
From Statecharts to ESP*: Programming With Events,
States and Predicates For Embedded Systems

Vugranam C. Sreedhar and Maria-Cristina Marinescu
IBM TJ Watson Research Center, Hawthorne NY 10532

ABSTRACT
Statecharts are probably the most popular mechanism for behavior model-
ing of embedded system components. Modeling a component involves using
a mainstream language for features that statecharts cannot express: detailed
behavior of conditions and actions, object-orientation and distributed com-
puting features. Debugging is done at the level of the generated native code.
Rather than treating statecharts as a separate programming model from the
native programming model, we extend a (Java-like) language with support
for key concepts of statecharts: (1) explicitstates, (2) asynchronousevents,
and (3) conditional execution. This paper presentsESP∗, a language that
supports statecharts and a set of other advanced programming concepts to
make programming embedded systems easier. The paper also shows how to
translate statecharts toESP∗.

Categories and Subject Descriptors:D.2.2 [Software Engineer-
ing]: Design Tools and Techniques

General Terms: Languages, Design.

Keywords: Statechart, Multiple Classification, Predicate Dispatch

1. INTRODUCTION
The electronic industry has entered a new era with the convergence of
three critical areas: computers, consumers, and communication. The
amount of electronic content and the complexity of the embedded
software in automobiles, planes, medical devices and other products
that have traditionally developed around mechanical product innova-
tion is increasing exponentially. A key complexity faced by these
industries is the ability to model the behavior of large and complex
embedded system components.

Statecharts and related state machines such as State Diagrams are
probably the most popular approach for modeling embedded sys-
tem components. Modeling an embedded component involves us-
ing: (1) Statecharts to describe the state machine and (2) a main-
stream language (C, C++, Java) to describe more detailed behavior
such as the statechart actions and conditions. The dual programming
model forces the end user to master both statecharts and the native
programming model. Moreover, because there is very little support
for debugging statechart models, end users must debug the gener-
ated native code. Finally, since statecharts do not directly support
useful features of object-orientation and distributed computing, end
users must rely on the native programming model for such features.
Rather than treating statecharts as a separate programming model
from the native programming model, we start from a Java-like lan-
guage and bring some of the key concepts of statecharts as first-class
elements within our language. Statecharts bring together three im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

portant concepts: (1) the notion of explicit and hierarchical states,
(2) conditional execution of actions, and (3) asynchronous events.
ESP∗ reifies these concepts and treats them as first-class elements of
the language.ESP∗ provides a unified programming language that
supports not only statechart concepts, but also advanced program-
ming language concepts inspired from existing work on predicate
dispatch, multiple and dynamic classification [5, 9], and typestates.

ESP∗ is intended to be a language for modeling, analyzing and
implementing embedded components, and supports legacy Statechart
models via straightforward translation.ESP∗ was motivated by the
problems that we faced during our consulting engagements in indus-
try. One of the main difficulties faced by our clients is the “out of
synch” that arises between the code generated from statecharts and
the original statechart model when the code is modified after it is gen-
erated. Incidentally, debugging and performance tuning of embedded
application is almost always done on the generated code rather than
on the statechart model. In this context, we believe that our approach
has several advantages: (1) The user does not need to master two
different programming models, (2) We can provide better debugging
and software maintenance capabilities if the application is written
using a single programming model. (3) We directly support features
of object-orientation, concurrency and strong typing. (4) A language
such asESP∗ can help end users with the acceptance of modeling,
replacing a documentation burden with a unified programming model
that can simplify the implementation of embedded software.
Section 2 introduces a simple example. Section 3 introduces charts
and chart-states. Section 4 presents predicate methods and predicate
dispatch. Section 5 discusses asynchronous programming inESP∗.
Section 6 presents a simple translation scheme from statecharts to
ESP∗ programs. Section 7 comparesESP∗ with related work.

2. EXAMPLE
This section presents the Statechart specification and the require-
ments of a simple coffee vending machine (CVM). The CVM that we
use as our running example is expected to at least: (1) Not dispense
drinks if the customer has not deposited enough money. Change is
returned after the coffee is dispensed. (2) Not dispense the drink if a
cup is not in place. (3) Accept drink selection. The CVM has three
buttons for selecting one (or more) of the following types of drinks:
CAFE, DECAFE, andCHOC. If a customer presses more than one button
and the particular combination is not allowed, no drink is dispensed
and CVM returns the money. Since it is not obvious what size, com-
position or price a mix of drinks should have if allowed, there must
be an explicit specification for each possible drink mix. For instance,
CAFEandCHOCresult in a standard size cup of mocha—a 50-50%
mix of coffee and chocolate with a price of 85 cents.
Figure 1 illustrates a hierarchical statechart for a subset of the CVM
requirements. A statechart consists of a finite collection of states
and transitions. Throughout this paper we use the original statechart
model. We assume that statecharts are “normalized” according to
Sekerinski and Zurob [11]. A state can be either (1) asimple state
which cannot be further decomposed, (2) acomposite statewhich

48

Figure 1: Statechart for a simple coffee vending machine

can be further decomposed into nested states, (3) anor -state, or (4)
anand -state. Atransitionis a labeled binary relation between states.
A transition labelis a triplet(e[c]/a), wheree is anevent, c is acon-

dition, anda is aset of actions. A transitions1
e[c]/a→ s2 is enabled

in states1 if when the evente occurs ins1 the conditionc is true .
Once enabled, the transition takes place and the new state iss2. The
set of actionsa is executed as part of the state transition.

The statechart in Figure 1 has two states: one for power off (OFF)
and one for power on (ON). The ON state consists of three and-
charts:COIN, CUP, andCONTROL. COIN handles state changes as ef-
fect of inserting a coin, asking for a money refund, and for change be-
ing returned after the drink is delivered.CUPkeeps track of whether
there is a cup in place for dispensing the drink.CONTROLallows the
user to select a drink type. When there is enough money the CVM
brews the requested drink. If the cup is in place the CVM dispenses
the coffee and returns the change. Notice that the charts can create
events as result of a transition, which are consumed by other charts.

3. THE ESP* LANGUAGE
An ESP∗ program consists of classes, predicate methods, charts and
chart-states. Classes describe data that objects will have at runtime,
are similar to OO classes, and mayhave charts associated with them.

Charts and Chart-States: A chart has a name and a fixed set of
possiblechart-states. A chart uses chart-states to specify optional,
mutable information that instances of a class may acquire and lose
during program execution. Charts are defined outside the class hi-
erarchy, can be associated with and shared by multiple classes, but
cannot exist independently. Charts and chart-states are conceptually
different from class fields andenum types and are closely related to
algebraic data types. Charts externalize and explicitly reify transient
internal states of an object. This is useful in (1) reducing the num-
ber of classes, (2) ensuring that the sub-class mechanism is used for
substitutability, and (3) allowing us to take advantage of finite state
machines concepts to explicitly control what the application code is
allowed to do via protocols.

Exclusive and Subset Charts: ESP∗ charts can be either exclu-
sive or sub-set charts. Anexclusive chartcan be in only one of its
chart-states at a time: aSwitch may beONor OFF. A sub-set chart,
on the other hand, can be in any sub-set of the chart-states at a time.
CoffeeMachine in Figure 2 is classified from bothPowerSwitch
andCoffeeType points of view.PowerSwitch is an exclusive chart
with two chart-states:ONandOFF. CoffeeType is a sub-set chart
declared via the&= symbol. At any instance,CoffeeType can be
in any sub-set of the declared chart-states. If the object constructor
does not initialize a chart, the initial state of that chart is by default
Start . MethodselectMocha() shows a transition to a sub-set of
the possible chart-states.

Entry and Exit Methods: When we turn CVM on we may want
some indication that the power is on, such as a light indicator. This

Figure 2: Subset Charts and Predicate Methods

Figure 3: ESP∗ specification of CVM

extra behavior can be coded in methods as part of taking a transi-
tion between chart-states. If entering (leaving) a chart-state always
requires this behavior, the user must replicate the behavior in each
method that enters (leaves) the chart-state. An alternative is to bor-
row the concept ofentryandexitmethods from statecharts and asso-
ciate such methods with chart-states.PowerSwitch becomes:
chart PowerSwitch =

{ON {entry(){system.lightOn();}},
OFF {entry(){system.lightOff();}}}

When a chart enters or leaves a chart-state it must also invoke the
correspondingentry() or exit method. If the chart-state is of type
sub-set—e.g.CoffeeType = CAFE&CHOC—then it must invoke the
methods for each of the basic chart-states in the subset. One can pass
parameters to anentry() method, but neitherentry() norexit()
methods can return values. Theentry method can be overloaded.

Hierarchical Charts: Consider the statechart shown in Figure 1.
At the top level, the statechart hast twoor -states:ONandOFF. ON
consists of threeand -states:COIN, CUP, andCONTROL. Each of the
threeand -states are made of a set ofor -states. We can model the hi-
erarchical statechart using hierarchical chart-states as shown in Fig-
ure 3. PowerSwitch has two states:ONandOFF. The ONchart-
state has three orthogonal sub-charts:Coin , Cup, andControl . By
default, when an objectcvm of type CVM comes to existence, all
its charts—including those hierarchically defined— are initialized to
Start . CallingselectMocha() oncvm will raise an error because
Control can be updated only when thePowerSwitch is ON. In gen-
eral it is impossible to say whether an erroneous path is realizable.

Protocols: In statecharts one can enforce the kinds of transitions
that are allowed within the model via transition edges. InESP∗ we
can define allowable transitions in a chart using protocols. For the
Control sub-chart ofCVMin Figure 3, the only sub-set chart-state
allowed isCAFE&CHOC. Consider now the following piece of code:
CVM cvm = new CVM(); cvm.powerOn() ; /* 1 */
cvm.brewBeverage() ; // error!

The chart-state ofPowerSwitch after /*1*/ is ON, and the chart-
state ofControl is Start . Invokingcvm.brewBeverage() raises
an error; according to the protocol, it is illegal to go from chart-state
Start to BREWEDin sub-chartControl . It is in general undecidable
to statically determine whether a piece of code violates a protocol.

49

Constraints: Unlike Statecharts,ESP∗ allows to explicitly spec-
ify what relationships must hold and what relationships are forbidden
between chart-states of different charts. For CVM in Figure 3 we can
define a constraint that says that if chartControl is in chart-state
CAFE, chartCoin cannot be in chart-stateEMPTY:
constraint CoinControl (Coin c, Control ctrl) {

ctrl = CAFE => c != EMPTY }

4. PREDICATE DISPATCH
ESP∗ uses predicate methods and predicate dispatch to express con-
ditional execution in statecharts. Methods can be predicated with a
when-expression. Eachwhen-expression is constructed using chart-
states and object field values. A predicate method is a method which
can be invoked only when its when-expression evaluates totrue .
The method lookup for correctly invokingp.foo() has two steps:
• 1. We first determine the run-time typeT of the object addressed

by p and look for the methodfoo in the receiver classR, where
R is eitherT or the closest ancestor class ofT wherefoo() is de-
fined. During this step we only use the method name and signature
when searching for methodfoo() .

• 2. We then take thewhen-expression into consideration. (a) If
there is only one methodfoo() defined in the receiver classR
whosewhen-expression evaluates totrue then we invoke that
method. (b) If there is more than one such methodfoo() then
we pick the method with the most specificwhen-expression. A
when-expressione1 is more specific than a when-expressione2 if
e1 impliese2 ande2 does not implye1. (c) If none of thewhen-
expressions of the methodsfoo() defined in the receiver classR
evaluates totrue , we recursively continue up the class hierarchy
and apply step 2 until a methodfoo() is found.

p.foo() can raise two kinds of method-lookup errors: (1) A
“method not found” error happens if eitherfoo() is not defined in
any of the receiver classes, orfoo() is defined, but none of the when-
expressions is satisfied by the runtime state of the object pointed to by
p. (2) An “ambiguous method” error occurs if the when-expressions
of more than one methodfoo() in a receiver class are satisfied, and
none of these expressions is more specific than all the others.

We can makeESP∗ type sound if we guarantee no “method not
found” and no “ambiguous method” errors at runtime. Both tests
depend on proving method predicate implication. If the predicates
only test chart-state information the implication problem is decid-
able (and NP-complete). Similar to Ernst, Kaplan and Chambers [5],
we treat arbitrary boolean-valued expressions as black boxes, and
we consider two such expressions equivalent if their canonical forms
are structurally equivalent. This makes predicate implication NP-
complete. We can use a SAT solver to solve the NP problems.

5. ASYCHRONOUS PROGRAMMING
We may not always want to wait until an event is processed
before executing other transitions. This approach is particu-
larly useful for systems that are concurrent and/or distributed.
We can model the transition conditionc as the method pred-
icate expression, and the event, action, or event/action pair as
the method itself. For example, we have been modeling the
user eventselectCafe as void selectCafe {CoffeeType =
CAFE}, and the actionmakeCoffee() as void makeCoffee()
when CoffeeType = CAFE && money >= 75 {... }.

ESP∗ uses asynchronous methods to modelasynchronous events
in statecharts. The occurrence of an event can trigger more than one
state transition in statecharts that contain concurrentand -statecharts.
ESP∗ supports parallel dispatch to successfully model suchand -
statechart semantics.ESP∗ async methods can be predicated us-
ing when-expressions. A synchronous method and an asynchronous
method cannot have the same name and method signature. If a
method is declared asynchronous (or synchronous) in a classC, none
of the children classes ofC can override that method with a syn-
chronous (or asynchronous) method. The constructor methods of a
class cannot be asynchronous.

Asynchronous Predicate Dispatch: Consider theCUPstatechart
in Figure 1. When a customer places a cup he generates aplacecup
user event, which triggers a state transition ofCUPfrom NOto YES.

chart CupTest = {NO, YES}
class CoffeeMachine has CupTest {

async void placeCup() {CupTest = YES ; }
boolean isCupPlaced() {return CupTest = YES ; }

CoffeeMachine cm = new CoffeeMachine(CupTest=NO) ;
cm.placeCup() ;
if(cm.isCupPlaced()) { ... }

The keywordasync defines an asynchronous method. When an
async method is invoked a new thread of computation is created
and the caller continues with the rest of the computation immedi-
ately after the dispatch. Therefore the testisCupPlaced() may lead
to a race condition when accessingCupTest . In statecharts on the
other hand, the transition to states via cm.placeCup() is not fin-
ished untilCupTest = YES . Testingcm.isCupPlaced() occurs in
s, and therefore cannot happen until the previous transition has taken
place. Making the code match the intended behavioral semantics of
a statechart specification implies the introduction of a mechanism to
avoid race conditions. One straightforward way to do that is to (1)
make all asynchronous methods synchronized (a la Java) and (2) in-
troducesynchronized operations to make a synchronous method
wait for the modifications performed by the asynchronous method
to take place:boolean isCupPlaced() {synchronized(this)
{return CupTest = YES; }}

Futures: By default, the return type of allasync methods
are of future type. Since the control returns immediately af-
ter an asynchronous dispatch we usefuture s as a placeholder
for storing the “future” return value of an asynchronous computa-
tion. Consider the following piece of code for the example in Fig-
ure 2 enhanced with the methodasync boolean orderCoffee()
{return CoffeeType = CAFE; }}:

CoffeeMachine cm = new CoffeeMachine(CoffeeType=NONE) ;
cm.selectCafe() ;
future boolean f = cm.orderCoffee() ;
if(f = true) { ... }

Invoking cm.orderCoffee() tries to lockcm. If it succeeds, it cre-
ates a new thread and immediately returns the control to the current
thread. The return value from the dispatch will be stored infuture
variablef . When the caller thread attempts to access the future value
of f , if the asynchronous thread has not finished executing, the caller
thread blocks. Areturn statement in anasync method doesnot
transfer the control back to the caller thread—it simply terminates
the current thread after storing the value in thefuture variable des-
ignated by the caller thread. This will awake all the threads blocked
waiting to accessf . Asynchronous methods are closely related to
Java threads, although Java does not directly support futures. An
asynchronous method can be implemented as arun method.

6. TRANSLATING STATECHARTS TO ESP*
Consider theflat statechartS shown in Figure 4. Disregard for the
moment that it is part of hierarchical statechartT . S has two or-
states: s1 and s2. We assume that every statechart has a unique
name which we use to form the name of the class in theESP∗ pro-
gram. Therefore we mapS to classSClass . We map each state-
chart to a chart and a set of chart-states—we therefore create a chart
namedSChart . Statess1 ands2 of S are mapped to chart-states in
SChart . For each transition edge in a statechart we map the event
to a predicatedasync method and the action to a predicate syn-
chronous method. ForS we generate the followingESP∗ code:

chart SChart = {s1, s2}
class SClass has SChart {

async void E () when SChart = s1 { as(); }
void as() when cs { ...; SChart = s2; } }
async void E () when true {}
void as() when true {} }

50

Figure 4: Statechart with and -states

We encode an eventE as a predicate asynchronous methodE()
when SChart=S1 . Next we map the actionas to synchronous pred-
icate methodas() when cs . We also update the state transition
in methodas() . According to statechart semantics, whenE oc-
curs and the current state ofS is not s1 we simply drop the event.
Such dropping of events also happen when the conditioncs is false .
According toESP∗ś method lookup, when the predicate associated
with E() or with as() is false we raise “method not found” error.
To avoid this mismatch we generate two additional side-effect free,
emptywhen true methods that will succeed if the existing ones fail.

Hierarchical Statecharts: Consider the flat statechartCV M in
Figure 1 with two or-states:ONand OFF. StateON is a composite
state that contains threeand -states:COIN, CUPandCONTROL. We
first define aclass CVM and achart PowerSwitch for statechart
CV M . We must also defineON’s chart and chart-states. The result
is the specification in Figure 3. Notice that we use thehas construct
for denoting children of a composite state that areand -states.

Concurrent Events: Consider the hierarchical statechart shown
in Figure 4. Composite stateR contains twoand -states:S andT .
Assume that the eventE occurs whenS is in states1 andT is in state
t1. According to the statechart semantics both transitionss1 → s2
andt1 → t2 will occur (assuming that the corresponding conditions
cs andct are true). The following translation from Figure 4 illus-
trates the semantic mismatch between method lookup inESP∗ and
concurrent transitions in statecharts withand -states.S andT are
states inR—not statecharts—so no class is generated for them.
chart SC = {s1, s2}; chart TC = {t1, t2}
chart RC = {R has (SC,TC)}
class RClass has RC {

RClass() { RChart = R; RC.R.SC = s1; RC.R.TC = t1;}
void as() when cs { RC.R.SC = s2;}
void at() when ct { RC.R.TC = t2;}
async void E() when RC.R.SC = s1 {as();}
async void E() when RC.R.TC = t1 {at();}...}

The translation defines twoasync methods for eventE, with differ-
entwhen-expressions. The dispatchrc.E() for an objectrc of type
RClass is ambiguous since the predicates of both methodsE evalu-
ate totrue and neither is most specific. A solution is to analyzeS
andT and, because they are independentand -charts, define a single
methodE that simply calls bothas() andat() : async void E()
when RC.R.SC=s1 && RC.R.TC=t1 {as(); at(); }}. Ideally,
as() and at() can be concurrently executed, butESP∗ does not
currently support parallel dispatch. Alternatively we can make both
as() andat() asynchronous methods.

7. DISCUSSION AND RELATED WORK
Harel introduced statecharts to overcome the limitations of con-

ventional finite state machines [8]. Due to their popularity, state-
charts in many semantic variations [14], [3], [6] are part of many
modeling tools. The Object Management Group (OMG) has stan-
dardized state diagrams as part of the UML (http://www.uml.org). Niaz
and Tanaka [10] present an approach to generate Java code from
UML state diagrams. In QHSM, Samek introduces Quantum Hi-
erarchical State Machines to represent state hierarchy and efficiently
implement transition dynamics.ESP∗ was influenced by our ear-
lier work on multiple and dynamic classification and by predicate
dispatch. To our knowledge, neither classifications mechanisms nor
predicate dispatch have been explored as a way to model statecharts.

nesC [7] is a language for network embedded systems that sup-
ports asynchronous event-driven execution, a flexible concurrency

model, and component-oriented application design. galsC (and Tiny-
GALS) is a globally asynchronous, locally synchronous model for
event-driven embedded systems [4]. Unlike galsC,ESP∗ supports
both event-based and state-based programming. The TinyGALS pro-
gramming model is very similar to the connection-oriented software
architecture model [12]. The model of computation in languages
such as Esterel [2] and Signal [1] is synchronous. The concurrency
can be compiled away, and the system behaves like a state machine
at run time. Ptolemy II (http://ptolemy.eecs.berkeley.edu/ptolemyII/) is a
framework that supports many models of computation.

Craig Chambers and his group introduced predicate classes (PC)
and predicate dispatch (PD) [5, 9]. PC only use internal states of
classes to evaluate predicate expressions.ESP∗ can also use exter-
nal charts and chart-states.ESP∗ supports protocols on charts to
restrict the kinds of state updates that are legally allowed on charts.
In PC such restriction have to be programmed as predicate expres-
sion. JPred [9] extends PD for Java. The predicate dispatch inESP∗

is similar to PD.ESP∗ is an extension of some of our previous work
with focus on modeling of embedded systems.

The notion of chart-states has some relation to typestates [13]. De-
Line and Fahndrich extend the classical type-state mechanism for
objects. Relations between type-states of fields of different classes
cannot be expressed. Also, it is a type error to have more than one
method in a class with the same name and signature, but different
pre-conditions. Foster et al. present a mechanism to add type quali-
fiers as a first class concept in C.

8. CONCLUSION
This paper presentsESP∗ a language that reifies key features of
statecharts and a set of other advanced programming concepts, and
expresses them as part of a Java-like language.ESP∗ provides sup-
port for: (1) explicitstates, (2) asynchronousevents, and (3) condi-
tional execution. The paper also shows how to translate statecharts
to ESP∗.

9. REFERENCES
[1] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to

asynchrony. InCONCUR’99, LNCS 1664, Springer, pages 162–177.
[2] G. Berry.The Foundations of Esterel. MIT Press, 2000. Editors: G.

Plotkin, C. Stirling and M. Tofte.
[3] D. Bjorklund, J. Lilius, and I. Porres. Towards efficient code synthesis

from statecharts. InPractical UML-Based Rigorous Development
Methods, Lecture Notes in Informatics, 2001.

[4] E. Cheong, J. Liebman, J. Liu, and F. Zhao. TinyGALS: A
programming model for event-driven embedded systems. In
Proceedings of the 2003 ACM Symposium on Applied Computing,
pages 698–704, 2003.

[5] M. Ernst, C. Kaplan, and C. Chambers. Predicate dispatching: A
unified theory of dispatch. InECOOP ’98, LNCS 1445.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements od Reusable Object-Oriented Software.
Addison-Wesley Publishing Company, New York, NY, 1995.

[7] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesc language: A holistic approach to networked embedded
systems. InProceedings of PLDI ’03, 2003.

[8] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274, June 1987.

[9] T. Millstein. Practical predicate dispatch. InProceedings of OOPSLA
’04, Vancouver, British Columbia, 2004.

[10] I. A. Niaz and J. Tanaka. Mapping uml statecharts to java code. In
Proceedings of the IASTED International Conference on Software
Engineering (SE 2004), pages 111–116, 2004.

[11] E. Sekerinski and R. Zurob. iState: A statechart translator. InUML
2001, LNCS 2185, pages 376–390. Springer-Verlag, 2001.

[12] Mary Shaw and David Garlan.Software Architecture: Perspectives on
an Emerging Discipline. Prentice-Hall, 1996.

[13] R. Strom and S. Yemini. Typestate: a programming language concept
for enhancing software reliability.IEEE TSE, 12(1), jan 1986.

[14] M. von der Beeck. A comparison of statecharts variants. In
Proceedings Formal Techniques in Real Time and Fault Tolerant
Systems, Springer, LNCS 863, pages 128–148, 1994.

51

