
Cilk: An Efficient Multithreaded Runtime System�
ROBERT D. BLUMOFE, CHRISTOPHERF. JOERG, BRADLEY C. KUSZMAUL ,

CHARLES E. LEISERSON, KEITH H. RANDALL , AND YULI ZHOU

MIT Laboratory for Computer Science, 545 Technology Square, Cambridge MA 02139

October 17, 1996

Abstract

Cilk (pronounced “silk”) is a C-based runtime system for multithreaded parallel programming.
In this paper, we document the efficiency of the Cilk work-stealing scheduler, bothempirically
and analytically. We show that on real and synthetic applications, the “work” and“critical-path
length” of a Cilk computation can be used to model performance accurately. Consequently, a Cilk
programmer can focus on reducing the computation’s work and critical-path length, insulated from
load balancing and other runtime scheduling issues. We also prove that for the class of “fully strict”
(well-structured) programs, the Cilk scheduler achieves space, time, andcommunication bounds
all within a constant factor of optimal.

The Cilk runtime system currently runs on the Connection Machine CM5 MPP, the Intel
Paragon MPP, the Sun Sparcstation SMP, and the Cilk-NOW network of workstations. Applica-
tions written in Cilk include protein folding, graphic rendering, backtrack search, and the?Socrates
chess program, which won second prize in the 1995 ICCA World Computer Chess Championship.

1 Introduction

Multithreading has become an increasingly popular way to implement dynamic, highly asyn-
chronous, concurrent programs [1, 9, 10, 11, 12, 13, 16, 21, 23, 24, 26, 27, 30, 36, 37, 39, 42, 43].�This research was supported in part by the Advanced Research Projects Agency under Grants N00014-94-1-0985
and N00014-92-J-1310. Robert Blumofe was supported in part by an ARPA High-Performance Computing Graduate
Fellowship. Keith Randall is supported in part by a Department of DefenseNDSEG Fellowship.

Robert D. Blumofe’s current address is The University of Texas at Austin; Department of Computer Sciences;
Taylor Hall; Austin, TX 78712. Christopher F. Joerg’s current address is Digital Equipment Corporation; Cambridge
Research Laboratory; One Kendall Square, Building 700, 2nd Floor; Cambridge, MA 02139. Bradley C. Kuszmaul’s
current address is Yale University; Department of Computer Science; 51 Prospect Street; New Haven, CT 06520. Yuli
Zhou’s current address is AT&T Bell Laboratories; 600 Mountain Avenue; Murray Hill, NJ 07974.

Published in The Journal of Parallel and Distributed Computing, 37(1):55-69, Aug. 25 1996.
Portions of this work were previously reported in the Proceedings of the Fifth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP ’95), Santa Barbara, CA, July 19–21, 1995, pp. 207–216.

1

level 0

level 1

level 2

level 3

Figure 1: The Cilk model of multithreaded computation. Threads are shown as circles, which are
grouped into procedures. Each downward edge corresponds to a spawn of a child, each horizontal
edge corresponds to a spawn of a successor, and each upward, curved edge corresponds to adata
dependency. The levels of procedures in the spawn tree are indicated at the left.

A multithreaded system provides the programmer with a means to create, synchronize, and sched-
ule threads. Although the schedulers in many of these runtime systems seem to perform well in
practice, none provide users with a guarantee of application performance. Cilk is a runtime sys-
tem whose work-stealing scheduler is efficient in theory as well as in practice. Moreover, it gives
the user an algorithmic model of application performance based on the measures of “work” and
“critical-path length” which can be used to predict the runtime of a Cilk program accurately.

A Cilk multithreaded computation can be viewed as a directed acyclic graph (dag) that unfolds
dynamically, as is shown schematically in Figure 1. A Cilk program consistsof a collection of
Cilk procedures, each of which is broken into a sequence ofthreads, which form the vertices of the
dag. Each thread is anonblockingC function, which means that it can run to completion without
waiting or suspending once it has been invoked. As one of the threads from a Cilk procedure
runs, it canspawna child thread which begins a new child procedure. In the figure, downward
edges connect threads and their procedures with the children they have spawned. A spawn is like
a subroutine call, except that the calling thread may execute concurrently with its child, possibly
spawning additional children. Since threads cannot block in the Cilk model, a thread cannot spawn
children and then wait for values to be returned. Rather, the thread must additionally spawn a
successorthread to receive the children’s return values when they are produced. A thread and
its successors are considered to be parts of the same Cilk procedure. In the figure, sequences of
successor threads that form Cilk procedures are connected by horizontal edges. Return values, and
other values sent from one thread to another, inducedata dependenciesamong the threads, where
a thread receiving a value cannot begin until another thread sends the value. Data dependencies
are shown as upward, curved edges in the figure. Thus, a Cilk computation unfolds as aspawn tree
composed of procedures and the spawn edges that connect them to their children, but the execution
must follow the precedence relation determined by the dag of threads.

The execution time of any Cilk program on a parallel computer withP processors is constrained
by two parameters of the computation: thework and thecritical-path length. The work, denotedT1, is the time used by a one-processor execution of the program, which corresponds to thesum
of the execution times of all the threads. The critical-path length, denotedT1, is the total amount
of time required by an ideal infinite-processor execution, which corresponds to thelargest sum of
thread execution times along any path. WithP processors, the execution time cannot be less thanT1=P or less thanT1. The Cilk scheduler uses “work stealing” [4, 8, 14, 15, 16, 21, 29, 30, 31, 37,

2

43] to achieve execution time very near to the sum of these two measures. Off-line techniques for
computing such efficient schedules have been known for a long time [6, 18, 19], but thisefficiency
has been difficult to achieve on-line in a distributed environment while simultaneously using small
amounts of space and communication.

We demonstrate the efficiency of the Cilk scheduler both empirically and analytically. Empir-
ically, we have been able to document that Cilk works well for dynamic, asynchronous,tree-like,
MIMD-style computations. To date, the applications we have programmed include protein fold-
ing, graphic rendering, backtrack search, and the?Socrates chess program, which won second
prize in the 1995 World Computer Chess Championship running on Sandia National Laboratories’
1824-node Intel Paragon MPP. Many of these applications pose problems for more traditional
parallel environments, such as message passing [41] and data parallel [2, 22],because of the un-
predictability of the dynamic workloads on processors. Analytically, we prove that for “fully
strict” (well-structured) programs, Cilk’s work-stealing scheduler achieves execution space, time,
and communication bounds all within a constant factor of optimal. To date, all of the applications
that we have coded are fully strict.

The Cilk language extends C with primitives to express parallelism, and the Cilk runtime sys-
tem maps the expressed parallelism into a parallel execution. A Cilk program is preprocessed to C
using ourcilk2c type-checking preprocessor [34]. The C code is then compiled and linked with
a runtime library to run on the target platform. Currently supported targets include the Connection
Machine CM5 MPP, the Intel Paragon MPP, the Sun Sparcstation SMP, and the Cilk-NOW [3, 5]
network of workstations. In this paper, we focus on the Connection Machine CM5 implementation
of Cilk. The Cilk scheduler on the CM5 is written in about 40 pages of C, and it performs commu-
nication among processors using the Strata [7] active-message library. This description of the Cilk
environment corresponds to the version as of March 1995.

The remainder of this paper is organized as follows. Section 2 describes Cilk’s runtime data
structures and the C language extensions that are used for programming. Section 3 describes
the work-stealing scheduler. Section 4 documents the performance of several Cilk applications.
Section 5 shows how the work and critical-path length of a Cilk computation can be used to model
performance. Section 6 shows analytically that the scheduler works well. Finally, Section 7 offers
some concluding remarks and describes our plans for the future.

2 The Cilk programming environment and implementation

This section describes the basic runtime data structures that Cilk uses, aswell as a C language
extension that we have developed to ease the task of coding Cilk programs. The runtime system is
based on a data structure, called a “closure,” which is manipulated in a very simple fashion by the
language. The Cilk “language” is less a higher-level language than it is an assembly language for
multithreading. It employs “explicit continuation passing” to connect lightweight threads together
into procedures. We do not view this primitive Cilk language as a research contribution, but rather
as a tool to simplify exploitation of the multithreaded runtime system.

A Cilk procedure is broken into a sequence of threads. The procedure itself is not explicitly
specified in the language. Rather, it is defined implicitly in terms of its constituent threads. A
threadT is defined in a manner similar to a C function definition:

thread T (arg-decls ...) f stmts ... g
3

x:1

42

0

T2

x:

y:

1

T1

17

6

join
counters

waiting closure

ready closure

arguments

code

Figure 2: The closure data structure.

Thecilk2c type-checking preprocessor [34] translatesT into a C function of one argument and
void return type. The one argument is a pointer to aclosuredata structure, illustrated in Figure 2,
which holds the arguments forT. A closure consists of a pointer to the C function forT, a slot for
each of the specified arguments, and ajoin counterindicating the number of missing arguments
that need to be supplied beforeT is ready to run. A closure isready if it has obtained all of
its arguments, and it iswaiting if some arguments are missing. To run a ready closure, the Cilk
scheduler invokes the thread as a C function using the closure itself as its sole argument. Within the
code for the thread, the arguments are copied out of the closure data structure into local variables.
The closure is allocated from a simple runtime heap when it is created, and it is returned to the
heap when the thread terminates.

The Cilk language supports a data type called acontinuation, which is specified by the type
modifier keywordcont . A continuation is essentially a global reference to an empty argument
slot of a closure, implemented as a compound data structure containing a pointer to a closure and
an offset that designates one of the closure’s argument slots. Continuations can be created and
passed among threads, which enables threads to communicate and synchronize with each other.
Continuations are typed with the C data type of the slot in the closure.

At runtime, a thread can spawn a child thread, and hence a child procedure, by creating a
closure for the child. Spawning is specified in the Cilk language as follows:

spawn T (args ...)

This statement creates a child closure, fills in all available arguments, and initializes the join
counter to the number of missing arguments. Available arguments are specified with ordinary
C syntax. To specify a missing argument, the user specifies a continuation variable (typecont)
preceded by a question mark. For example, if the second argument is?k , then Cilk sets the vari-
ablek to a continuation that refers to the second argument slot of the created closure.If the closure
is ready, that is, it has no missing arguments, thenspawn causes the closure to be immediately
posted to the scheduler for execution. In typical applications, child closures are created with no
missing arguments.

To string a sequence of threads together to make a Cilk procedure, each thread in the proce-
dure is responsible for creating its successor. To create a successor thread, a thread executes the

4

following statement:

spawn next T (args ...)

This statement is semantically identical tospawn , but it informs the scheduler that the new closure
should be treated as a successor, as opposed to as a child. Successor closures are usually created
with some missing arguments, which are filled in by values produced by the children.

A Cilk procedure does not ever return values in the normal way to a parent procedure.Instead,
the programmer must code the parent procedure as two threads. The first thread spawnsthe child
procedure, passing it a continuation pointing to the successor thread’s closure. The child sends its
“return” value explicitly as an argument to the waiting successor. This strategy of communicating
between threads is calledexplicit continuation passing. Cilk provides primitives of the following
form to send values from one closure to another:

send argument (k, value)

This statement sends the valuevalue to the argument slot of a waiting closure specified by the
continuationk . The types of the continuation and the value must be compatible. The join counter
of the waiting closure is decremented, and if it becomes zero, then the closure is ready and is
posted to the scheduler.

Figure 3 shows the familiar recursive Fibonacci procedure written in Cilk.It consists of two
threads,fib and its successorsum. Reflecting the explicit continuation-passing style that Cilk
supports, the first argument to each thread is the continuation specifying where the“return” value
should be placed.

When thefib function is invoked, it first checks to see if the boundary case has been reached,
in which case it usessend argument to “return” the value ofn to the slot specified by contin-
uationk . Otherwise, it spawns the successor threadsum, as well as two children to compute the
two subcases. Each of these two children is given a continuation specifying towhich argument in
thesum thread it should send its result. Thesum thread simply adds the two arguments when they
arrive and sends this result to the slot designated byk .

Although writing in explicit continuation-passing style is somewhat onerous for the program-
mer, the decision to break procedures into separate nonblocking threads simplifiesthe Cilk runtime
system. Each Cilk thread leaves the C runtime stack empty when it completes. Thus, Cilk can run
on top of a vanilla C runtime system. A common alternative [21, 27, 35, 37] is to supporta pro-
gramming style in which a thread suspends whenever it discovers that requiredvalues have not yet
been computed, resuming when the values become available. When a thread suspends,however, it
may leave temporary values on the runtime stack which must be saved, or eachthread must have
its own runtime stack. Consequently, this alternative strategy requires that the runtime system em-
ploys either multiple stacks or a mechanism to save these temporaries in heap-allocated storage.
Another advantage of Cilk’s strategy is that it allows multiple children to bespawned from a sin-
gle nonblocking thread, which saves on context switching. In Cilk,r children can be spawned
and executed with onlyr + 1 context switches, whereas the alternative of suspending whenever a
thread is spawned causes2r context switches. Since our primary interest is in understanding how
to build efficient multithreaded runtime systems, but without redesigning the basic C runtime sys-
tem, we chose the alternative of burdening the programmer with a requirement which is perhaps
less elegant linguistically, but which yields a simple and portable runtime implementation.

5

thread fib (cont int k, int n)f if (n<2)
send argument (k,n)

elsef cont int x, y;
spawn next sum (k, ?x, ?y);
spawn fib (x, n-1);
spawn fib (y, n-2);gg

thread sum (cont int k, int x, int y)f send argument (k, x+y);g
Figure 3: A Cilk procedure, consisting of two threads, to compute thenth Fibonacci number.

Cilk supports a variety of features that give the programmer greater control over runtime perfor-
mance. For example, when the last action of a thread is to spawn a ready thread, the programmer
can use the keywordtail call instead ofspawn that produces a “tail call” to run the new
thread immediately without invoking the scheduler. Cilk also allows arrays and subarrays to be
passed as arguments to closures. Other features include various abilities to override the sched-
uler’s decisions, including on which processor a thread should be placed and how to pack and
unpack data when a closure is migrated from one processor to another.

Cilk provides an “assembly language” for programming multithreaded systems, which means
that programmers can access and exploit the power of multithreaded programming, but they must
deal with the many details imposed by explicit continuation passing. Programmingin Cilk can be
difficult, and we do not view the current Cilk language as being a desirable programminginterface
for multithreading. Our research has focused on developing a provably good runtime system, how-
ever, rather than on language design. Recognizing the linguistic deficiencies of Cilk as described
in this paper, we have recently been developing a version of the system that does notuse explicit
continuation passing, has a cleaner language, yet still provides performance guarantees.

3 The Cilk work-stealing scheduler

Cilk’s scheduler uses the technique ofwork stealing[4, 8, 14, 15, 16, 21, 29, 30, 31, 37, 43] in
which a processor (the thief) who runs out of work selects another processor (the victim) from
whom to steal work, and then steals the shallowest ready thread in the victim’s spawn tree. Cilk’s
strategy is for thieves to choose victims at random [4, 29, 40]. We shall now presentthe imple-
mentation of Cilk’s work-stealing scheduler.

At runtime, each processor maintains a localready poolto hold ready closures. Each closure
has an associatedlevel, which corresponds to the thread’s depth in the spawn tree. The closures
for the threads in the root procedure have level0, the closures for the threads in the root’s child
procedures have level1, and so on. The ready pool is an array, illustrated in Figure 4, in which the

6

level 1

level 2

level 3

level 4

level 5

level 6

level 7

level 0

next closure
to steal

next closure
to execute

Figure 4: A processor’s ready pool. At each iteration through the scheduling loop, the processor
executes the closure at the head of the deepest nonempty level in the ready pool. If the ready pool is
empty, the processor becomes a thief and steals the closure at the head of the shallowest nonempty
level in the ready pool of a victim processor chosen uniformly at random.Lth element contains a linked list of all ready closures having levelL.

Cilk begins executing the user program by initializing all ready pools to be empty,placing the
initial root thread into the level-0 list of Processor0’s pool, and then starting a scheduling loop on
each processor.

At each iteration through the scheduling loop, a processor first checks to see whether its ready
pool is empty. If it is, the processor commences work stealing, which will be described shortly.
Otherwise, the processor performs the following steps:

1. Remove the closure at the head of the list of the deepest nonempty level in the ready pool.
2. Extract the thread from the closure, and invoke it.

As a thread executes, it may spawn or send arguments to other threads. When thethread dies,
control returns to the scheduling loop which advances to the next iteration.

When a thread at levelL performs aspawn of a child threadT, the processor executes the
following operations:

1. Allocate and initialize a closure forT.
2. Copy the available arguments into the closure, initialize any continuations to point to missing

7

arguments, and initialize the join counter to the number of missing arguments.
3. Label the closure with levelL+ 1.
4. If there are no missing arguments, post the closure to the ready pool by inserting it at the

head of the level-(L+ 1) list.

Execution ofspawn next is similar, except that the closure is labeled with levelL and, if it is
ready, posted to the level-L list.

When a thread performs asend argument (k, value) , the processor executes the fol-
lowing operations:

1. Find the closure and argument slot referenced by the continuationk .
2. Placevalue in the argument slot, and decrement the join counter of the closure.
3. If the join counter goes to zero, post the closure to the ready pool at the appropriate level.

When the continuationk refers to a closure on a remote processor, network communication en-
sues. The processor that initiated thesend argument function sends a message to the remote
processor to perform the operations. The only subtlety occurs in Step 3. If the closure must be
posted, it is posted to the ready pool of the initiating processor, rather than to that of the remote
processor. This policy is necessary for the scheduler to be provably efficient,but as a practical
matter, we have also had success with posting the closure to the remote processor’s pool.

If a processor begins an iteration of the scheduling loop and finds that its ready pool is empty,
the processor becomes a thief and commences work stealing as follows:

1. Select a victim processor uniformly at random.
2. If the victim’s ready pool is empty, go back to Step 1.
3. If the victim’s ready pool is nonempty, extract the closure from the head of the list in the

shallowest nonempty level of the ready pool, and execute it.

Work stealing is implemented with a simple request-reply communication protocol between the
thief and victim.

Why steal work from the shallowest level of the ready pool? The reason is two-fold—one
heuristic and one algorithmic. First, to lower communication costs, we wouldlike to steal large
amounts of work, and in a tree-structured computation, shallow threads are likely to spawn more
work than deep ones. This heuristic notion is the justification cited by earlier researchers [8, 15, 21,
35, 43] who proposed stealing work that is shallow in the spawn tree. We cannot, however, prove
that shallow threads are more likely to spawn work than deep ones. What we prove in Section 6
is the following algorithmic property. The threads that are on the “critical path” in the dag, are
always at the shallowest level of a processor’s ready pool. Consequently, if processors are idle, the
work they steal makes progress along the critical path.

4 Performance of Cilk applications

The Cilk runtime system executes Cilk applications efficiently and with predictable performance.
Specifically, for dynamic, asynchronous, tree-like applications, Cilk’s work-stealing scheduler pro-
duces near optimal parallel speedup while using small amounts of space and communication. Fur-
thermore, Cilk application performance can be modeled accurately as a simple function of work
and critical-path length. In this section, we empirically demonstrate these facts by experimenting

8

with several applications. This section begins with a look at these applications and then proceeds
with a look at the performance of these applications. In the next section we look atapplication
performance modeling. The empirical results of this section and the next confirm theanalytical
results of Section 6.

Cilk applications

We experimented with the Cilk runtime system using several applications, some synthetic and
some real. The applications are described below:� fib(n) is the same as was presented in Section 2, except that the second recursive spawn

is replaced by atail call that avoids the scheduler. This program is a good measure of
Cilk overhead, because the thread length is so small.� queens(n) is a backtrack search program that solves the problem of placingn queens on
a n � n chessboard so that no two queens attack each other. The Cilk program is based
on serial code by R. Sargent of the MIT Media Laboratory. Thread length was enhanced by
serializing the bottom7 levels of the search tree.� pfold(x,y,z) is a protein-folding program that finds hamiltonian paths in a three-dimen-
sional grid of sizex� y � z using backtrack search [38]. Written by Chris Joerg of MIT’s
Laboratory for Computer Science and V. Pande of MIT’s Center for Material Sciences and
Engineering,pfold was the first program to enumerate all hamiltonian paths in a3� 4� 4
grid. For our experiments, we timed the enumeration of all paths starting with acertain
sequence.� ray(x,y) is a parallel program for graphics rendering based on the serialPOV-Ray pro-
gram, which uses a ray-tracing algorithm. The entirePOV-Ray system contains over20; 000
lines of C code, but the core ofPOV-Ray is a simple doubly nested loop that iterates over
each pixel in a two-dimensional image of sizex� y. Forray we converted the nested loops
into a4-ary divide-and-conquer control structure using spawns.1 Our measurements do not
include the approximately2:4 seconds of startup time required to read and process the scene
description file.� knary(n,k,r) is a synthetic benchmark whose parameters can be set to produce a variety
of values for work and critical-path length. It generates a tree of depthn and branching
factork in which the firstr children at every level are executed serially and the remainder
are executed in parallel. At each node of the tree, the program runs an empty “for” loop for400 iterations.� ?Socrates is a parallel chess program that uses the Jamboree search algorithm[25, 31] to
parallelize a minmax tree search. The work of the algorithm varies with the number of
processors, because it does speculative work that may be aborted during runtime.?Socrates
won second prize in the 1995 ICCA World Computer Chess Championship running on the1824-node Intel Paragon at Sandia National Laboratories.1Initially, the Cilk ray program was about5 percent faster than the serialPOV-Ray program running on one

processor. The reason was that the divide-and-conquer decomposition performed by the Cilk code provides better
locality than the doubly nested loop of the serial code. Modifying the serial code to imitate the Cilk decomposition
improved its performance. Timings for the improved version are given in Figure 6.

9

(a) Ray-traced image. (b) Work at each pixel.

Figure 5:(a) An image rendered with theray program.(b) This image shows the amount of time
ray took to compute each pixel value. The whiter the pixel, the longerray worked to compute
the corresponding pixel value.

Many of these applications place heavy demands on the runtime system due to their dynamic
and irregular nature. For example, in the case ofqueens andpfold , the size and shape of the
backtrack-search tree cannot be determined without actually performing the search, and the shape
of the tree often turns out to be highly irregular. With speculative work that maybe aborted, the?Socrates minmax tree carries this dynamic and irregular structure to the extreme. In the case of
ray , the amount of time it takes to compute the color of a pixel in an image is hard to predict
and may vary widely from pixel to pixel, as illustrated in Figure 5. In all of these cases, high
performance demands efficient, dynamic load balancing at runtime.

All experiments were run on a CM5 supercomputer. The CM5 is a massively parallel computer
based on 32MHz SPARC processors with a fat-tree interconnection network [32].The Cilk runtime
system on the CM5 performs communication among processors using the Strata [7] active-message
library.

Application performance

By running our applications and measuring a suite of performance parameters, we empirically an-
swer many questions about the effectiveness of the Cilk runtime system. We focus on the following
questions. How efficiently does the runtime system implement the language primitives? As we add
processors, how much faster will the program run? How much more space will it require? How
much more communication will it perform? We show that for dynamic, asynchronous, tree-like
programs, the Cilk runtime system efficiently implements the language primitives, and that it is
simultaneously efficient with respect to time, space, and communication. In Section 6, we reach
the same conclusion by analytic means, but in this section we focus on empiricaldata from the
execution of our Cilk programs.

10

The execution of a Cilk program with a given set of inputs grows aCilk computationthat
consists of a tree of procedures and a dag of threads. These structures were introduced in Section 1.
We benchmark our applications with respect to work and critical-path length.

Recall that the work, denoted byT1, is the time to execute the Cilk computation on one proces-
sor, which corresponds to the sum of the execution times of all the threads in the dag.The method
used to measureT1 depends on whether the program is deterministic. For deterministic programs,
the computation only depends on the program and its inputs, and hence, it is independent of the
number of processors and runtime scheduling decisions.2 All of our applications, except?Socrates,
are deterministic. For these deterministic applications, the work performed by anyP -processor run
of the program is equal to the work performed by a1-processor run (with the same input values),
so we measure the workT1 directly by timing the1-processor run. The?Socrates program, on the
other hand, uses speculative execution, and therefore, the computation depends on the number of
processors and scheduling decisions made at runtime. In this case, timing a1-processor run is not
a reasonable way to measure the work performed by a run with more processors. We must realize
that the workT1 of an execution withP processors is defined as the time it takes1-processor to
execute the samecomputation, not the same program (with the same inputs). For?Socrates we
estimate the work of aP -processor run by performing theP -processor run and timing the execu-
tion of every thread and summing. This method yields an underestimate, since itdoes not include
scheduling costs. In either case, aP -processor execution of a Cilk computation with workT1 must
take time at leastT1=P .3 A P -processor execution that takes time equal to thisT1=P lower bound
is said to achieveperfect linear speedup.

Recall that the critical-path length, denoted byT1, is the time to execute the Cilk computation
with infinitely many processors, which corresponds to the largest sum of threadexecution times
along any path in the dag. Cilk can measure critical-path length by timestamping each thread in
the dag with the earliest time at which it could have been executed. Specifically this timestamp is
the maximum of the earliest time that the thread could have been spawned and, for each argument,
the earliest time that the argument could have been sent. These values, in turn, are computed from
the timestamp of the thread that performed the spawn or sent the argument. In particular, if a
thread performs a spawn, then the earliest time that the spawn could occur is equal to the earliest
time at which the thread could have been executed (its timestamp) plus the amount of time the
thread ran for until it performed the spawn. The same property holds for the earliest time that
an argument could be sent. The initial thread of the computation is timestamped zero, and the
critical-path length is then computed as the maximum over all threads of itstimestamp plus the
amount of time it executes for. The measured critical-path length does not include scheduling and
communication costs. AP -processor execution of a Cilk computation must take at least as long as
the computation’s critical-path lengthT1. Thus, ifT1 exceedsT1=P , then perfect linear speedup
cannot be achieved.

Figure 6 is a table showing typical performance measures for our Cilk applications. Each col-
umn presents data from a single run of a benchmark application. We adopt the following notations,
which are used in the table. For each application, we have an efficient serial C implementation,
compiled usinggcc -O2 , whose measured runtime is denotedTserial. The Cilk computation’s2Randomized programs can be viewed as deterministic if we consider the sequence of values generated by the
source of randomness to be inputs to the program.3In practice, we sometimes beat theT1=P lower bound. Suchsuperlinear speedupis a consequence of the fact that
as we add processors, we also add other physical resources such as registers, cache, and main memory.

11

fib queens pfold ray knary knary ?Socrates ?Socrates
(33) (15) (3,3,4) (500,500) (10,5,2) (10,4,1) (depth 10) (d epth 10)

(32 proc.) (256 proc)
(computation parameters)Tserial 8.487 252.1 615.15 729.2 288.6 40.993 1665 1665T1 73.16 254.6 647.8 732.5 314.6 45.43 3644 7023Tserial=T1 0.116 0.9902 0.9496 0.9955 0.9174 0.9023 0.4569 0.2371T1 0.000326 0.0345 0.04354 0.0415 4.458 0.255 3.134 3.24T1=T1 224417 7380 14879 17650 70.56 178.2 1163 2168

threads 17,108,660 210,740 9,515,098 424,475 5,859,374 873,812 26,151,774 51,685,823
thread length 4.276�s 1208�s 68.08�s 1726�s 53.69�s 51.99�s 139.3�s 135.9�s

(32-processor experiments)TP 2.298 8.012 20.26 21.68 15.13 1.633 126.1 -T1=P + T1 2.287 7.991 20.29 22.93 14.28 1.675 117.0 -T1=TP 31.84 31.78 31.97 33.79 20.78 27.81 28.90 -T1=(P � TP) 0.9951 0.9930 0.9992 1.0558 0.6495 0.8692 0.9030 -
space/proc. 70 95 47 39 41 42 386 -
requests/proc. 185.8 48.0 88.6 218.1 92639 3127 23484 -
steals/proc. 56.63 18.47 26.06 79.25 18031 1034 2395 -

(256-processor experiments)TP 0.2892 1.045 2.590 2.765 8.590 0.4636 - 34.32T1=P + T1 0.2861 1.029 2.574 2.903 5.687 0.4325 - 30.67T1=TP 253.0 243.7 250.1 265.0 36.62 98.00 - 204.6T1=(P � TP) 0.9882 0.9519 0.9771 1.035 0.1431 0.3828 - 0.7993
space/proc. 66 76 47 32 48 40 - 405
requests/proc. 73.66 80.40 97.79 82.75 151803 7527 - 30646
steals/proc. 24.10 21.20 23.05 18.34 6378 550 - 1540

Figure 6: Performance of Cilk on various applications. All times are in seconds, except where noted.

12

work T1 and critical-path lengthT1 are measured on the CM5 as described above. The measured
execution time of the Cilk program running onP processors of the CM5 is given byTP . The
row labeled “threads” indicates the number of threads executed, and “thread length” is the average
thread length (work divided by the number of threads).

Certain derived parameters are also displayed in the table. The ratioTserial=T1 is theefficiency
of the Cilk program relative to the C program. The ratioT1=T1 is theaverage parallelism. The
valueT1=P + T1 is a simple model of the runtime, which will be discussed later. ThespeedupisT1=TP , and theparallel efficiencyisT1=(P �TP). The row labeled “space/proc.” indicates the max-
imum number of closures allocated at any time on any processor. The row labeled “requests/proc.”
indicates the average number of steal requests made by a processor during the execution, and
“steals/proc.” gives the average number of closures actually stolen.

The data in Figure 6 shows two important relationships: one between efficiency and thread
length, and another between speedup and average parallelism.

Considering the relationship between efficiencyTserial=T1 and thread length, we see that for
programs with moderately long threads, the Cilk runtime system induces littleoverhead. The
queens , pfold , ray , andknary programs have threads with average length greater than50
microseconds and have efficiency greater than90 percent. On the other hand, thefib program
has low efficiency, because the threads are so short:fib does almost nothing besidesspawn and
send argument .

Despite it’s long threads, the?Socrates program has low efficiency, because its parallel Jam-
boree search algorithm is based on speculatively searching subtrees that are not searched by a
serial algorithm. Consequently, as we increase the number of processors, the program executes
more threads and, hence, does more work. For example, the256-processor execution did7023
seconds of work whereas the32-processor execution did only3644 seconds of work. Both of these
executions did considerably more work than the serial program’s1665 seconds of work. Thus,
although we observe low efficiency, it is due to the parallel algorithm and not to Cilk overhead.

Looking at the speedupT1=TP measured on32 and256 processors, we see that when the aver-
age parallelismT1=T1 is large compared with the numberP of processors, Cilk programs achieve
nearly perfect linear speedup, but when the average parallelism is small,the speedup is much less.
The fib , queens , pfold , andray programs, for example, have in excess of7000-fold paral-
lelism and achieve more than99 percent of perfect linear speedup on32 processors and more than95 percent of perfect linear speedup on256 processors.4 The?Socrates program exhibits some-
what less parallelism and also somewhat less speedup. On32 processors the?Socrates program
has1163-fold parallelism, yielding90 percent of perfect linear speedup, while on256 proces-
sors it has2168-fold parallelism yielding80 percent of perfect linear speedup. With even less
parallelism, as exhibited in theknary benchmarks, less speedup is obtained. For example, the
knary(10,5,2) benchmark exhibits only70-fold parallelism, and it realizes barely more than20-fold speedup on32 processors (less than65 percent of perfect linear speedup). With178-fold
parallelism,knary(10,4,1) achieves27-fold speedup on32 processors (87 percent of perfect
linear speedup), but only98-fold speedup on256 processors (38 percent of perfect linear speedup).

Although these speedup measures reflect the Cilk scheduler’s ability to exploitparallelism,
to obtainapplication speedup, we must factor in the efficiency of the Cilk program compared4In fact, theray program achieves superlinear speedup even when comparing to the efficient serialimplementa-
tion. We suspect that cache effects cause this phenomenon.

13

with the serial C program. Specifically, the application speedupTserial=TP is the product of ef-
ficiency Tserial=T1 and speedupT1=TP . For example, applications such asfib and ?Socrates
with low efficiency generate correspondingly low application speedup. The?Socrates program,
with efficiency 0:2371 and speedup204:6 on 256 processors, exhibits application speedup of0:2371 � 204:6 = 48:51. For the purpose of understanding scheduler performance, we have de-
coupled the efficiency of the application from the efficiency of the scheduler.

Looking more carefully at the cost of aspawn in Cilk, we find that it takes a fixed overhead
of about50 cycles to allocate and initialize a closure, plus about8 cycles for each word argument.
In comparison, a C function call on a CM5 SPARC processor takes2 cycles of fixed overhead
(assuming no register window overflow) plus1 cycle for each word argument (assuming all argu-
ments are transferred in registers). Thus, aspawn in Cilk is roughly an order of magnitude more
expensive than a C function call. This Cilk overhead is quite apparent in thefib program, which
does almost nothing besidesspawn andsend argument . Based onfib ’s measured efficiency
of 0:116, we can conclude that the aggregate average cost of aspawn /send argument in Cilk
is between8 and9 times the cost of a function call/return in C.

Efficient execution of programs with short threads requires a low-overhead spawn operation.
As can be observed from Figure 6, the vast majority of threads execute on the same processor
on which they are spawned. For example, thefib program executed over17 million threads but
migrated only6170 (24:10 per processor) when run with256 processors. Taking advantage of
this property, other researchers [17, 27, 35] have developed techniques for implementing spawns
such that when the child thread executes on the same processor as its parent, the cost of the spawn
operation is roughly equal the cost of a function call. We hope to incorporate such techniques into
future implementations of Cilk.

Finally, we make two observations about the space and communication measures in Figure 6.
Looking at the “space/proc.” rows, we observe that the space per processor is generally quite

small and does not grow with the number of processors. For example,?Socrates on32 processors
executes over26 million threads, yet no processor ever contains more than386 allocated closures.
On256 processors, the number of executed threads nearly doubles to over51 million, but the space
per processor barely changes. In Section 6 we show formally that for an important class of Cilk
programs, the space per processor does not grow as we add processors.

Looking at the “requests/proc.” and “steals/proc.” rows in Figure 6, we observethat the amount
of communication grows with the critical-path length but does not grow with the work. For ex-
ample,fib , queens , pfold , andray all have critical-path lengths under a tenth of a second
long and perform fewer than220 requests and80 steals per processor, whereasknary(10,5,2)
and?Socrates have critical-path lengths more than3 seconds long and perform more than20; 000
requests and1500 steals per processor. The table does not show any clear correlation between
work and either requests or steals. For example,ray does more than twice as much work as
knary(10,5,2) , yet it performs two orders of magnitude fewer requests. In Section 6, we
show that for a class of Cilk programs, the communication per processor grows at most linearly
with the critical-path length and does not grow as a function of the work.

14

5 Modeling performance

We further document the effectiveness of the Cilk scheduler by showing empirically that Cilk
application performance can be modeled accurately with a simple function of workT1 and critical-
path lengthT1. Specifically, we use theknary synthetic benchmark to show that the runtime
of an application onP processors can be modeled asTP � T1=P + c1T1, wherec1 is a small
constant (about1:5 for knary) determined by curve fitting. This result shows that we obtain
nearly perfect linear speedup when the critical path is short compared withthe average amount of
work per processor. We also show that a model of this kind is accurate even for?Socrates, which
is our most complex application programmed to date.

We would like our scheduler to execute a Cilk computation withT1 work in T1=P time onP
processors. Such perfect linear speedup cannot be obtained whenever the computation’scritical-
path lengthT1 exceedsT1=P , since we always haveTP � T1 or more generally,TP � max fT1=P; T1g.
The critical-path lengthT1 is the stronger lower bound onTP wheneverP exceeds the average
parallelismT1=T1, andT1=P is the stronger bound otherwise. A good scheduler should meet each
of these bounds as closely as possible.

In order to investigate how well the Cilk scheduler meets these two lower bounds, we used our
syntheticknary benchmark, which can grow computations that exhibit a range of values for work
and critical-path length.

Figure 7 shows the outcome from many experiments of runningknary with various input
values (n, k , andr) on various numbers of processors. The figure plots the measured speedupT1=TP for each run against the machine sizeP for that run. In order to compare the outcomes
for runs with different input values, we have normalized the plotted value for each run as follows.
In addition to the speedup, we measure for each run the workT1 and the critical-path lengthT1,
as previously described. We then normalize the machine size and the speedup by dividingthese
values by the average parallelismT1=T1. For each run, the horizontal position of the plotted datum
is P=(T1=T1), and the vertical position of the plotted datum is(T1=TP)=(T1=T1) = T1=TP .
Consequently, on the horizontal axis, the normalized machine size is1:0 when the number of
processors is equal to the average parallelism. On the vertical axis, thenormalized speedup is1:0
when the runtime equals the critical-path length. We can draw the two lower boundson time as
upper bounds on speedup. The horizontal line at1:0 is the upper bound on speedup obtained from
the critical-path length,TP � T1, and the45-degree line is the linear speedup bound,TP � T1=P .
As can be seen from the figure, on theknary runs for which the average parallelism exceeds
the number of processors (normalized machine size less than1), the Cilk scheduler obtains nearly
perfect linear speedup. In the region where the number of processors is large compared to the
average parallelism (normalized machine size greater than1), the data is more scattered, but the
speedup is always within a factor of4 of the critical-path length upper bound.

The theoretical results from Section 6 show that the expected running time of a Cilk computa-
tion onP processors isTP = O(T1=P + T1). Thus, it makes sense to try to fit theknary data
to a curve of the formTP = c1(T1=P) + c1(T1). A least-squares fit to the data to minimize the
relative error yieldsc1 = 0:9543 � 0:1775 andc1 = 1:54 � 0:3888 with 95 percent confidence.
TheR2 correlation coefficient of the fit is0:989101, and the mean relative error is13:07 percent.
The curve fit is shown in Figure 7, which also plots the simpler curvesTP = T1=P + T1 andTP = T1=P + 2 � T1 for comparison. As can be seen from the figure, little is lost in the linear
speedup range of the curve by assuming that the coefficientc1 on theT1=P term equals1. Indeed,

15

.

.

Curve Fit: 0:954 � T1=P + 1:540 � T1Model 2: 1:000 � T1=P + 2:000 � T1Model 1: 1:000 � T1=P + 1:000 � T1Measured Value:Linear Speedup Boun
d

Critical Path Bound

NormalizedSpe
edup

Normalized Machine Size

10.10.010.0010.0001 1010.10.010.0010.0001
Figure 7: Normalized speedups for theknary synthetic benchmark using from1 to 256 proces-
sors. The horizontal axis is the numberP of processors and the vertical axis is the speedupT1=TP ,
but each data point has been normalized by dividing byT1=T1.

.

.

Curve Fit: 1:067 � T1=P + 1:042 � T1Model 2: 1:000 � T1=P + 2:000 � T1Model 1: 1:000 � T1=P + 1:000 � T1Measured Value:Linear Speedup Boun
dCritical Path Bound

NormalizedSpe
edup

Normalized Machine Size

1
0.1
0.01 10.10.01

Figure 8: Normalized speedups for the?Socrates chess program.

16

a fit toTP = T1=P +c1(T1) yieldsc1 = 1:509�0:3727 withR2 = 0:983592 and a mean relative
error of4:04 percent, which is in some ways better than the fit that includes ac1 term. (TheR2
measure is a little worse, but the mean relative error is much better.)

It makes sense that the data points become more scattered whenP is close to or exceeds the
average parallelism. In this range, the amount of time spent in work stealingbecomes a significant
fraction of the overall execution time. The real measure of the quality of ascheduler is how much
larger thanP the average parallelismT1=T1 must be beforeTP shows substantial influence from
the critical-path length. One can see from Figure 7 that if the average parallelism exceedsP by a
factor of10, the critical-path length has almost no impact on the running time.

To confirm our simple model of the Cilk scheduler’s performance on a real application, we ran?Socrates on a variety of chess positions using various numbers of processors. Figure8 shows the
results of our study, which confirm the results from theknary synthetic benchmark. The best fit
toTP = c1(T1=P)+c1(T1) yieldsc1 = 1:067�0:0141 andc1 = 1:042�0:0467 with 95 percent
confidence. TheR2 correlation coefficient of the fit is0:9994, and the mean relative error is4:05
percent.

Indeed, as some of us were developing and tuning heuristics to increase the performance of?Socrates, we used work and critical-path length as our measures of progress.This methodology
let us avoid being trapped by the following interesting anomaly. We made an “improvement” that
sped up the program on 32 processors. From our measurements, however, we discovered that it
was faster only because it saved on work at the expense of a much longer criticalpath. Using the
simple modelTP = T1=P +T1, we concluded that on a 512-processor Connection Machine CM5
MPP at the National Center for Supercomputer Applications at the University of Illinois, Urbana-
Champaign, which was our platform for our early tournaments, the “improvement” would yield
a loss of performance, a fact which we later verified. Measuring work and critical-path length
enabled us to use experiments on a 32-processor machine to improve our program for the 512-
processor machine, but without using the 512-processor machine, on which computer time was
scarce.

6 A theoretical analysis of the Cilk scheduler

In this section we use algorithmic analysis techniques to prove that for the class of “fully strict”
Cilk programs, Cilk’s work-stealing scheduling algorithm is efficient with respect to space, time,
and communication. Afully strict program is one for which each thread sends arguments only to its
parent’s successor threads. In the analysis and bounds of this section, we further assume that each
thread spawns at most one successor thread. Programs such as?Socrates violate this assumption,
and at the end of the section, we explain how the analysis and bounds can be generalized to handle
such programs. For fully strict programs, we prove the following three bounds on space, time, and
communication:

Space The space used by aP -processor execution is bounded bySP � S1P , whereS1 denotes the
space used by the serial execution of the Cilk program. This bound is existentially optimal
to within a constant factor [4].

Time With P processors, the expected execution time, including scheduling overhead, is bounded
byO(T1=P+T1). Since bothT1=P andT1 are lower bounds for anyP -processor execution,

17

this bound is within a constant factor of optimal.

Communication The expected number of bytes communicated during aP -processor execution isO(PT1Smax), whereSmax is the size of the largest closure in the computation. This bound is
existentially optimal to within a constant factor [44].

The expected-time bound and the expected-communication bound can be converted into high-
probability bounds at the cost of only a small additive term in both cases. Full proofs ofthese
bounds, using generalizations of the techniques developed in [4], can be found in [3].

The space bound can be obtained from a “busy-leaves” property [4] that characterizes the
allocated closures at all times during the execution. In order to state thisproperty simply, we first
define some terms. We say that two or more closures aresiblings if they were spawned by the
same parent, or if they are successors (by one or morespawn next ’s) of closures spawned by
the same parent. Sibling closures can be ordered by age: the first child spawned is older than the
second, and so on. At any given time during the execution, we say that a closure is aleaf if it
has no allocated children, and we say that a leaf closure is aprimary leaf if, in addition, it has no
younger siblings allocated. Thebusy-leaves propertystates that every primary-leaf closure has a
processor working on it.

Lemma 1 Cilk’s scheduler maintains the busy-leaves property.

Proof: Consider the three possible ways that a primary-leaf closure can be created. First, when
a thread spawns children, the youngest of these children is a primary leaf. Second, when a thread
completes and its closure is freed, if that closure has an older sibling and thatsibling has no
children, then the older-sibling closure becomes a primary leaf. Finally, when a thread completes
and its closure is freed, if that closure has no allocated siblings, then the youngest closure of its
parent’s successor threads is a primary leaf. The induction follows by observingthat in all three
of these cases, Cilk’s scheduler guarantees that a processor works on the new primary leaf. In the
third case we use the important fact that a newly activated closure is posted on the processor that
activated it (and not on the processor on which it was residing).

Theorem 2 For any fully strict Cilk program, ifS1 is the space used to execute the program on1
processor, then with any numberP of processors, Cilk’s work-stealing scheduler uses at mostS1P
space.

Proof: We shall obtain the space boundSP � S1P by assigning every allocated closure to a
primary leaf such that the total space of all closures assigned to a given primary leaf is at mostS1.
Since Lemma 1 guarantees that all primary leaves are busy, at mostP primary-leaf closures can be
allocated, and hence the total amount of space is at mostS1P .

The assignment of allocated closures to primary leaves is made as follows. If the closure is
a primary leaf, it is assigned to itself. Otherwise, if the closure hasany allocated children, then
it is assigned to the same primary leaf as its youngest child. If the closure isa leaf but has some
younger siblings, then the closure is assigned to the same primary leaf as its youngest sibling.
In this recursive fashion, we assign every allocated closure to a primary leaf. Now, we consider
the set of closures assigned to a given primary leaf. The total space of theseclosures is at mostS1, because this set of closures is a subset of the closures that are allocated during a1-processor
execution when the processor is executing this primary leaf, which completes the proof.

18

We are now ready to analyze execution time. Our strategy is to mimic the theorems of [4] for
a more restricted model of multithreaded computation. As in [4], the bounds assume acommu-
nication model in which messages are delayed only by contention at destination processors, but
no assumptions are made about the order in which contending messages are delivered [33]. For
technical reasons in our analysis of execution time, the critical path is calculated assuming that all
threads spawned by a parent thread are spawned at the end of the parent thread.

In our analysis of execution time, we use an accounting argument. At each time step, each of
theP processors places a dollar in one of three buckets according to its actions at that step. If the
processor executes an instruction of a thread at the step, it places its dollar into the WORK bucket.
If the processor initiates a steal attempt, it places its dollar into the STEAL bucket. Finally, if the
processor merely waits for a steal request that is delayed by contention, then it places its dollar
into the WAIT bucket. We shall derive the running time bound by upper bounding the dollars in
each bucket at the end of the computation, summing these values, and then dividing byP , the total
number of dollars put into buckets on each step.

Lemma 3 When the execution of a fully strict Cilk computation with workT1 ends, theWORK

bucket containsT1 dollars.

Proof: The computation contains a total ofT1 instructions.

Lemma 4 When the execution of a fully strict Cilk computation ends, the expected number of
dollars in theWAIT bucket is less than the number of dollars in theSTEAL bucket.

Proof: Lemma 5 of [4] shows that ifP processors makeM random steal requests during the
course of a computation, where requests with the same destination are serially queued at the desti-
nation, then the expected total delay is less thanM .

Lemma 5 When theP -processor execution of a fully strict Cilk computation with critical-path
lengthT1 and for which each thread has at most one successor ends, the expected number of
dollars in theSTEAL bucket isO(PT1).
Proof sketch: The proof follows the delay-sequence argument of [4], but with some differences
that we shall point out. Full details can be found in [3], which generalizes to the situation in which
a thread can have more than one successor.

At any given time during the execution, we say that a thread iscritical if it has not yet been
executed but all of its predecessors in the dag have been executed. For this argument, the dag
must be augmented with “ghost” threads and additional edges to represent implicit dependencies
imposed by the Cilk scheduler. We define adelay sequenceto be a pair(P; s) such thatP is a path
of threads in the augmented dag ands is a positive integer. We say that a delay sequence(P; s)
occursin an execution if at leasts steal attempts are initiated while some thread ofP is critical.

The next step of the proof is to show that if at leasts steal attempts occur during an execution,
wheres is sufficiently large, then some delay sequence(P; s) must occur. That is, there must
be some pathP in the dag such that each of thes steal attempts occurs while some thread ofP
is critical. We do not give the construction here, but rather refer the readerto [3, 4] for directly
analogous arguments.

19

The last step of the proof is to show that a delay sequence withs =
(PT1) is unlikely to
occur. The key to this step is a lemma, which describes the structure of threads the processors’
ready pools. This structural lemma implies that if a thread is critical,it is the next thread to be
stolen from the pool in which it resides. Intuitively, afterP steal attempts, we expect one of these
attempts to have targeted the processor in which the critical thread of interest resides. In this case,
the critical thread will be stolen and executed, unless, of course, it has already been executed by the
local processor. Thus, afterPT1 steal attempts, we expect all threads onP to have been executed.
The delay-sequence argument formalizes this intuition. Thus, the expected numbers of dollars in
the STEAL bucket is at mostO(PT1).
Theorem 6 Consider any fully strict Cilk computation with workT1 and critical-path lengthT1
such that every thread spawns at most one successor. With any numberP of processors, Cilk’s
work-stealing scheduler runs the computation in expected timeO(T1=P + T1).
Proof: We sum the dollars in the three buckets and divide byP . By Lemma 3, the WORK bucket
containsT1 dollars. By Lemma 4, the WAIT bucket contains at most a constant times the number of
dollars in the STEAL bucket, and Lemma 5 implies that the total number of dollars in both buckets
is O(PT1). Thus, the sum of the dollars isT1 + O(PT1), and the bound on execution time is
obtained by dividing byP .

In fact, it can be shown using the techniques of [4] that for any� > 0, with probability at least1� �, the execution time onP processors isO(T1=P + T1 + lgP + lg(1=�)).
Theorem 7 Consider any fully strict Cilk computation with workT1 and critical-path lengthT1
such that every thread spawns at most one successor. For any numberP of processors, the total
number of bytes communicated by Cilk’s work-stealing scheduler has expectationO(PT1Smax),
whereSmax is the size in bytes of the largest closure in the computation.

Proof: The proof follows directly from Lemma 5. All communication costs can be associated
with steals or steal requests, and at mostO(Smax) bytes are communicated for each successful
steal.

In fact, for any� > 0, the probability is at least1 � � that the total communication incurred isO(P (T1 + lg(1=�))Smax).
The analysis and bounds we have derived apply to fully strict programs in the case when each

thread spawns at most one successor. Some programs, such as?Socrates, contain threads that
spawn several successors. In [3], the theorems above are generalized tohandle this situation as
follows. Let nl denote the maximum number of threads belonging to any one procedure such
that all the threads are simultaneously living during some execution. Letnd denote the maximum
number of dependency edges between any pair of threads. When each thread can spawn at most
one successor, we havenl = 1 andnd = 1 and the theorems as proved in this paper hold. Whennl
or nd exceeds1, however, the arguments must be modified.

Specifically, whennl or nd exceeds1, the analysis of the number of dollars in the STEAL

bucket must be modified. A critical thread may no longer be the first thread to be stolen from
a processor’s ready pool. Other noncritical threads from the same procedure may be stolen in
advance of the critical thread. Moreover, extra dependency edges may cause even more steal

20

attempts to occur before a critical thread gets stolen. Accounting for these extra steals in the
argument, we obtain the following bounds on time and communication. For any numberP of
processors, the expected execution time isO(T1=P + nlT1), and the expected number of bytes
communicated isO(nlPT1(nd + Smax)). TheO(S1P) bound on space is unchanged. Analogous
high-probability bounds for time and communication can be found in [3].

7 Conclusion

To produce high-performance parallel applications, programmers often focus on communication
costs and execution time, quantities that are dependent on specific machine configurations. We
argue that a programmer should think instead about work and critical-path length, abstractions that
can be used to characterize the performance of an algorithm independent of the machine configu-
ration. Cilk provides a programming model in which work and critical-path length are observable
quantities, and it delivers guaranteed performance as a function of these quantities. Work and
critical-path length have been used in the theory community for years to analyze parallel algo-
rithms [28]. Blelloch [2] has developed a performance model for data-parallel computations based
on these same two abstract measures. He cites many advantages to such amodel over machine-
based models. Cilk provides a similar performance model for the domain of asynchronous, multi-
threaded computation.

Although Cilk offers performance guarantees, its current capabilities are limited, and program-
mers find its explicit continuation-passing style to be onerous. Cilk is good at expressing and exe-
cuting dynamic, asynchronous, tree-like, MIMD computations, but it is not yet ideal for more tradi-
tional parallel applications that can be programmed effectively in, for example, a message-passing,
data-parallel, or single-thread-per-processor, shared-memory style. We are currently working on
extending Cilk’s capabilities to broaden its applicability. A major constraint is that we do not
want new features to destroy Cilk’s guarantees of performance. Our current research focuses
on implementing “dag-consistent” shared memory, which allows programs to operate on shared
memory without costly communication or hardware support; on providing a linguistic interface
that produces continuation-passing code for our runtime system from a more traditional call-return
specification of spawns; and on incorporating persistent threads and less strict semantics in ways
that do not destroy the guaranteed performance of our scheduler. Recent information about Cilk is
maintained on the World Wide Web in pagehttp://theory.lcs.mit.edu/˜cilk .

Acknowledgments

We gratefully acknowledge the inspiration of Michael Halbherr, now of the Boston Consulting
Group in Zurich, Switzerland. Mike’s PCM runtime system [20] developed at MIT was the pre-
cursor of Cilk, and many of the design decisions in Cilk are owed to him. We thankShail Aditya
and Sivan Toledo of MIT and Larry Rudolph of Hebrew University for helpful discussions. Xin-
min Tian of McGill University provided helpful suggestions for improving the paper. Don Dailey
and International Master Larry Kaufman, both formerly of Heuristic Software, were part of the?Socrates development team. Rolf Riesen of Sandia National Laboratories ported Cilk to the Intel
Paragon MPP running under the SUNMOS operating system, John Litvin and Mike Stupak ported

21

Cilk to the Paragon running under OSF, and Andy Shaw of MIT ported Cilk to SMP platforms.
Thanks to Matteo Frigo and Rob Miller of MIT for their many contributions to theCilk system.
Thanks to the Scout project at MIT and the National Center for Supercomputing Applications at
University of Illinois, Urbana-Champaign for access to their CM5 supercomputers for running our
experiments. Finally, we acknowledge the influence of Arvind and his dataflow research group at
MIT. Their pioneering work attracted us to this path, and their vision continues to challenge us.

References

[1] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M. Scheduler activations:
Effective kernel support for the user-level management of parallelism. InProceedings of the
Thirteenth ACM Symposium on Operating Systems Principles, pp. 95–109, Pacific Grove,
California, Oct. 1991.

[2] Blelloch, G. E. Programming parallel algorithms. InProceedings of the 1992 Dartmouth
Institute for Advanced Graduate Studies (DAGS) Symposium on Parallel Computation, pp.
11–18, Hanover, New Hampshire, Jun. 1992.

[3] Blumofe, R. D. Executing Multithreaded Programs Efficiently. Ph.D. thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Sep.
1995.

[4] Blumofe, R. D. and Leiserson, C. E. Scheduling multithreaded computations by work steal-
ing. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp.
356–368, Santa Fe, New Mexico, Nov. 1994.

[5] Blumofe, R. D. and Park, D. S. Scheduling large-scale parallel computations on networks
of workstations. InProceedings of the Third International Symposium on High Performance
Distributed Computing, pp. 96–105, San Francisco, California, Aug. 1994.

[6] Brent, R. P. The parallel evaluation of general arithmetic expressions.Journal of the ACM,
21(2):201–206, Apr. 1974.

[7] Brewer, E. A. and Blumofe, R. Strata: A multi-layer communications library. Tech-
nical Report to appear, MIT Laboratory for Computer Science. Available asftp://
ftp.lcs.mit.edu/pub/supertech/strata/strata.tar.Z .

[8] Burton, F. W. and Sleep, M. R. Executing functional programs on a virtual tree ofproces-
sors. InProceedings of the 1981 Conference on Functional Programming Languages and
Computer Architecture, pp. 187–194, Portsmouth, New Hampshire, Oct. 1981.

[9] Carlisle, M. C., Rogers, A., Reppy, J. H., and Hendren, L. J. Early experiences with Olden.
In Proceedings of the Sixth Annual Workshop on Languages and Compilers for Parallel Com-
puting, Portland, Oregon, Aug. 1993.

[10] Chandra, R., Gupta, A., and Hennessy, J. L. COOL: An object-based language for parallel
programming.IEEE Computer, 27(8):13–26, Aug. 1994.

[11] Chase, J. S., Amador, F. G., Lazowska, E. D., Levy, H. M., and Littlefield, R. J. The Amber
system: Parallel programming on a network of multiprocessors. InProceedings of the Twelfth
ACM Symposium on Operating Systems Principles, pp. 147–158, Litchfield Park, Arizona,
Dec. 1989.

22

[12] Cooper, E. C. and Draves, R. P. C Threads. Tech. Rep. CMU-CS-88-154, School of Computer
Science, Carnegie-Mellon University, Jun. 1988.

[13] Culler, D. E., Sah, A., Schauser, K. E., von Eicken, T., and Wawrzynek, J. Fine-grain paral-
lelism with minimal hardware support: A compiler-controlled threaded abstract machine. In
Proceedings of the Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 164–175, Santa Clara, California, Apr. 1991.

[14] Feldmann, R., Mysliwietz, P., and Monien, B. Studying overheads in massively parallel
min/max-tree evaluation. InProceedings of the Sixth Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 94–103, Cape May, New Jersey, Jun. 1994.

[15] Finkel, R. and Manber, U. DIB—a distributed implementation of backtracking. ACM Trans-
actions on Programming Languages and Systems, 9(2):235–256, Apr. 1987.

[16] Freeh, V. W., Lowenthal, D. K., and Andrews, G. R. Distributed Filaments: Efficient fine-
grain parallelism on a cluster of workstations. InProceedings of the First Symposium on
Operating Systems Design and Implementation, pp. 201–213, Monterey, California, Nov.
1994.

[17] Goldstein, S. C., Schauser, K. E., and Culler, D. Enabling primitives for compiling parallel
languages. InThird Workshop on Languages, Compilers, and Run-Time Systems for Scalable
Computers, Troy, New York, May 1995.

[18] Graham, R. L. Bounds for certain multiprocessing anomalies.The Bell System Technical
Journal, 45:1563–1581, Nov. 1966.

[19] Graham, R. L. Bounds on multiprocessing timing anomalies.SIAM Journal on Applied
Mathematics, 17(2):416–429, Mar. 1969.

[20] Halbherr, M., Zhou, Y., and Joerg, C. F. MIMD-style parallel programming with continua-
tion-passing threads. InProceedings of the 2nd International Workshop on Massive Paral-
lelism: Hardware, Software, and Applications, Capri, Italy, Sep. 1994.

[21] Halstead, Jr., R. H. Multilisp: A language for concurrent symbolic computation.ACM
Transactions on Programming Languages and Systems, 7(4):501–538, Oct. 1985.

[22] Hillis, W. and Steele, G. Data parallel algorithms.Communications of the ACM,
29(12):1170–1183, Dec. 1986.

[23] Hsieh, W. C., Wang, P., and Weihl, W. E. Computation migration: Enhancing locality for
distributed-memory parallel systems. InProceedings of the Fourth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP), pp. 239–248, San Diego,
California, May 1993.

[24] Jagannathan, S. and Philbin, J. A customizable substrate for concurrent languages.In Pro-
ceedings of the ACM SIGPLAN ’92 Conference on Programming Language Design and Im-
plementation, pp. 55–67, San Francisco, California, Jun. 1992.

[25] Joerg, C. and Kuszmaul, B. C. Massively parallel chess. InProceedings of the Third DIMACS
Parallel Implementation Challenge, Rutgers University, New Jersey, Oct. 1994. Available as
ftp://theory.lcs.mit.edu/pub/cilk/dimacs94.ps.Z .

[26] Kalé, L. V. The Chare kernel parallel programming system. InProceedings of the 1990
International Conference on Parallel Processing, Volume II: Software, pp. 17–25, Aug. 1990.

23

[27] Karamcheti, V. and Chien, A. Concert—efficient runtime support for concurrent object-
oriented programming languages on stock hardware. InSupercomputing ’93, pp. 598–607,
Portland, Oregon, Nov. 1993.

[28] Karp, R. M. and Ramachandran, V. Parallel algorithms for shared-memory machines. In van
Leeuwen, J., (Ed.),Handbook of Theoretical Computer Science—Volume A: Algorithms and
Complexity, chapter 17, pp. 869–941. MIT Press, Cambridge, Massachusetts, 1990.

[29] Karp, R. M. and Zhang, Y. Randomized parallel algorithms for backtrack search and branch-
and-bound computation.Journal of the ACM, 40(3):765–789, Jul. 1993.

[30] Kranz, D. A., Halstead, Jr., R. H., and Mohr, E. Mul-T: A high-performance parallel Lisp. In
Proceedings of the SIGPLAN ’89 Conference on Programming Language Design and Imple-
mentation, pp. 81–90, Portland, Oregon, Jun. 1989.

[31] Kuszmaul, B. C. Synchronized MIMD Computing. Ph.D. thesis, Department of Electri-
cal Engineering and Computer Science, Massachusetts Institute of Technology, May 1994.
Available as MIT Laboratory for Computer Science Technical Report MIT/LCS/TR-645 or
ftp://theory.lcs.mit.edu/pub/bradley/phd.ps.Z .

[32] Leiserson, C. E., Abuhamdeh, Z. S., Douglas, D. C., Feynman, C. R., Ganmukhi, M. N.,Hill,
J. V., Hillis, W. D., Kuszmaul, B. C., Pierre, M. A. S., Wells, D. S., Wong,M. C., Yang, S.-W.,
and Zak, R. The network architecture of the Connection Machine CM-5. InProceedings of
the Fourth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 272–285,
San Diego, California, Jun. 1992.

[33] Liu, P., Aiello, W., and Bhatt, S. An atomic model for message-passing. InProceedings of
the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 154–163,
Velen, Germany, Jun. 1993.

[34] Miller, R. C. A type-checking preprocessor for Cilk 2, a multithreaded C language. Master’s
thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, May 1995.

[35] Mohr, E., Kranz, D. A., and Halstead, Jr., R. H. Lazy task creation: A technique for increasing
the granularity of parallel programs.IEEE Transactions on Parallel and Distributed Systems,
2(3):264–280, Jul. 1991.

[36] Nikhil, R. S. A multithreaded implementation of Id using P-RISC graphs. InProceedings
of the Sixth Annual Workshop on Languages and Compilers for Parallel Computing, num-
ber 768 in Lecture Notes in Computer Science, pp. 390–405, Portland, Oregon, Aug. 1993.
Springer-Verlag.

[37] Nikhil, R. S. Cid: A parallel, shared-memory C for distributed-memory machines. InPro-
ceedings of the Seventh Annual Workshop on Languages and Compilers for Parallel Comput-
ing, Aug. 1994.

[38] Pande, V. S., Joerg, C. F., Grosberg, A. Y., and Tanaka, T. Enumerations of the hamiltonian
walks on a cubic sublattice.Journal of Physics A, 27, 1994.

[39] Rinard, M. C., Scales, D. J., and Lam, M. S. Jade: A high-level, machine-independent
language for parallel programming.Computer, 26(6):28–38, Jun. 1993.

[40] Rudolph, L., Slivkin-Allalouf, M., and Upfal, E. A simple load balancing scheme for task
allocation in parallel machines. InProceedings of the Third Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 237–245, Hilton Head, South Carolina, Jul. 1991.

24

[41] Sunderam, V. S. PVM: A framework for parallel distributed computing.Concurrency: Prac-
tice and Experience, 2(4):315–339, Dec. 1990.

[42] Tanenbaum, A. S., Bal, H. E., and Kaashoek, M. F. Programming a distributed system using
shared objects. InProceedings of the Second International Symposium on High Performance
Distributed Computing, pp. 5–12, Spokane, Washington, Jul. 1993.

[43] Vandevoorde, M. T. and Roberts, E. S. WorkCrews: An abstraction for controlling paral-
lelism. International Journal of Parallel Programming, 17(4):347–366, Aug. 1988.

[44] Wu, I.-C. and Kung, H. T. Communication complexity for parallel divide-and-conquer.In
Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, pp. 151–
162, San Juan, Puerto Rico, Oct. 1991.

Short biographies of the authors

ROBERT (BOBBY) BLUMOFE received his Bachelor’s degree from Brown University in 1988
and his Ph.D. from MIT in 1995. He started his research career working on computergraphics
with Andy van Dam at Brown, and did his Ph.D. work on algorithms and systems for parallel
multithreaded computing with Charles Leiserson at MIT. As part of this dissertation work, Bobby
developed an adaptive and fault tolerant version of Cilk, called Cilk-NOW,that runs on networks
of workstations. Bobby is now an Assistant Professor at the University of Texasat Austin, and he
is continuing his work on Cilk and Cilk-NOW.

CHRISTOPHERF. JOERG received the B.S., M.S., and Ph.D. degrees in Computer Science and
Engineering from MIT in 1987, 1990, and 1996 respectively. His earlier work at MIT includes the
architecture, design, and implementation of the PaRC packet switched routingchip, and the design
and analysis of tightly coupled processor-network interface architectures. He was also the lead
programmer on the?Socrates massively parallel chess system. Chris is currently on the research
staff at Digital’s Cambridge Research Lab. His research interests are in the areas of computer
architecture, parallel systems, multithreading, and interconnection networks.

BRADLEY C. KUSZMAUL received two S.B. degrees in 1984, an S.M. degree in 1986, and
a Ph.D. degree in 1994, all from MIT. In 1987, midway through his Ph.D. program, he took a
year off from MIT to serve as one of the principal architects of the Connection Machine CM5 at
Thinking Machines Corporation. When he returned to MIT to finish graduate school, he authored
the StarTech massively parallel chess program and then coauthored?Socrates. In 1995, he joined
the Departments of Computer Science and Electrical Engineering at Yale University, where he is
now Assistant Professor. Prof. Kuszmaul’s work in solving systems problems in high-performance
computing spans a wide range of technology including VLSI chips, interconnection networks,
operating systems, compilers, interpreters, algorithms, and applications.

CHARLES E. LEISERSONis Professor of Computer Science and Engineering in the MIT Lab-
oratory for Computer Science. He received the B.S. degree in computer scienceand mathematics
from Yale University in 1975 and the Ph.D. degree in computer science from Carnegie Mellon
University in 1981. Prof. Leiserson’s research contributions include systoliccomputing, VLSI
graph layout, the retiming method of digital circuit optimization, and the fat-tree interconnection
network. He was principal architect of the networks of Thinking Machines’ Connection Machine

25

Model CM5 Supercomputer. He has designed and engineered many parallel algorithms, includ-
ing ones for matrix linear algebra, graph algorithms, optimization, and sorting. He and his stu-
dents have won prizes in international competition for their parallel chess programs StarTech and?Socrates. He is coauthor of the textbookIntroduction to Algorithms, which is published jointly
by The MIT Press and McGraw-Hill. Prof. Leiserson is a member of IEEE,ACM, and SIAM, and
serves as General Chair for the ACM Symposium on Parallel Algorithms and Architectures.

KEITH H. RANDALL received B.S. degrees in Mathematics and Computer Science from MIT
in 1993, and an M.S. degree in Computer Science from MIT in 1994. He expects to receive his
Ph.D. from MIT in 1997. His research interests include routing, parallel algorithms, and schedul-
ing.

YULI ZHOU received his B.S. in Electric Engineering from the University of Scienceand
Technology of China in 1983, and M.S. and Ph.D. in Computer Science from the Graduate School
of Arts and Sciences, Harvard University in 1990. Since then he has worked atthe MIT Laboratory
for Computer Science as a research associate on compilers for parallel programming languages in
the Computation Structures Group. He is currently a member of the technical staff at AT&T
Bell Laboratories. His main research interests are programming languages and parallel/distributed
computing.

26

