for power on (ON). The ON state consists of three and-
charts:COIN, CUR andCONTROLCOIN handles state changes as ef-
fect of inserting a coin, asking for a money refund, and for change be- extra behavior can be coded in methods as part of taking a transi-
ing returned after the drink is deliveredUPkeeps track of whether tion between chart-states. If entering (leaving) a chart-state always
there is a cup in place for dispensing the dridlONTROIlallows the requires this behavior, the user must replicate the behavior in each
user to select a drink type. When there is enough money the CVM method that enters (leaves) the chart-state. An alternative is to bor-
brews the requested drink. If the cup is in place the CVM dispenses row the concept oéntryandexit methods from statecharts and asso-
the coffee and returns the change. Notice that the charts can createiate such methods with chart-stateswerSwitch becomes:
events as result of a transition, which are consumed by other charts. chart PowerSwitch =

{ON {entry(){system.lightOn();}},
3. THE ESP* LANGUAGE OFF {entry(){system.lightOff();}}}

An ESP* program consists of classes, predicate methods, charts andVhen a chart enters or leaves a chart-state it must also invoke the
chart-states. Classes describe data that objects will have at runtimecorrespondingntry() orexit method. If the chart-state is of type
are similar to OO classes, and ntaye charts associated with them. sub-set—e.gCoffeeType = CAFE&CHOC—then it must invoke the
Charts and Chart-States: A charthas a name and a fixed set of methods for each of the basic chart-states in the subset. One can pass
possiblechart-states A chart uses chart-states to specify optional, parametersto amtry() method, but neithesntry() norexit()
mutable information that instances of a class may acquire and losemethods can return values. Tasry method can be overloaded.
during program execution. Charts are defined outside the class hi- Hierarchical Charts: Consider the statechart shown in Figure 1.
erarchy, can be associated with and shared by multiple classes, buit the top level, the statechart hast two-states:ONand OFF. ON
cannot exist independently. Charts and chart-states are conceptuallgonsists of thre@nd -states:COIN, CUR andCONTROLEach of the
different from class fields anehum types and are closely related to threeand -states are made of a setmf-states. We can model the hi-
algebraic data types. Charts externalize and explicitly reify transient erarchical statechart using hierarchical chart-states as shown in Fig-
internal states of an object. This is useful in (1) reducing the num- ure 3. PowerSwitch has two statesONand OFF. The ONchart-
ber of classes, (2) ensuring that the sub-class mechanism is used fostate has three orthogonal sub-chagtsin , Cup, andControl . By
substitutability, and (3) allowing us to take advantage of finite state default, when an objeatvm of type CVM comes to existence, all
machines concepts to explicitly control what the application code is its charts—including those hierarchically defined— are initialized to
allowed to do via protocols. Start . CallingselectMocha() oncvm will raise an error because
Exclusive and Subset Charts: ESP* charts can be either exclu- Control can be updated only when tRewerSwitch is ON In gen-
sive or sub-set charts. Aexclusive chartan be in only one of its eral it is impossible to say whether an erroneous path is realizable.
chart-states at a time: Switch may beONor OFF. A sub-set chart Protocols: In statecharts one can enforce the kinds of transitions
on the other hand, can be in any sub-set of the chart-states at a timethat are allowed within the model via transition edgesESP* we
CoffeeMachine in Figure 2 is classified from bothowerSwitch can define allowable transitions in a chart using protocols. For the

Figure 3: ESP™* specification of CVM

andCoffeeType points of view.PowerSwitch is an exclusive chart
with two chart-statesONand OFF. CoffeeType is a sub-set chart
declared via th&= symbol. At any instanceCoffeeType can be

Control sub-chart ofcvMin Figure 3, the only sub-set chart-state
allowed isCAFE&CHOCConsider now the following piece of code:
CVM cvm = new CVM(); cvm.powerOn() ; /* 1 */

in any sub-set of the declared chart-states. If the object constructorcvm.brewBeverage() ; // error!

does not initialize a chart, the initial state of that chart is by default
Start . MethodselectMocha() shows a transition to a sub-set of
the possible chart-states.

Entry and Exit Methods: When we turn CVM on we may want
some indication that the power is on, such as a light indicator. This

49

The chart-state dPowerSwitch after/*1*/ is ON and the chart-
state ofControl is Start . Invokingcvm.brewBeverage() raises

an error; according to the protocol, it is illegal to go from chart-state
Start to BREWEIN sub-charControl . Itis in general undecidable
to statically determine whether a piece of code violates a protocol.

Constraints: Unlike Statechart£SP* allows to explicitly spec- Asynchronous Predicate Dispatch: Consider thecUPstatechart
ify what relationships must hold and what relationships are forbidden in Figure 1. When a customer places a cup he generaiasezup
between chart-states of different charts. For CVM in Figure 3 we can user event, which triggers a state transitiorcoPfrom NOto YES
define a constraint that says that if ch@dntrol is in chart-state chart CupTest = {NO, YES}

CAFE chartCoin cannot be in chart-staeMPTY class CoffeeMachine has CupTest {
constraint CoinControl (Coin ¢, Control ctrl) { async void placeCup() {CupTest = YES ; }

crl = CAFE => ¢ != EMPTY } boolean isCupPlaced() {return CupTest = YES ; }
4. PREDICATE DISPATCH CoffeeMachine cm = new CoffeeMachine(CupTest=NO) ;

ESP* uses predicate methods and predicate dispatch to express conSM-PlaceCup() ;

L o . . flem.i Pl
ditional execution in statecharts. Methods can be predicated with a (cm.IsCupPlaced() { _}
when-expression. Eacwhen-expression is constructed using chart- The keywordasync defines an asynchronous method. When an
states and object field values. A predicate method is a method whichasync method is invoked a new thread of computation is created

can be invoked only when its when-expression evaluatesi¢o . and the caller continues with the rest of the computation immedi-
The method lookup for correctly invokingfoo() has two steps: ately after the dispatch. Therefore the ieSupPlaced() may lead
e 1. We first determine the run-time typieof the object addressed 10 a race condition when accessiagpTest . In statecharts on the
by p and look for the methotbo in the receiver clask, where other hand, the transition to statevia cm.placeCup() is not fin-
Ris eitherT or the closest ancestor classToivherefoo() is de- ished untilCupTest = YES . Testingcm.isCupPlaced() occursin
fined. During this step we only use the method name and signatures. and therefore cannot happen until the previous transition has taken
when searching for methddo() . place. Making the code match the intended behavioral semantics of
e 2. We then take thavhen-expression into consideration. (a) If @ statechart specification implies the introduction of a mechanism to
there is only one methotbo() defined in the receiver clas® avoid race conditions. One straightforward way to do that is to (1)
whosewhen-expression evaluates toue then we invoke that ~ make all asynchronous methods synchronized (a la Java) and (2) in-
method. (b) If there is more than one such metfad) then troducesynchronized operations to make a synchronous method
we pick the method with the most specifihien-expression. A wait for the modifications performed by the asynchronous method
when-expressiore; is more specific than a when-expressigrif to take placeboolean isCupPlaced() {synchronized(this)
e1 impliesez andes does not implye;. (c) If none of thewhen- {return CupTest = YES; }}
expressions of the methottm() defined in the receiver clags Futures: By default, the return type of aksync methods
evaluates tarue , we recursively continue up the class hierarchy are of future type. Since the control returns immediately af-
and apply step 2 until a methdeb() is found. ter an asynchronous dispatch we usare s as a placeholder

p.foo() can raise two kinds of method-lookup errors: (1) A for storing the “future” return value of an asynchronous computa-
“method not found” error happens if eithfn() is not defined in tion. Consider the following piece of code for the example in Fig-
any of the receiver classes,foo() is defined, but none of the when- ure 2 enhanced with the methashnc boolean orderCoffee()
expressions is satisfied by the runtime state of the object pointed to by{return CoffeeType = CAFE; }}:
p. (2) An“ambiguous method” error occurs if the when-expressions CoffeeMachine cm = new CoffeeMachine(CoffeeType=NONE) ;
of more than one methddo() in a receiver class are satisfied, and cm.selectCafe() ;
none of these expressions is more specific than all the others. future boolean f = cm.orderCoffee() ;

We can maké&ESP* type sound if we guarantee no “method not if(f = true) { ... }
found” and no “ambiguous method” errors at runtime. Both tests Invokingcm.orderCoffee() tries to lockem. If it succeeds, it cre-
depend on proving method predicate implication. If the predicates ates a new thread and immediately returns the control to the current
only test chart-state information the implication problem is decid- thread. The return value from the dispatch will be storefiitire
able (and NP-complete). Similar to Ernst, Kaplan and Chambers [5], variablef . When the caller thread attempts to access the future value
we treat arbitrary boolean-valued expressions as black boxes, andff, if the asynchronous thread has not finished executing, the caller
we consider two such expressions equivalent if their canonical forms thread blocks. Areturn statement in amsync method doesot
are structurally equivalent. This makes predicate implication NP- transfer the control back to the caller thread—it simply terminates
complete. We can use a SAT solver to solve the NP problems. the current thread after storing the value infitere variable des-
5. ASYCHRONOUS PROGRAMMING ignated by the caller thread. This will awake all the threads blocked

.) . waiting to acces$. Asynchronous methods are closely related to

We may not always want to wait until an event is processed ;55 threads, although Java does not directly support futures. An

before executing other transitions. This approach is p_artlcu- asynchronous method can be implementedras amethod.
larly useful for systems that are concurrent and/or distributed.

We can model the transition condition as the method pred- 6. TRANSLATING STATECHARTS TO ESP*

Itﬁitemi)t(lg(r)?jssiggllf angothzxg\éfnlté avt\:/t('eor;]’a\g S\ézguifggglir?a'rtthConsider thdlat statechartS shown in Figure 4. Disregard for the
user eventsel tC.f as void P I’ (Caf CoffeeT - 9 moment that it is part of hierarchical statech@rt S has two or-
CAFE. an deﬂe}g ;cfior‘makevg:)ffesee ec Zsevoi q ;aiegiﬁépee - states: s1 and s2. We assume that every statechart has a unique
& 0 0 name which we use to form the name of the class inr&8@* pro-
when CoffeeType = CAFE && money >= 75 {.. }. Theref | W h
ESP* uses asynchronous methods to maatnchronous events gram. erefore we mag to classSClass . We map each state-
chart to a chart and a set of chart-states—we therefore create a chart

Stal transiion n Statechars tht contain concLmiatatecharts, "AMSESChar . Statess ands2 of are mapped to chartstates n
) SChart . For each transition edge in a statechart we map the event

Eti,f;Cﬁ:ﬁiﬂ?ﬁ%gﬂggf:jf: tn(iestﬁggesssgh}g?orieo:icsamtuet di_us- to a predicatecasync method and the action to a predicate syn-
: . y P chronous method. F&§ we generate the followingSP* code:

ing when-expressions. A synchronous method and an asynchronous
method cannot have the same name and method signature. If &hart SChart = {s1, s2}

. . class SClass has SChart {
method is declared asynchronous (or synchronous) in a€lassne async void E () when SChart = s1 { as(): }

of the children classes af' can override that method with a syn- void as() when cs { ... SChart = s2; } }
chronous (or asynchronous) method. The constructor methods of a async void E () when true {}
class cannot be asynchronous. void as() when true {} }

50

R
‘ REI=

T
o n

E[cs]/
[cs]/as ‘SZJ

Figure 4: Statechart with and -states

We encode an event as a predicate asynchronous metheg
when SChart=S1 . Next we map the actioas to synchronous pred-
icate methodas() when cs . We also update the state transition
in methodas() . According to statechart semantics, whenoc-
curs and the current state §fis nots1 we simply drop the event.
Such dropping of events also happen when the conditidsfalse
According toESP*$ method lookup, when the predicate associated
with E() orwithas() isfalse we raise “method not found” error.
To avoid this mismatch we generate two additional side-effect free,
emptywhen true methods that will succeed if the existing ones fail.

Hierarchical Statecharts: Consider the flat statechartV’ M in
Figure 1 with two or-statesONand OFF. StateONis a composite
state that contains thresnd -states: COIN, CUPand CONTROLWe
first define aclass CVM and achart PowerSwitch for statechart
CV M. We must also defin®Ns chart and chart-states. The result
is the specification in Figure 3. Notice that we usetihe construct
for denoting children of a composite state thatane -states.

Concurrent Events: Consider the hierarchical statechart shown
in Figure 4. Composite stat® contains twoand -states:S and 7.
Assume that the everit occurs wherf is in states1 andT is in state
t1. According to the statechart semantics both transitidns- s2
andt¢1 — ¢2 will occur (assuming that the corresponding conditions
cs andct aretrue). The following translation from Figure 4 illus-
trates the semantic mismatch between method lookSiR* and
concurrent transitions in statecharts withd -states. S andT" are
states inR—not statecharts—so no class is generated for them.
chart SC = {s1, s2}; chart TC = {t1, t2}
chart RC = {R has (SC,TC)}
class RClass has RC {

RClass() { RChart = R; RC.R.SC = sl1; RC.R.TC = t1;}

void as() when cs { RC.R.SC = s2;}

void at() when ct { RC.R.TC = t2;}

async void E() when RC.R.SC = sl {as();}

async void E() when RC.R.TC = t1 {at();}...}
The translation defines twasync methods for evert, with differ-
entwhen-expressions. The dispatehe() for an objectc of type
RClass is ambiguous since the predicates of both methbdgalu-
ate totrue and neither is most specific. A solution is to analyze
andT and, because they are independamd -charts, define a single
methodE that simply calls botlas() andat() : async void E()
when RC.R.SC=sl && RC.R.TC=t1 {as(); at(); }}. Ideally,
as() andat() can be concurrently executed, HEEP* does not
currently support parallel dispatch. Alternatively we can make both
as() andat() asynchronous methods.

7. DISCUSSION AND RELATED WORK

Harel introduced statecharts to overcome the limitations of con-
ventional finite state machines [8]. Due to their popularity, state-
charts in many semantic variations [14], [3], [6] are part of many
modeling tools. The Object Management Group (OMG) has stan-
dardized state diagrams as part of the UMitg(//www.uml.org. Niaz

and Tanaka [10] present an approach to generate Java code from

UML state diagrams. In QHSM, Samek introduces Quantum Hi-

erarchical State Machines to represent state hierarchy and efficiently,

implement transition dynamicsESP* was influenced by our ear-
lier work on multiple and dynamic classification and by predicate

dispatch. To our knowledge, neither classifications mechanisms nor

model, and component-oriented application design. galsC (and Tiny-
GALS) is a globally asynchronous, locally synchronous model for
event-driven embedded systems [4]. Unlike galESP* supports

both event-based and state-based programming. The TinyGALS pro-
gramming model is very similar to the connection-oriented software
architecture model [12]. The model of computation in languages
such as Esterel [2] and Signal [1] is synchronous. The concurrency
can be compiled away, and the system behaves like a state machine
at run time. Ptolemy llKttp://ptolemy.eecs.berkeley.edu/ptolemyis a
framework that supports many models of computation.

Craig Chambers and his group introduced predicate classes (PC)
and predicate dispatch (PD) [5, 9]. PC only use internal states of
classes to evaluate predicate expressi@®P™ can also use exter-
nal charts and chart-state€SP* supports protocols on charts to
restrict the kinds of state updates that are legally allowed on charts.
In PC such restriction have to be programmed as predicate expres-
sion. JPred [9] extends PD for Java. The predicate dispateB R
is similar to PDESP* is an extension of some of our previous work
with focus on modeling of embedded systems.

The notion of chart-states has some relation to typestates [13]. De-
Line and Fahndrich extend the classical type-state mechanism for
objects. Relations between type-states of fields of different classes
cannot be expressed. Also, it is a type error to have more than one
method in a class with the same name and signature, but different
pre-conditions. Foster et al. present a mechanism to add type quali-
fiers as a first class concept in C.

8. CONCLUSION

This paper present&SSP* a language that reifies key features of
statecharts and a set of other advanced programming concepts, and
expresses them as part of a Java-like langug@®* provides sup-

port for: (1) explicitstates (2) asynchronousventsand (3) condi-
tional execution. The paper also shows how to translate statecharts
to ESP*.

9. REFERENCES

[1] A.Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to

asynchrony. IICONCUR’99, LNCS 1664, Springgrages 162-177.

G. Berry. The Foundations of EstereMIT Press, 2000. Editors: G.

Plotkin, C. Stirling and M. Tofte.

D. Bjorklund, J. Lilius, and I. Porres. Towards efficient code synthesis

from statecharts. IRractical UML-Based Rigorous Development

Methods, Lecture Notes in Informatj@001.

E. Cheong, J. Liebman, J. Liu, and F. Zhao. TinyGALS: A

programming model for event-driven embedded systems. In

Proceedings of the 2003 ACM Symposium on Applied Computing

pages 698-704, 2003.

M. Ernst, C. Kaplan, and C. Chambers. Predicate dispatching: A

unified theory of dispatch. IECOOP '98 LNCS 1445.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns: Elements od Reusable Object-Oriented Software

Addison-Wesley Publishing Company, New York, NY, 1995.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.

The nesc language: A holistic approach to networked embedded

systems. IrProceedings of PLDI '032003.

[8] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programmir(3):231-274, June 1987.

[9] T. Millstein. Practical predicate dispatch. Broceedings of OOPSLA

'04, Vancouver, British Columbia, 2004.

I. A. Niaz and J. Tanaka. Mapping uml statecharts to java code. In

Proceedings of the IASTED International Conference on Software

Engineering (SE 2004pages 111-116, 2004.

E. Sekerinski and R. Zurob. iState: A statechart translatddNi

2001, LNCS 2185, pages 376—390. Springer-Verlag, 2001.

[12] Mary Shaw and David Garlasoftware Architecture: Perspectives on

an Emerging DisciplinePrentice-Hall, 1996.
[13] R. Strom and S. Yemini. Typestate: a programming language concept
for enhancing software reliabilityEEE TSE 12(1), jan 1986.

(2]
(3]

(4]

(5]

(6]

(7]

(10]

(11]

predicate dispatch have been explored as a way to model statechart§i4] M. von der Beeck. A comparison of statecharts variants. In

nesC [7] is a language for network embedded systems that sup-
ports asynchronous event-driven execution, a flexible concurrency

51

Proceedings Formal Techniques in Real Time and Fault Tolerant
Systems, Springer, LNCS 8¢iges 128-148, 1994.

