Cilk: An Efficient Multithreaded Runtime Systeém

ROBERTD. BLUMOFE, CHRISTOPHERF. JOERG, BRADLEY C. KUSZMAUL,
CHARLES E. LEISERSON KEITH H. RANDALL , AND YULI ZHOU

MIT Laboratory for Computer Science, 545 Technology Squaaenbridge MA 02139

October 17, 1996

Abstract

Cilk (pronounced “silk”) is a C-based runtime system for multithreaded hnatbgramming.
In this paper, we document the efficiency of the Cilk work-stealing scheduler,dmghirically
and analytically. We show that on real and synthetic applications, the “work™&itatal-path
length” of a Cilk computation can be used to model performance accurately. Contgga€ilk
programmer can focus on reducing the computation’s work and critical-path lengpitgtied from
load balancing and other runtime scheduling issues. We also prove that forgbefciaully strict”
(well-structured) programs, the Cilk scheduler achieves space, timesoamshunication bounds
all within a constant factor of optimal.

The Cilk runtime system currently runs on the Connection Machine CM5 MPP, thke Inte
Paragon MPP, the Sun Sparcstation SMP, and the Cilk-NOW network of wodkstatApplica-
tions written in Cilk include protein folding, graphic rendering, backtrack $eaned thecSocrates
chess program, which won second prize in the 1995 ICCA World Computer Chess Chanpionshi

1 Introduction

Multithreading has become an increasingly popular way to implement dynamic, higjhy a
chronous, concurrent programs [1, 9, 10, 11, 12, 13, 16, 21, 23, 24, 26, 27, 30, 36, 37, 39, 42, 43].

*This research was supported in part by the Advanced Research Projects Agesic§srantts NO0014-94-1-0985
and N00014-92-J-1310. Robert Blumofe was supported in part by &AARgh-Performance Computing Graduate
Fellowship. Keith Randall is supported in part by a Department of DefRix®EG Fellowship.

Robert D. Blumofe’s current address is The University of Texas at AuSiepartment of Computer Sciences;
Taylor Hall; Austin, TX 78712. Christopher F. Joerg’s current adslie®igital Equipment Corporation; Cambridge
Research Laboratory; One Kendall Square, Building 700, 2nd Floor; GagehMA 02139. Bradley C. Kuszmaul's
current address is Yale University; Department of Computer Science; SfpdRid3treet; New Haven, CT 06520. Yuli
Zhou's current address is AT&T Bell Laboratories; 600 Mountain Avenuerily Hill, NJ 07974.

Published in The Journal of Parallel and Distributed Computindl)35%-69, Aug. 25 1996.

Portions of this work were previously reported in the Proceedifighe Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP '95), Santa Ba@yarJuly 19-21, 1995, pp. 207-216.

level O O—>

level 1
level 2

level 3

Figure 1: The Cilk model of multithreaded computation. Threads are shown aasscidbich are
grouped into procedures. Each downward edge corresponds to a spawn of a child, eacttdioriz
edge corresponds to a spawn of a successor, and each upward, curved edge correspates to a
dependency. The levels of procedures in the spawn tree are indicated at.the left

A multithreaded system provides the programmer with a means to create,@yaehand sched-
ule threads. Although the schedulers in many of these runtime systems seerfotm peell in
practice, none provide users with a guarantee of application performance s @illuntime sys-
tem whose work-stealing scheduler is efficient in theory as well as inipeadfloreover, it gives
the user an algorithmic model of application performance based on the measuvexidf dnd
“critical-path length” which can be used to predict the runtime of a Cilk pnogaacurately.

A Cilk multithreaded computation can be viewed as a directed acyclic gdggp) that unfolds
dynamically, as is shown schematically in Figure 1. A Cilk program coneiséscollection of
Cilk procedureseach of which is broken into a sequencélo&ads which form the vertices of the
dag. Each thread isrmonblockingC function, which means that it can run to completion without
waiting or suspending once it has been invoked. As one of the threads from a Cilk procedure
runs, it canspawna child thread which begins a new child procedure. In the figure, downward
edges connect threads and their procedures with the children they have spawnednAsdawv
a subroutine call, except that the calling thread may execute concurrertlytsvithild, possibly
spawning additional children. Since threads cannot block in the Cilk model, a traeadtspawn
children and then wait for values to be returned. Rather, the thread musbadtitispawn a
successothread to receive the children’s return values when they are produced. Al tanela
its successors are considered to be parts of the same Cilk procedure. In tegedepuences of
successor threads that form Cilk procedures are connected by horizontal edges vRlees, and
other values sent from one thread to another, indlata dependencieamong the threads, where
a thread receiving a value cannot begin until another thread sends the value. pPaEtdeaieies
are shown as upward, curved edges in the figure. Thus, a Cilk computation unfolsiseagretree
composed of procedures and the spawn edges that connect them to their children, dutierex
must follow the precedence relation determined by the dag of threads.

The execution time of any Cilk program on a parallel computer Wiglrocessors is constrained
by two parameters of the computation: tlwerk and thecritical-path length The work, denoted
T}, is the time used by a one-processor execution of the program, which correspondsumthe
of the execution times of all the threads. The critical-path length, deAgteds the total amount
of time required by an ideal infinite-processor execution, which corresponds fargiest sum of
thread execution times along any path. Witprocessors, the execution time cannot be less than
T,/ P or less tharT,,. The Cilk scheduler uses “work stealing” [4, 8, 14, 15, 16, 21, 29, 30, 31, 37,

43] to achieve execution time very near to the sum of these two measufdseQéchniques for
computing such efficient schedules have been known for a long time [6, 18, 19], beifihency
has been difficult to achieve on-line in a distributed environment while sametiusly using small
amounts of space and communication.

We demonstrate the efficiency of the Cilk scheduler both empirically and aelyt Empir-
ically, we have been able to document that Cilk works well for dynamic, asynchrotneedike,
MIMD-style computations. To date, the applications we have programmed includgrpfold-
ing, graphic rendering, backtrack search, and«8ecrates chess program, which won second
prize in the 1995 World Computer Chess Championship running on Sandia National Labetatorie
1824-node Intel Paragon MPP. Many of these applications pose problems for more traditiona
parallel environments, such as message passing [41] and data parallel fZe@#]se of the un-
predictability of the dynamic workloads on processors. Analytically, we proveftmafully
strict” (well-structured) programs, Cilk’'s work-stealing scheduler eabs$ execution space, time,
and communication bounds all within a constant factor of optimal. To date, all opgiigations
that we have coded are fully strict.

The Cilk language extends C with primitives to express parallelism, anditkeu@time sys-
tem maps the expressed parallelism into a parallel execution. A Cilk pragrareprocessed to C
using ourcilk2c type-checking preprocessor [34]. The C code is then compiled and linked with
a runtime library to run on the target platform. Currently supported targdtgdi@the Connection
Machine CM5 MPP, the Intel Paragon MPP, the Sun Sparcstation SMP, andkHe@V [3, 5]
network of workstations. In this paper, we focus on the Connection Machine CM5 iraptation
of Cilk. The Cilk scheduler on the CM5 is written in about 40 pages of C, and it pegfaopmmu-
nication among processors using the Strata [7] active-message librasydé3aription of the Cilk
environment corresponds to the version as of March 1995.

The remainder of this paper is organized as follows. Section 2 describes itkime data
structures and the C language extensions that are used for programming. Sectionli&slesc
the work-stealing scheduler. Section 4 documents the performance of sevkrapflications.
Section 5 shows how the work and critical-path length of a Cilk computatiomeaised to model
performance. Section 6 shows analytically that the scheduler works wedlllyfsiSection 7 offers
some concluding remarks and describes our plans for the future.

2 The Cilk programming environment and implementation

This section describes the basic runtime data structures that Cilk uses]las a C language
extension that we have developed to ease the task of coding Cilk programs. Theersiydiem is
based on a data structure, called a “closure,” which is manipulated iry @weple fashion by the
language. The Cilk “language” is less a higher-level language than it is anlalgdanguage for
multithreading. It employs “explicit continuation passing” to connect lightweiglgztis together
into procedures. We do not view this primitive Cilk language as a researchladidn, but rather
as a tool to simplify exploitation of the multithreaded runtime system.

A Cilk procedure is broken into a sequence of threads. The procedure itself is nailtexpli
specified in the language. Rather, it is defined implicitly in terms of atsstituent threads. A
threadT is defined in a manner similar to a C function definition:

thread T (arg-decls ..) { stnmts .. }

3

waiting closure

X: T1 o

i

join
counters

6 arguments

OU0D0O00R0E0C0Enganng &

42
o X:1

ready closure

Figure 2: The closure data structure.

Thecilk2c type-checking preprocessor [34] translatesto a C function of one argument and
void return type. The one argument is a pointer thasuredata structure, illustrated in Figure 2,
which holds the arguments far. A closure consists of a pointer to the C function Tgra slot for
each of the specified arguments, angia counterindicating the number of missing arguments
that need to be supplied befofeis ready to run. A closure iseadyif it has obtained all of

its arguments, and it iwaiting if some arguments are missing. To run a ready closure, the Cilk
scheduler invokes the thread as a C function using the closure itself agitggoment. Within the
code for the thread, the arguments are copied out of the closure data structure intariatédes.

The closure is allocated from a simple runtime heap when it is createdt anceturned to the
heap when the thread terminates.

The Cilk language supports a data type callezbatinuation which is specified by the type
modifier keywordcont . A continuation is essentially a global reference to an empty argument
slot of a closure, implemented as a compound data structure containing a pointésgora and
an offset that designates one of the closure’s argument slots. Continuations caatee end
passed among threads, which enables threads to communicate and synchronizehvither.
Continuations are typed with the C data type of the slot in the closure.

At runtime, a thread can spawn a child thread, and hence a child procedure,abingi
closure for the child. Spawning is specified in the Cilk language as follows:

spawn T (args ..)

This statement creates a child closure, fills in all available argusnemd initializes the join
counter to the number of missing arguments. Available arguments are specifiedrdinary
C syntax. To specify a missing argument, the user specifies a continuatiobl@dtjgecont)
preceded by a question mark. For example, if the second argunféit ieen Cilk sets the vari-
ablek to a continuation that refers to the second argument slot of the created clbsueeclosure
is ready, that is, it has no missing arguments, thgawn causes the closure to be immediately
posted to the scheduler for execution. In typical applications, child closuees@ated with no
missing arguments.

To string a sequence of threads together to make a Cilk procedure, each thtkagroce-
dure is responsible for creating its successor. To create a successdy thtbeeead executes the

4

following statement:
spawn_next T (args ...)

This statement is semantically identicakfmawn, but it informs the scheduler that the new closure
should be treated as a successor, as opposed to as a child. Successor clesisasgrcreated
with some missing arguments, which are filled in by values produced by theeashildr

A Cilk procedure does not ever return values in the normal way to a parent prockthiead,
the programmer must code the parent procedure as two threads. The first threadtbpashrid
procedure, passing it a continuation pointing to the successor thread’s closurdil@rsends its
“return” value explicitly as an argument to the waiting successor. Thasegly of communicating
between threads is callekplicit continuation passingCilk provides primitives of the following
form to send values from one closure to another:

send _argument (k, value)

This statement sends the valmue to the argument slot of a waiting closure specified by the
continuatiork. The types of the continuation and the value must be compatible. The join counter
of the waiting closure is decremented, and if it becomes zero, then the clestgady and is
posted to the scheduler.

Figure 3 shows the familiar recursive Fibonacci procedure written in @ilgonsists of two
threadsfib and its success@mum. Reflecting the explicit continuation-passing style that Cilk
supports, the first argument to each thread is the continuation specifying whéretting” value
should be placed.

When thefib function is invoked, it first checks to see if the boundary case has been reached,
in which case it usesend _argument to “return” the value oh to the slot specified by contin-
uationk. Otherwise, it spawns the successor threah, as well as two children to compute the
two subcases. Each of these two children is given a continuation specifyiig¢b argument in
thesumthread it should send its result. Them thread simply adds the two arguments when they
arrive and sends this result to the slot designatekl.by

Although writing in explicit continuation-passing style is somewhat onerous for thegroegr
mer, the decision to break procedures into separate nonblocking threads sirth@ifia runtime
system. Each Cilk thread leaves the C runtime stack empty when it ctaapléhus, Cilk can run
on top of a vanilla C runtime system. A common alternative [21, 27, 35, 37] is to suppoo-
gramming style in which a thread suspends whenever it discovers that regaiued have not yet
been computed, resuming when the values become available. When a thread sispesds, it
may leave temporary values on the runtime stack which must be saved, dhezaxth must have
its own runtime stack. Consequently, this alternative strategy reqhae#ie runtime system em-
ploys either multiple stacks or a mechanism to save these temporarieghallezted storage.
Another advantage of Cilk’s strategy is that it allows multiple children tefvned from a sin-
gle nonblocking thread, which saves on context switching. In Gilghildren can be spawned
and executed with only + 1 context switches, whereas the alternative of suspending whenever a
thread is spawned caus®&scontext switches. Since our primary interest is in understanding how
to build efficient multithreaded runtime systems, but without redesigning thie Baruntime sys-
tem, we chose the alternative of burdening the programmer with a requirementit iwhgerhaps
less elegant linguistically, but which yields a simple and portable runtirpéeimentation.

thread fib (cont int k, int n)
{ if (n<2)
send _argument (k,n)
else
{ cont int X, v;
spawn_next sum (k, ?x, ?y);
spawn fib (x, n-1);
spawn fib (y, n-2);
}
}

thread sum (cont int k, int x, int y)
{ send _argument (k, x+y);

¥
Figure 3: A Cilk procedure, consisting of two threads, to computeithd-ibonacci number.

Cilk supports a variety of features that give the programmer greater con&nolwowtime perfor-
mance. For example, when the last action of a thread is to spawn a ready, theeprogrammer
can use the keyworthil _call instead ofspawn that produces a “tail call” to run the new
thread immediately without invoking the scheduler. Cilk also allowsyaremd subarrays to be
passed as arguments to closures. Other features include various alulitesrtide the sched-
uler’s decisions, including on which processor a thread should be placed and hovwktanghac
unpack data when a closure is migrated from one processor to another.

Cilk provides an “assembly language” for programming multithreaded systelnnsh wieans
that programmers can access and exploit the power of multithreaded programumitiggybmust
deal with the many details imposed by explicit continuation passing. Progranimn@itk can be
difficult, and we do not view the current Cilk language as being a desirable prograrmtarfgce
for multithreading. Our research has focused on developing a provably good runtiera siyew-
ever, rather than on language design. Recognizing the linguistic deficienciek as@iescribed
in this paper, we have recently been developing a version of the system that dosg raplicit
continuation passing, has a cleaner language, yet still provides performance gsarante

3 TheCilk work-stealing scheduler

Cilk’'s scheduler uses the techniquewodrk stealing[4, 8, 14, 15, 16, 21, 29, 30, 31, 37, 43] in
which a processor (the thief) who runs out of work selects another processor (ting) ¥rom
whom to steal work, and then steals the shallowest ready thread in tha’'sispawn tree. Cilk’s
strategy is for thieves to choose victims at random [4, 29, 40]. We shall now pitbseimbple-
mentation of Cilk’s work-stealing scheduler.

At runtime, each processor maintains a loeady poolto hold ready closures. Each closure
has an associatddvel which corresponds to the thread’s depth in the spawn tree. The closures
for the threads in the root procedure have leyethe closures for the threads in the root’s child
procedures have levé) and so on. The ready pool is an array, illustrated in Figure 4, in which the

level0 [

next closure

level 1 ,Z /to steal

level2 [> >

level3 [>

level4 |/

Y
Y
Y

level5 |

level6 [+—> >

level 7 /] \
next closure

° to execute

Figure 4: A processor’s ready pool. At each iteration through the scheduling loop, tlesgooc
executes the closure at the head of the deepest nonempty level in the ready peakdidy pool is
empty, the processor becomes a thief and steals the closure at the head oftheeshabnempty
level in the ready pool of a victim processor chosen uniformly at random.

Lth element contains a linked list of all ready closures having Iével

Cilk begins executing the user program by initializing all ready pools to be emipiging the
initial root thread into the level-list of Processof’s pool, and then starting a scheduling loop on
each processor.

At each iteration through the scheduling loop, a processor first checks to see wisatbady
pool is empty. If it is, the processor commences work stealing, which will beritbesl shortly.
Otherwise, the processor performs the following steps:

1. Remove the closure at the head of the list of the deepest nonempty level iadygoml.
2. Extract the thread from the closure, and invoke it.

As a thread executes, it may spawn or send arguments to other threads. Whienredledies,
control returns to the scheduling loop which advances to the next iteration.

When a thread at levdl performs aspawn of a child threadT, the processor executes the
following operations:

1. Allocate and initialize a closure far.

2. Copy the available arguments into the closure, initialize any continuatiquusrit to missing

arguments, and initialize the join counter to the number of missing arguments.
3. Label the closure with level + 1.

4. If there are no missing arguments, post the closure to the ready pool by insedirthe
head of the leve(L + 1) list.

Execution ofspawn _next is similar, except that the closure is labeled with lelednd, if it is
ready, posted to the levéHist.

When a thread performssend _argument (k, value) , the processor executes the fol-
lowing operations:

1. Find the closure and argument slot referenced by the contindation
2. Placevalue inthe argument slot, and decrement the join counter of the closure.
3. If the join counter goes to zero, post the closure to the ready pool at the appromeate le

When the continuatiok refers to a closure on a remote processor, network communication en-
sues. The processor that initiated #end _argument function sends a message to the remote
processor to perform the operations. The only subtlety occurs in Step 3. If theeclosigt be
posted, it is posted to the ready pool of the initiating processor, rather than tof tine remote
processor. This policy is necessary for the scheduler to be provably effibigrds a practical
matter, we have also had success with posting the closure to the remotespirscpool.

If a processor begins an iteration of the scheduling loop and finds that its ready poqitis e
the processor becomes a thief and commences work stealing as follows:

1. Select a victim processor uniformly at random.
2. If the victim’s ready pool is empty, go back to Step 1.

3. If the victim’s ready pool is nonempty, extract the closure from the head of thia like
shallowest nonempty level of the ready pool, and execute it.

Work stealing is implemented with a simple request-reply communicatiotogol between the
thief and victim.

Why steal work from the shallowest level of the ready pool? The reason isalte-bne
heuristic and one algorithmic. First, to lower communication costs, we wikddo steal large
amounts of work, and in a tree-structured computation, shallow threads dyetdilksgpawn more
work than deep ones. This heuristic notion is the justification cited by eegBearchers [8, 15, 21,
35, 43] who proposed stealing work that is shallow in the spawn tree. We cannoydrpp@ve
that shallow threads are more likely to spawn work than deep ones. What weipr8ection 6
is the following algorithmic property. The threads that are on the “criticéh’pia the dag, are
always at the shallowest level of a processor’s ready pool. Consequently,esgars are idle, the
work they steal makes progress along the critical path.

4 Performance of Cilk applications

The Cilk runtime system executes Cilk applications efficiently and widdjotable performance.
Specifically, for dynamic, asynchronous, tree-like applications, Cilk’s wtektsg scheduler pro-
duces near optimal parallel speedup while using small amounts of space and contionurfca-
thermore, Cilk application performance can be modeled accurately apéedumction of work
and critical-path length. In this section, we empirically demonstrateetfects by experimenting

with several applications. This section begins with a look at these apphisand then proceeds
with a look at the performance of these applications. In the next section we |@gphtation
performance modeling. The empirical results of this section and the next confiram@hgical
results of Section 6.

Cilk applications

We experimented with the Cilk runtime system using several applicationse synthetic and
some real. The applications are described below:

e fib(n) isthe same as was presented in Section 2, except that the second reasine s
is replaced by d&ail _call that avoids the scheduler. This program is a good measure of
Cilk overhead, because the thread length is so small.

e queens(n) is a backtrack search program that solves the problem of placqgens on
an x n chessboard so that no two queens attack each other. The Cilk program is based
on serial code by R. Sargent of the MIT Media Laboratory. Thread length was ehayce
serializing the bottonT levels of the search tree.

e pfold(x,y,z) is a protein-folding program that finds hamiltonian paths in a three-dimen-
sional grid of sizer x y x z using backtrack search [38]. Written by Chris Joerg of MIT’s
Laboratory for Computer Science and V. Pande of MIT’s Center for Materian8es and
Engineeringpfold was the first program to enumerate all hamiltonian paths3ir at x 4
grid. For our experiments, we timed the enumeration of all paths starting wadrtain
sequence.

e ray(x,y) is a parallel program for graphics rendering based on the $&0&-Ray pro-
gram, which uses a ray-tracing algorithm. The erR®@V/-Ray system contains oven, 000
lines of C code, but the core 8fOV-Ray is a simple doubly nested loop that iterates over
each pixel in a two-dimensional image of size y. Forray we converted the nested loops
into a4-ary divide-and-conquer control structure using spatv@sir measurements do not
include the approximately.4 seconds of startup time required to read and process the scene
description file.

e knary(n,k,r) is a synthetic benchmark whose parameters can be set to produce a variety
of values for work and critical-path length. It generates a tree of demhd branching
factork in which the firstr children at every level are executed serially and the remainder
are executed in parallel. At each node of the tree, the program runs an emgtiptip for
400 iterations.

e xSocrates is a parallel chess program that uses the Jamboree search al@jtBfr to
parallelize a minmax tree search. The work of the algorithm varies Wweghnumber of
processors, because it does speculative work that may be aborted during reStroates
won second prize in the 1995 ICCA World Computer Chess Championship running on the
1824-node Intel Paragon at Sandia National Laboratories.

Linitially, the Cilk ray program was abodit percent faster than the serl@OV-Ray program running on one
processor. The reason was that the divide-and-conquer decompositiompafby the Cilk code provides better
locality than the doubly nested loop of the serial code. Modifying #réakcode to imitate the Cilk decomposition
improved its performance. Timings for the improved version are gnédtigure 6.

(a) Ray-traced image. (b) Work at each pixel.

Figure 5:(a) An image rendered with thery program.(b) This image shows the amount of time
ray took to compute each pixel value. The whiter the pixel, the lomggr worked to compute
the corresponding pixel value.

Many of these applications place heavy demands on the runtime system due to theiradynami
and irregular nature. For example, in the casgudens andpfold , the size and shape of the
backtrack-search tree cannot be determined without actually performingaitud sand the shape
of the tree often turns out to be highly irregular. With speculative work that Ineagborted, the
*Socrates minmax tree carries this dynamic and irregular structure tatiieene. In the case of
ray , the amount of time it takes to compute the color of a pixel in an image is harcethcpr
and may vary widely from pixel to pixel, as illustrated in Figure 5. lhadlthese cases, high
performance demands efficient, dynamic load balancing at runtime.

All experiments were run on a CM5 supercomputer. The CM5 is a massivelgbatanputer
based on 32MHz SPARC processors with a fat-tree interconnection networK [82Cilk runtime
system on the CM5 performs communication among processors using the Stratag7hasessage
library.

Application performance

By running our applications and measuring a suite of performance parameterspwieaty an-
swer many questions about the effectiveness of the Cilk runtime system. Wéedncthe following
guestions. How efficiently does the runtime system implement the language yesfis we add
processors, how much faster will the program run? How much more space \eijuire? How
much more communication will it perform? We show that for dynamic, asynchronoesljikees
programs, the Cilk runtime system efficiently implements the language prawjtand that it is
simultaneously efficient with respect to time, space, and communicatioBedtion 6, we reach
the same conclusion by analytic means, but in this section we focus on emgatealrom the
execution of our Cilk programs.

10

The execution of a Cilk program with a given set of inputs growSila computationthat
consists of a tree of procedures and a dag of threads. These structures wereedtno@ection 1.
We benchmark our applications with respect to work and critical-path length.

Recall that the work, denoted [y, is the time to execute the Cilk computation on one proces-
sor, which corresponds to the sum of the execution times of all the threads in thEngagethod
used to measurg, depends on whether the program is deterministic. For deterministic programs,
the computation only depends on the program and its inputs, and hence, it is independent of the
number of processors and runtime scheduling decigidibof our applications, exceptSocrates,
are deterministic. For these deterministic applications, the work pegftbboy anyP-processor run
of the program is equal to the work performed by-processor run (with the same input values),
so we measure the wofK directly by timing thel-processor run. TheSocrates program, on the
other hand, uses speculative execution, and therefore, the computation depends on the@humbe
processors and scheduling decisions made at runtime. In this case, tilnprgeessor run is not
a reasonable way to measure the work performed by a run with more processarsisitealize
that the workl’ of an execution with” processors is defined as the time it takgzrocessor to
execute the sameomputation not the same program (with the same inputs). ¥8ocrates we
estimate the work of #-processor run by performing thfé-processor run and timing the execu-
tion of every thread and summing. This method yields an underestimate, stloesihot include
scheduling costs. In either case?grocessor execution of a Cilk computation with wa@ikmust
take time at least; /P.> A P-processor execution that takes time equal toThja” lower bound
is said to achieveerfect linear speedup

Recall that the critical-path length, denotedhy, is the time to execute the Cilk computation
with infinitely many processors, which corresponds to the largest sum of tbxemdition times
along any path in the dag. Cilk can measure critical-path length by mgsihg each thread in
the dag with the earliest time at which it could have been executed. Spégithis timestamp is
the maximum of the earliest time that the thread could have been spawned ardfargument,
the earliest time that the argument could have been sent. These values, aréutcomputed from
the timestamp of the thread that performed the spawn or sent the argument.tidnlgarif a
thread performs a spawn, then the earliest time that the spawn could ocqualdethe earliest
time at which the thread could have been executed (its timestamp) plushthentiof time the
thread ran for until it performed the spawn. The same property holds for thesedine that
an argument could be sent. The initial thread of the computation is timestarapedand the
critical-path length is then computed as the maximum over all threads wihiéstamp plus the
amount of time it executes for. The measured critical-path length does natdéstheduling and
communication costs. &-processor execution of a Cilk computation must take at least as long as
the computation’s critical-path length,,. Thus, ifT,, exceed¥’ /P, then perfect linear speedup
cannot be achieved.

Figure 6 is a table showing typical performance measures for our Cilk apphesatEach col-
umn presents data from a single run of a benchmark application. We adopt the follovatigmst
which are used in the table. For each application, we have an efficieat €eimplementation,
compiled usinggcc -O2 , whose measured runtime is denotgdi,. The Cilk computation’s

2Randomized programs can be viewed as deterministic if we consider the seqferalues generated by the
source of randomness to be inputs to the program.

3In practice, we sometimes beat the/ P lower bound. SucBuperlinear speeduig a consequence of the fact that
as we add processors, we also add other physical resources such as regisrancaciain memory.

11

fib queens pfold ray knary knary *Socrates *Socrates
(33) (35) (3,3,4) (500,500) (10,5,2) (10,4,1) (depth 10) (d epth 10)
(32 proc.) (256 proc)
(computation parameters)
Terial 8.487 252.1 615.15 729.2 288.6 40.993 1665 1665
T, 73.16 254.6 647.8 732.5 314.6 45.43 3644 7023
Teeria/ T 0.116 0.9902 0.9496 0.9955 0.9174 0.9023 0.4569 0.2371
Ty 0.000326 0.0345 0.04354 0.0415 4.458 0.255 3.134 3.24
T1 /T 224417 7380 14879 17650 70.56 178.2 1163 2168
threads 17,108,660 210,740 9,515,098 424,475 5,859,374 3,887 26,151,774 51,685,823
thread length 4276 1208:is 68.08is 1726us 53.69is 51.99s 139.3is 135.9s
(32-processor experiments)
Tp 2.298 8.012 20.26 21.68 15.13 1.633 126.1 -
T1/P+ Ty 2.287 7.991 20.29 22.93 14.28 1.675 117.0 -
T,/Tp 31.84 31.78 31.97 33.79 20.78 27.81 28.90 -
T /(P -Tp) 0.9951 0.9930 0.9992 1.0558 0.6495 0.8692 0.9030 -
space/proc. 70 95 47 39 41 42 386 -
requests/proc. 185.8 48.0 88.6 218.1 92639 3127 23484 -
steals/proc. 56.63 18.47 26.06 79.25 18031 1034 2395 -
(256-processor experiments)
Tp 0.2892 1.045 2.590 2.765 8.590 0.4636 - 34.32
T1/P+ Ty 0.2861 1.029 2.574 2.903 5.687 0.4325 - 30.67
T /Tp 253.0 243.7 250.1 265.0 36.62 98.00 - 204.6
T\/(P-Tp) 0.9882 0.9519 0.9771 1.035 0.1431 0.3828 - 0.7993
space/proc. 66 76 47 32 48 40 - 405
requests/proc. 73.66 80.40 97.79 82.75 151803 7527 - 30646
steals/proc. 24.10 21.20 23.05 18.34 6378 550 - 1540

Figure 6: Performance of Cilk on various applications. All times are in se¢cexdspt where noted.

12

work 77 and critical-path lengtff’,, are measured on the CM5 as described above. The measured
execution time of the Cilk program running dn processors of the CM5 is given . The

row labeled “threads” indicates the number of threads executed, and “threpl’les the average
thread length (work divided by the number of threads).

Certain derived parameters are also displayed in the table. Th&lkgtigT} is theefficiency
of the Cilk program relative to the C program. The rdfig'T, is theaverage parallelismThe
valueT, /P + T, is a simple model of the runtime, which will be discussed later. Spre=dups
T, /Tp, and theparallel efficiencys T, /(P - Tp). The row labeled “space/proc.” indicates the max-
imum number of closures allocated at any time on any processor. The ronddtegjaests/proc.”
indicates the average number of steal requests made by a processor during therexaodt
“steals/proc.” gives the average number of closures actually stolen.

The data in Figure 6 shows two important relationships: one between efficiadctheead
length, and another between speedup and average parallelism.

Considering the relationship between efficieriGy,/7: and thread length, we see that for
programs with moderately long threads, the Cilk runtime system inducesditlehead. The
queens , pfold , ray , andknary programs have threads with average length greateritan
microseconds and have efficiency greater thapercent. On the other hand, thie program
has low efficiency, because the threads are so shiort:does almost nothing besidsgawn and
send _argument .

Despite it’s long threads, theSocrates program has low efficiency, because its parallel Jam-
boree search algorithm is based on speculatively searching subtreesetimait &earched by a
serial algorithm. Consequently, as we increase the number of processors, thenpeagraites
more threads and, hence, does more work. For example5thprocessor execution dith23
seconds of work whereas tR2-processor execution did onbp44 seconds of work. Both of these
executions did considerably more work than the serial prograf$s seconds of work. Thus,
although we observe low efficiency, it is due to the parallel algorithm and natk@@rhead.

Looking at the speedup, /T measured 0A2 and256 processors, we see that when the aver-
age parallelisnT} /T, is large compared with the numbgrof processors, Cilk programs achieve
nearly perfect linear speedup, but when the average parallelism is #meapeedup is much less.
Thefib , queens , pfold , andray programs, for example, have in excesgaf0-fold paral-
lelism and achieve more th&9 percent of perfect linear speedup $ihprocessors and more than
95 percent of perfect linear speedup 2§6 processor$. The xSocrates program exhibits some-
what less parallelism and also somewhat less speedu2 @rocessors theSocrates program
has1163-fold parallelism, yieldingd0 percent of perfect linear speedup, while 256 proces-
sors it has2168-fold parallelism yielding80 percent of perfect linear speedup. With even less
parallelism, as exhibited in tHenary benchmarks, less speedup is obtained. For example, the
knary(10,5,2) benchmark exhibits only0-fold parallelism, and it realizes barely more than
20-fold speedup 0132 processors (less thaid percent of perfect linear speedup). Witfs-fold
parallelism knary(10,4,1) achieve27-fold speedup o132 processorsgi percent of perfect
linear speedup), but onBB-fold speedup 0B56 processors3g percent of perfect linear speedup).

Although these speedup measures reflect the Cilk scheduler’s ability to epataitelism,
to obtainapplication speedupwe must factor in the efficiency of the Cilk program compared

“In fact, theray program achieves superlinear speedup even when comparing to the efficieringaldaienta-
tion. We suspect that cache effects cause this phenomenon.

13

with the serial C program. Specifically, the application spe€efigg,/7» is the product of ef-
ficiency Tseria/ 71 and speeduf’/Tp. For example, applications such fils and xSocrates

with low efficiency generate correspondingly low application speedup. «Hoerates program,

with efficiency 0.2371 and speedu204.6 on 256 processors, exhibits application speedup of
0.2371 - 204.6 = 48.51. For the purpose of understanding scheduler performance, we have de-
coupled the efficiency of the application from the efficiency of the scheduler.

Looking more carefully at the cost ofsppawn in Cilk, we find that it takes a fixed overhead
of about50 cycles to allocate and initialize a closure, plus al®aycles for each word argument.
In comparison, a C function call on a CM5 SPARC processor takegles of fixed overhead
(assuming no register window overflow) plusycle for each word argument (assuming all argu-
ments are transferred in registers). Thuspawn in Cilk is roughly an order of magnitude more
expensive than a C function call. This Cilk overhead is quite apparent iiitbtthgorogram, which
does almost nothing besidsgawn andsend _argument . Based orfib ’s measured efficiency
of 0.116, we can conclude that the aggregate average cosspdan/send _argument in Cilk
is betweers8 and9 times the cost of a function call/return in C.

Efficient execution of programs with short threads requires a low-overhmadnsoperation.
As can be observed from Figure 6, the vast majority of threads execute on tleepsaoessor
on which they are spawned. For example,fibe program executed ové million threads but
migrated only6170 (24.10 per processor) when run wittb6 processors. Taking advantage of
this property, other researchers [17, 27, 35] have developed techniques for enfitepspawns
such that when the child thread executes on the same processor as its parers} bf the spawn
operation is roughly equal the cost of a function call. We hope to incorporate such techinique
future implementations of Cilk.

Finally, we make two observations about the space and communication meadtigese 6.

Looking at the “space/proc.” rows, we observe that the space per processor &llgeneate
small and does not grow with the number of processors. For exarfderates o132 processors
executes ove26 million threads, yet no processor ever contains more 38érallocated closures.
On 256 processors, the number of executed threads nearly doubles tolawdlion, but the space
per processor barely changes. In Section 6 we show formally that for an impoldas of Cilk
programs, the space per processor does not grow as we add processors.

Looking at the “requests/proc.” and “steals/proc.” rows in Figure 6, we obsleatéhe amount
of communication grows with the critical-path length but does not grow with tekwiFor ex-
ample,fib , queens , pfold , andray all have critical-path lengths under a tenth of a second
long and perform fewer tha20 requests an80 steals per processor, wheréamry(10,5,2)
andxSocrates have critical-path lengths more thaeconds long and perform more th&y 000
requests and500 steals per processor. The table does not show any clear correlation between
work and either requests or steals. For examgg, does more than twice as much work as
knary(10,5,2) , yet it performs two orders of magnitude fewer requests. In Section 6, we
show that for a class of Cilk programs, the communication per processor growssatimearly
with the critical-path length and does not grow as a function of the work.

14

5 Modeling performance

We further document the effectiveness of the Cilk scheduler by showing enfigiticat Cilk
application performance can be modeled accurately with a simple functioor&fiyand critical-
path lengthl,,. Specifically, we use thknary synthetic benchmark to show that the runtime
of an application orP processors can be modeledias~ T, /P + ¢y T, Wherec,, is a small
constant (about.5 for knary) determined by curve fitting. This result shows that we obtain
nearly perfect linear speedup when the critical path is short comparedhegitiverage amount of
work per processor. We also show that a model of this kind is accurate evefdorates, which

is our most complex application programmed to date.

We would like our scheduler to execute a Cilk computation Wittwork in 77 /P time on P
processors. Such perfect linear speedup cannot be obtained whenever the compataitat's
path lengthl,, exceedq /P, since we always havg. > T,, or more generallyl’> > max {11/P, T }.
The critical-path lengthl’,, is the stronger lower bound ¢f> wheneverP exceeds the average
parallelism?} /T,,, andT} /P is the stronger bound otherwise. A good scheduler should meet each
of these bounds as closely as possible.

In order to investigate how well the Cilk scheduler meets these twarlbaends, we used our
syntheticknary benchmark, which can grow computations that exhibit a range of values for work
and critical-path length.

Figure 7 shows the outcome from many experiments of runkivgy with various input
values , k, andr) on various numbers of processors. The figure plots the measured speedup
T, /Tp for each run against the machine siz€for that run. In order to compare the outcomes
for runs with different input values, we have normalized the plotted value fdr e as follows.

In addition to the speedup, we measure for each run the Wodnd the critical-path lengti,,,

as previously described. We then normalize the machine size and the speedup by tinadeng
values by the average paralleli§fryT.,,. For each run, the horizontal position of the plotted datum
is P/(T,/T), and the vertical position of the plotted datum(& /7p)/(T\/Tx) = Tw/Tp-
Consequently, on the horizontal axis, the normalized machine siz® when the number of
processors is equal to the average parallelism. On the vertical axisoimalized speedup is0
when the runtime equals the critical-path length. We can draw the two lower bouoriise as
upper bounds on speedup. The horizontal line@ts the upper bound on speedup obtained from
the critical-path lengthl» > T, and thet5-degree line is the linear speedup boufid,> 77/ P.

As can be seen from the figure, on tkieary runs for which the average parallelism exceeds
the number of processors (normalized machine size lesdjhtre Cilk scheduler obtains nearly
perfect linear speedup. In the region where the number of processors is large abhoptre
average parallelism (normalized machine size greater thathe data is more scattered, but the
speedup is always within a factor #bf the critical-path length upper bound.

The theoretical results from Section 6 show that the expected running timeilsf @@ puta-
tion on P processors i¥p» = O(11/P + T,,). Thus, it makes sense to try to fit tkeary data
to a curve of the formlyr = ¢1(11/P) + ¢o(T). A least-squares fit to the data to minimize the
relative error yields:; = 0.9543 + 0.1775 andc,, = 1.54 + 0.3888 with 95 percent confidence.
The R? correlation coefficient of the fit i8.989101, and the mean relative error i8.07 percent.
The curve fit is shown in Figure 7, which also plots the simpler cuiies= 7,/P + T, and
Tp = Ty/P + 2 - T, for comparison. As can be seen from the figure, little is lost in the linear
speedup range of the curve by assuming that the coefficient theT; /P term equald. Indeed,

15

0.1
o
=
o]
Q
g, 0.01
5]
e
hS
E
£ 0.001
e}
z.
0.0001

Critical Path Bound

Measured Value: +
Model 1: 1.000 - T4 /P 4+ 1.000 - To -
Model 2: 1.000 - T1 /P +2.000 - Too — — —

Curve Fit: 0.954 - Ty /P + 1.540 - T

0.001 0.01 0.1 1 10

Normalized Machine Size

0.0001

Figure 7: Normalized speedups for theary synthetic benchmark using frointo 256 proces-
sors. The horizontal axis is the numigeof processors and the vertical axis is the speédufi’,
but each data point has been normalized by dividing ¥ ..

[
=
=l
[}
[}
[N
2 0.1
el
Q
N
E
=
—-
o
z
0.01

Critical Path Bound

%f#f’;ﬁa o
,ﬁ+ + o+
+ -
t o
gk Measured Value: +
ﬁf Model 1: 1.000 - T3 /P +1.000 - Toe
qﬁf Model 2: 1.000 - T1/P +2.000 - Toe — — —
* Curve Fit: 1.067 -T1/P+1.042 - Toe ------
4
0.01 0.1 1

Normalized Machine Size

Figure 8: Normalized speedups for th®ocrates chess program.

16

afittoTp = T1/P+co (T) yieldsc,, = 1.509+0.3727 with R? = 0.983592 and a mean relative
error of4.04 percent, which is in some ways better than the fit that includgsterm. (TheR?
measure is a little worse, but the mean relative error is much better.)

It makes sense that the data points become more scatterediMseriose to or exceeds the
average parallelism. In this range, the amount of time spent in work stémgames a significant
fraction of the overall execution time. The real measure of the qualityschaduler is how much
larger thanP the average parallelisffi /T, must be befordr shows substantial influence from
the critical-path length. One can see from Figure 7 that if the averagdgtiaralexceeds’ by a
factor of10, the critical-path length has almost no impact on the running time.

To confirm our simple model of the Cilk scheduler’s performance on a real apphcate ran
*Socrates on a variety of chess positions using various numbers of processors3KEgaves the
results of our study, which confirm the results from Kmary synthetic benchmark. The best fit
toTp = ¢1(T1/P)+ cx(T) Yieldse; = 1.067+0.0141 ande,, = 1.042+0.0467 with 95 percent
confidence. The?? correlation coefficient of the fit i8.9994, and the mean relative error4)5
percent.

Indeed, as some of us were developing and tuning heuristics to increase the pec®wha
*Socrates, we used work and critical-path length as our measures of prognessethodology
let us avoid being trapped by the following interesting anomaly. We made gwdiament” that
sped up the program on 32 processors. From our measurements, however, we @listtatat
was faster only because it saved on work at the expense of a much longer patltalsing the
simple modell', = T /P + T, we concluded that on a 512-processor Connection Machine CM5
MPP at the National Center for Supercomputer Applications at the Universityaii$, Urbana-
Champaign, which was our platform for our early tournaments, the “improvement’tvwoeid
a loss of performance, a fact which we later verified. Measuring work atidatipath length
enabled us to use experiments on a 32-processor machine to improve our program for the 512-
processor machine, but without using the 512-processor machine, on which computeasme w
scarce.

6 A theoretical analysisof the Cilk scheduler

In this section we use algorithmic analysis techniques to prove that for tee aléfully strict”

Cilk programs, Cilk’s work-stealing scheduling algorithm is efficient wispect to space, time,
and communication. Aully strict program is one for which each thread sends arguments only to its
parent’s successor threads. In the analysis and bounds of this section, we figtimee #sat each
thread spawns at most one successor thread. Programs susbcaates violate this assumption,
and at the end of the section, we explain how the analysis and bounds can be generabretie
such programs. For fully strict programs, we prove the following three bounds oe, $pae, and
communication:

Space The space used byfaprocessor execution is bounded$y < S; P, whereS; denotes the
space used by the serial execution of the Cilk program. This bound is existenpéhal
to within a constant factor [4].

Time With P processors, the expected execution time, including scheduling overhead, is bounded
by O(T,/P+T,,). Since botl; /P andT,, are lower bounds for ank-processor execution,

17

this bound is within a constant factor of optimal.

Communication The expected number of bytes communicated duriffg@ocessor execution is
O(PTxSmax), WhereSnhaxis the size of the largest closure in the computation. This bound is
existentially optimal to within a constant factor [44].

The expected-time bound and the expected-communication bound can be converted into high-
probability bounds at the cost of only a small additive term in both cases. Full protifiesd
bounds, using generalizations of the techniques developed in [4], can be found in [3].

The space bound can be obtained from a “busy-leaves” property [4] that chaestirez
allocated closures at all times during the execution. In order to statpribperty simply, we first
define some terms. We say that two or more closuresiatmgsif they were spawned by the
same parent, or if they are successors (by one or sae/n _next ’'s) of closures spawned by
the same parent. Sibling closures can be ordered by age: the first child spavateel ithan the
second, and so on. At any given time during the execution, we say that a closuesafsifat
has no allocated children, and we say that a leaf closurgisary leaf if, in addition, it has no
younger siblings allocated. Thmisy-leaves propertstates that every primary-leaf closure has a
processor working on it.

Lemmal Cilk's scheduler maintains the busy-leaves property.

Proof: Consider the three possible ways that a primary-leaf closure can be creatgdwhen
a thread spawns children, the youngest of these children is a primary leaf. Setmmdawthread
completes and its closure is freed, if that closure has an older sibling andiltfiay has no
children, then the older-sibling closure becomes a primary leaf. Finallyy\ahbread completes
and its closure is freed, if that closure has no allocated siblings, then the ybuitagse of its
parent’s successor threads is a primary leaf. The induction follows by obsemanm all three
of these cases, Cilk’'s scheduler guarantees that a processor works on the ney leafman the
third case we use the important fact that a newly activated closure isdpmstie processor that
activated it (and not on the processor on which it was residing). n

Theorem 2 For any fully strict Cilk program, ifS; is the space used to execute the prograni on
processor, then with any numbgrof processors, Cilk’s work-stealing scheduler uses at ripBt
space.

Proof: We shall obtain the space bousg < S;P by assigning every allocated closure to a
primary leaf such that the total space of all closures assigned to a givearprieaf is at mos§; .
Since Lemma 1 guarantees that all primary leaves are busy, athposhary-leaf closures can be
allocated, and hence the total amount of space is at M@t

The assignment of allocated closures to primary leaves is made as follbtixe closure is
a primary leaf, it is assigned to itself. Otherwise, if the closuredmsallocated children, then
it is assigned to the same primary leaf as its youngest child. If the closarkeé&f but has some
younger siblings, then the closure is assigned to the same primary leaf as its yaihljeg.
In this recursive fashion, we assign every allocated closure to a prilea. Now, we consider
the set of closures assigned to a given primary leaf. The total space ofclbesees is at most
S, because this set of closures is a subset of the closures that are allocatgdaduprocessor
execution when the processor is executing this primary leaf, which coraphetgroof.]

18

We are now ready to analyze execution time. Our strategy is to mimi©dweems of [4] for
a more restricted model of multithreaded computation. As in [4], the bounds asscomenau-
nication model in which messages are delayed only by contention at destinati@ssos; but
no assumptions are made about the order in which contending messages are déBjeréadr|
technical reasons in our analysis of execution time, the critical pathdaslated assuming that all
threads spawned by a parent thread are spawned at the end of the parent thread.

In our analysis of execution time, we use an accounting argument. At eachtémesach of
the P processors places a dollar in one of three buckets according to its actionssehdf the
processor executes an instruction of a thread at the step, it places itsmtolidne WORK bucket.
If the processor initiates a steal attempt, it places its dollar into tlES bucket. Finally, if the
processor merely waits for a steal request that is delayed by contentiont fhlenés its dollar
into the WAIT bucket. We shall derive the running time bound by upper bounding the dollars in
each bucket at the end of the computation, summing these values, and then dividingnbyotal
number of dollars put into buckets on each step.

Lemma 3 When the execution of a fully strict Cilk computation with wéikends, theVORK
bucket containg’, dollars.

Proof: The computation contains a total Bf instructions.]

Lemma4 When the execution of a fully strict Cilk computation ends, the expected number of
dollars in theWaIT bucket is less than the number of dollars in 8rEAL bucket.

Proof: Lemma 5 of [4] shows that if” processors maké/ random steal requests during the
course of a computation, where requests with the same destination arey sgréaied at the desti-
nation, then the expected total delay is less than n

Lemma5 When theP-processor execution of a fully strict Cilk computation with critical-path
length T, and for which each thread has at most one successor ends, the expected number of
dollars in theSTEAL bucket isSO(PTy,).

Proof sketch: The proof follows the delay-sequence argument of [4], but with some differences
that we shall point out. Full details can be found in [3], which generalizes tattreisn in which
a thread can have more than one successor.

At any given time during the execution, we say that a threastiiecal if it has not yet been
executed but all of its predecessors in the dag have been executed. Fogtimseat, the dag
must be augmented with “ghost” threads and additional edges to represent imgeniidéacies
imposed by the Cilk scheduler. We defindeday sequenc® be a pair(P, s) such thatP is a path
of threads in the augmented dag ani$ a positive integer. We say that a delay sequéiite)
occursin an execution if at leaststeal attempts are initiated while some threa@a$ critical.

The next step of the proof is to show that if at leasteal attempts occur during an execution,
where s is sufficiently large, then some delay sequefifes) must occur. That is, there must
be some patlP in the dag such that each of thesteal attempts occurs while some thread’of
is critical. We do not give the construction here, but rather refer the read8r 4] for directly
analogous arguments.

19

The last step of the proof is to show that a delay sequenceswithQ2(PT,,) is unlikely to
occur. The key to this step is a lemma, which describes the structure afithtiee processors’
ready pools. This structural lemma implies that if a thread is critica, the next thread to be
stolen from the pool in which it resides. Intuitively, aftBrsteal attempts, we expect one of these
attempts to have targeted the processor in which the critical threaceoésttresides. In this case,
the critical thread will be stolen and executed, unless, of course, it lealgilbeen executed by the
local processor. Thus, aftétT,, steal attempts, we expect all threadsfoto have been executed.
The delay-sequence argument formalizes this intuition. Thus, the expected nuaflasilars in
the STEAL bucket is at mosD (PT.,). "

Theorem 6 Consider any fully strict Cilk computation with woik and critical-path lengthl’,,
such that every thread spawns at most one successor. With any néthdegsrocessors, Cilk's
work-stealing scheduler runs the computation in expectedig/P + 7.,).

Proof: We sum the dollars in the three buckets and dividé’bBy Lemma 3, the V@RK bucket
contains/ dollars. By Lemma 4, the YWT bucket contains at most a constant times the number of
dollars in the SEAL bucket, and Lemma 5 implies that the total number of dollars in both buckets
is O(PT,,). Thus, the sum of the dollars i§ + O(PT), and the bound on execution time is
obtained by dividing by". n

In fact, it can be shown using the techniques of [4] that for any 0, with probability at least
1 — ¢, the execution time off processors i§)(11 /P + T, +1g P + 1g(1/¢)).

Theorem 7 Consider any fully strict Cilk computation with woik and critical-path lengthl’,,
such that every thread spawns at most one successor. For any nitnddgsrocessors, the total
number of bytes communicated by Cilk’s work-stealing scheduler has expecaitih,, Smax)
whereShax IS the size in bytes of the largest closure in the computation.

Proof: The proof follows directly from Lemma 5. All communication costs can be aasati
with steals or steal requests, and at mO$bmax) bytes are communicated for each successful
steal. n

In fact, for anye > 0, the probability is at leadt — e that the total communication incurred is
O(P(Ts +1g(1/€))Smax)-

The analysis and bounds we have derived apply to fully strict programs in the bagsesach
thread spawns at most one successor. Some programs, swSo@stes, contain threads that
spawn several successors. In [3], the theorems above are generallmeutte this situation as
follows. Letn; denote the maximum number of threads belonging to any one procedure such
that all the threads are simultaneously living during some executiom J@¢note the maximum
number of dependency edges between any pair of threads. When each thread cart spastn a
one successor, we havg= 1 andn, = 1 and the theorems as proved in this paper hold. When
or ny exceedd, however, the arguments must be modified.

Specifically, whem, or n, exceedsl, the analysis of the number of dollars in theeaL
bucket must be modified. A critical thread may no longer be the first thread ttoles srom
a processor’s ready pool. Other noncritical threads from the same procedure majehers
advance of the critical thread. Moreover, extra dependency edges may cansaa@eesteal

20

attempts to occur before a critical thread gets stolen. Accounting for thxsse steals in the
argument, we obtain the following bounds on time and communication. For any nutmbgr
processors, the expected execution time@{8,/P + n,T,), and the expected number of bytes
communicated i®) (n,P1(nq + Smax)). TheO(S1P) bound on space is unchanged. Analogous
high-probability bounds for time and communication can be found in [3].

7 Conclusion

To produce high-performance parallel applications, programmers often focus on caratimmi
costs and execution time, quantities that are dependent on specific machine ctofiguréd/e
argue that a programmer should think instead about work and critical-path lendthctibas that
can be used to characterize the performance of an algorithm independent of theentactiigu-
ration. Cilk provides a programming model in which work and critical-path leage observable
guantities, and it delivers guaranteed performance as a function of these iggantiork and
critical-path length have been used in the theory community for years to angdyallel algo-
rithms [28]. Blelloch [2] has developed a performance model for data-parali@buatations based
on these same two abstract measures. He cites many advantages tarsaciél aver machine-
based models. Cilk provides a similar performance model for the domain of asynchrondtis
threaded computation.

Although Cilk offers performance guarantees, its current capabilitiegnaited, and program-
mers find its explicit continuation-passing style to be onerous. Cilk is good at ekpgesd exe-
cuting dynamic, asynchronous, tree-like, MIMD computations, but it is not yet ideaidre tradi-
tional parallel applications that can be programmed effectively in, for pl&ra message-passing,
data-parallel, or single-thread-per-processor, shared-memory stylereVigaraently working on
extending Cilk’s capabilities to broaden its applicability. A major constre that we do not
want new features to destroy Cilk's guarantees of performance. Our cursmarcd focuses
on implementing “dag-consistent” shared memory, which allows programs tatepam shared
memory without costly communication or hardware support; on providing a linguistidanee
that produces continuation-passing code for our runtime system from a more traditienetiLca
specification of spawns; and on incorporating persistent threads and lessestrantics in ways
that do not destroy the guaranteed performance of our scheduler. Recent inforrbatioek is
maintained on the World Wide Web in pabtp://theory.lcs.mit.edu/ cilk

Acknowledgments

We gratefully acknowledge the inspiration of Michael Halbherr, now of the Bostmmsdting
Group in Zurich, Switzerland. Mike’s PCM runtime system [20] developed &k s the pre-
cursor of Cilk, and many of the design decisions in Cilk are owed to him. We t8hak Aditya
and Sivan Toledo of MIT and Larry Rudolph of Hebrew University for helpful disicuss Xin-
min Tian of McGill University provided helpful suggestions for improving the papeam Dailey
and International Master Larry Kaufman, both formerly of Heuristic Saftwavere part of the
*Socrates development team. Rolf Riesen of Sandia National Laboratories @dkt¢o the Intel
Paragon MPP running under the SUNMOS operating system, John Litvin and Mike Stuped por

21

Cilk to the Paragon running under OSF, and Andy Shaw of MIT ported Cilk to SMP piagfor
Thanks to Matteo Frigo and Rob Miller of MIT for their many contributions to @ik system.
Thanks to the Scout project at MIT and the National Center for Supercomputing Appisait
University of lllinois, Urbana-Champaign for access to their CM5 supercoenpédr running our
experiments. Finally, we acknowledge the influence of Arvind and his datafloarcdsgroup at
MIT. Their pioneering work attracted us to this path, and their vision contirauelsdllenge us.

References

[1] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M. Scheduieaaons:
Effective kernel support for the user-level management of parallelisiArdoeedings of the
Thirteenth ACM Symposium on Operating Systems PrinGiples95-109, Pacific Grove,
California, Oct. 1991.

[2] Blelloch, G. E. Programming parallel algorithms. Rroceedings of the 1992 Dartmouth
Institute for Advanced Graduate Studies (DAGS) Symposium on Parallel Compufation
11-18, Hanover, New Hampshire, Jun. 1992.

[3] Blumofe, R. D. Executing Multithreaded Programs Efficientli?h.D. thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institueslohdlogy, Sep.
1995.

[4] Blumofe, R. D. and Leiserson, C. E. Scheduling multithreaded computationsikysteal-
ing. In Proceedings of the 35th Annual Symposium on Foundations of Computer Spience
356-368, Santa Fe, New Mexico, Nov. 1994.

[5] Blumofe, R. D. and Park, D. S. Scheduling large-scale parallel compuotatn networks

of workstations. IfProceedings of the Third International Symposium on High Performance

Distributed Computingpp. 96-105, San Francisco, California, Aug. 1994.

[6] Brent, R. P. The parallel evaluation of general arithmetic expressiimgnal of the ACM
21(2):201-206, Apr. 1974.

[7] Brewer, E. A. and Blumofe, R. Strata: A multi-layer communicatiorsdry. Tech-
nical Report to appear, MIT Laboratory for Computer Science. Availablét@8
ftp.lcs.mit.edu/pub/supertech/strata/strata.tar.Z

[8] Burton, F. W. and Sleep, M. R. Executing functional programs on aV|rtuaI treeoukes-

sors. InProceedings of the 1981 Conference on Functional Programming Languages and

Computer Architecturgop. 187—194, Portsmouth, New Hampshire, Oct. 1981.
[9] Carlisle, M. C., Rogers, A., Reppy, J. H., and Hendren, L. J. Early espees with Olden.

In Proceedings of the Sixth Annual Workshop on Languages and Compilers for Parallel Com-

puting Portland, Oregon, Aug. 1993.

[10] Chandra, R., Gupta, A., and Hennessy, J. L. COOL: An object-based languageditel pa
programming|EEE Computer27(8):13-26, Aug. 1994.

[11] Chase, J. S., Amador, F. G., Lazowska, E. D., Levy, H. M., and Littteflel J. The Amber
system: Parallel programming on a network of multiprocessoBrdoeedings of the Twelfth
ACM Symposium on Operating Systems Princigbgs 147-158, Litchfield Park, Arizona,
Dec. 1989.

22

[12] Cooper, E. C. and Draves, R. P. C Threads. Tech. Rep. CMU-CS-88-154, Schoohpti@r
Science, Carnegie-Mellon University, Jun. 1988.

[13] Culler, D. E., Sah, A., Schauser, K. E., von Eicken, T., and Wawrzynekn&-dain paral-
lelism with minimal hardware support: A compiler-controlled threaded absimachine. In
Proceedings of the Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systepys 164-175, Santa Clara, California, Apr. 1991.

[14] Feldmann, R., Mysliwietz, P., and Monien, B. Studying overheads in maggagallel
min/max-tree evaluation. IRroceedings of the Sixth Annual ACM Symposium on Parallel
Algorithms and Architecturepp. 94-103, Cape May, New Jersey, Jun. 1994.

[15] Finkel, R. and Manber, U. DIB—a distributed implementation of backtragkACM Trans-
actions on Programming Languages and Syst&(®):235-256, Apr. 1987.

[16] Freeh, V. W., Lowenthal, D. K., and Andrews, G. R. Distributed Filatae Efficient fine-
grain parallelism on a cluster of workstations. Rroceedings of the First Symposium on
Operating Systems Design and Implementatigm 201-213, Monterey, California, Nov.
1994.

[17] Goldstein, S. C., Schauser, K. E., and Culler, D. Enabling primitivesdorgling parallel
languages. IThird Workshop on Languages, Compilers, and Run-Time Systems for Scalable
ComputersTroy, New York, May 1995.

[18] Graham, R. L. Bounds for certain multiprocessing anomalilse Bell System Technical
Journal 45:1563-1581, Nov. 1966.

[19] Graham, R. L. Bounds on multiprocessing timing anomali&AM Journal on Applied
Mathematics17(2):416—-429, Mar. 1969.

[20] Halbherr, M., Zhou, Y., and Joerg, C. F. MIMD-style parallel programmindpwantinua-
tion-passing threads. IRroceedings of the 2nd International Workshop on Massive Paral-
lelism: Hardware, Software, and Applicatigr@apri, Italy, Sep. 1994.

[21] Halstead, Jr., R. H. Multilisp: A language for concurrent symbolic computatia@M
Transactions on Programming Languages and SystéM$:501-538, Oct. 1985.

[22] Hillis, W. and Steele, G. Data parallel algorithmsCommunications of the ACM
29(12):1170-1183, Dec. 1986.

[23] Hsieh, W. C., Wang, P., and Weihl, W. E. Computation migration: Enhancing tpdaf
distributed-memory parallel systems. Pnoceedings of the Fourth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoR#). 239-248, San Diego,
California, May 1993.

[24] Jagannathan, S. and Philbin, J. A customizable substrate for concurrent languages.
ceedings of the ACM SIGPLAN '92 Conference on Programming Language Design and Im-
plementationpp. 55-67, San Francisco, California, Jun. 1992.

[25] Joerg, C. and Kuszmaul, B. C. Massively parallel chesBréweedings of the Third DIMACS
Parallel Implementation Challeng&utgers University, New Jersey, Oct. 1994. Available as
ftp://theory.lcs.mit.edu/pub/cilk/dimacs94.ps.Z

[26] Kalé, L. V. The Chare kernel parallel programming system. Ptnceedlngs of the 1990
International Conference on Parallel Processing, Volume II: Softywape 17-25, Aug. 1990.

23

[27] Karamcheti, V. and Chien, A. Concert—efficient runtime support for concurremicbj
oriented programming languages on stock hardwareSujpercomputing '93pp. 598-607,
Portland, Oregon, Nov. 1993.

[28] Karp, R. M. and Ramachandran, V. Parallel algorithms for shared-memaxiines. In van
Leeuwen, J., (Ed.Klandbook of Theoretical Computer Science—Volume A: Algorithms and
Complexity chapter 17, pp. 869-941. MIT Press, Cambridge, Massachusetts, 1990.

[29] Karp, R. M. and Zhang, Y. Randomized parallel algorithms for backtracklseard branch-
and-bound computatiodournal of the ACM40(3):765-789, Jul. 1993.

[30] Kranz, D. A., Halstead, Jr., R. H., and Mohr, E. Mul-T: A high-performancalpar_isp. In
Proceedings of the SIGPLAN '89 Conference on Programming Language Design and Imple-
mentation pp. 81-90, Portland, Oregon, Jun. 1989.

[31] Kuszmaul, B. C. Synchronized MIMD ComputingPh.D. thesis, Department of Electri-
cal Engineering and Computer Science, Massachusetts Institute of Technologyopa
Available as MIT Laboratory for Computer Science Technical Report MIT/O&S645 or
ftp://theory.lcs.mit.edu/pub/bradley/phd.ps.Z

[32] Leiserson, C. E., Abuhamdeh, Z. S., Douglas, D. C., Feynman C. R., Ganmukhi, MIIN.,

J. V., Hillis, W. D., Kuszmaul, B. C., Pierre, M. A. S., Wells, D. S., Wom,C., Yang, S.-W.,
and Zak, R. The network architecture of the Connection Machine CM-Prdoeedings of
the Fourth Annual ACM Symposium on Parallel Algorithms and Architectpes272—-285,
San Diego, California, Jun. 1992.

[33] Liu, P., Aiello, W., and Bhatt, S. An atomic model for message-passing.rdneedings of
the Fifth Annual ACM Symposium on Parallel Algorithms and Architectyrps 154—163,
Velen, Germany, Jun. 1993.

[34] Miller, R. C. A type-checking preprocessor for Cilk 2, a multithreadedr@lege. Master’s
thesis, Department of Electrical Engineering and Computer Science, dhassdts Institute
of Technology, May 1995.

[35] Mohr, E., Kranz, D. A., and Halstead, Jr., R. H. Lazy task creationchArgue for increasing
the granularity of parallel programizEE Transactions on Parallel and Distributed Systems
2(3):264-280, Jul. 1991.

[36] Nikhil, R. S. A multithreaded implementation of Id using P-RISC graphsProceedings
of the Sixth Annual Workshop on Languages and Compilers for Parallel Computing-
ber 768 in Lecture Notes in Computer Science, pp. 390-405, Portland, Oregon, Aug. 1993.
Springer-Verlag.

[37] Nikhil, R. S. Cid: A parallel, shared-memory C for distributed-memogchines. InPro-
ceedings of the Seventh Annual Workshop on Languages and Compilers for Parallel Comput-
ing, Aug. 1994.

[38] Pande, V. S., Joerg, C. F., Grosberg, A. Y., and Tanaka, T. Enumerations of theohemi
walks on a cubic sublatticglournal of Physics A27, 1994.

[39] Rinard, M. C., Scales, D. J., and Lam, M. S. Jade: A high-level, machaependent
language for parallel programminGomputey 26(6):28—38, Jun. 1993.

[40] Rudolph, L., Slivkin-Allalouf, M., and Upfal, E. A simple load balancing schemetask
allocation in parallel machines. IRroceedings of the Third Annual ACM Symposium on
Parallel Algorithms and Architecturepp. 237-245, Hilton Head, South Carolina, Jul. 1991.

24

[41] Sunderam, V. S. PVM: A framework for parallel distributed computi@gncurrency: Prac-
tice and Experienge2(4):315-339, Dec. 1990.

[42] Tanenbaum, A. S., Bal, H. E., and Kaashoek, M. F. Programming a distribggthsusing
shared objects. IRroceedings of the Second International Symposium on High Performance
Distributed Computingpp. 5-12, Spokane, Washington, Jul. 1993.

[43] Vandevoorde, M. T. and Roberts, E. S. WorkCrews: An abstraction for canggibaral-
lelism. International Journal of Parallel Programming.7(4):347—-366, Aug. 1988.

[44] Wu, |.-C. and Kung, H. T. Communication complexity for parallel divide-and-congurer.
Proceedings of the 32nd Annual Symposium on Foundations of Computer Spentgl—
162, San Juan, Puerto Rico, Oct. 1991.

Short biographiesof the authors

RoOBERT (BoBBY) BLUMOFE received his Bachelor’s degree from Brown University in 1988
and his Ph.D. from MIT in 1995. He started his research career working on congpaterics
with Andy van Dam at Brown, and did his Ph.D. work on algorithms and systems faligdar
multithreaded computing with Charles Leiserson at MIT. As part of thissdiaBon work, Bobby
developed an adaptive and fault tolerant version of Cilk, called Cilk-N®Wt, runs on networks
of workstations. Bobby is now an Assistant Professor at the University of B&@asstin, and he
is continuing his work on Cilk and Cilk-NOW.

CHRISTOPHERF. JOERGreceived the B.S., M.S., and Ph.D. degrees in Computer Science and
Engineering from MIT in 1987, 1990, and 1996 respectively. His earlier work at KiLides the
architecture, design, and implementation of the PaRC packet switched robifm@nd the design
and analysis of tightly coupled processor-network interface architecturesvad also the lead
programmer on theSocrates massively parallel chess system. Chris is currently ongbarch
staff at Digital's Cambridge Research Lab. His research intel@# in the areas of computer
architecture, parallel systems, multithreading, and interconnection rietwor

BRADLEY C. KuszMmAUL received two S.B. degrees in 1984, an S.M. degree in 1986, and
a Ph.D. degree in 1994, all from MIT. In 1987, midway through his Ph.D. program, he took a
year off from MIT to serve as one of the principal architects of the ConnectiomhiMacCM5 at
Thinking Machines Corporation. When he returned to MIT to finish graduate school, heexithor
the StarTech massively parallel chess program and then coautfdoechtes. In 1995, he joined
the Departments of Computer Science and Electrical Engineering at Yalersityy where he is
now Assistant Professor. Prof. Kuszmaul's work in solving systems problemgh-performance
computing spans a wide range of technology including VLSI chips, interconnection networks,
operating systems, compilers, interpreters, algorithms, and applications.

CHARLES E. LEISERSONIs Professor of Computer Science and Engineering in the MIT Lab-
oratory for Computer Science. He received the B.S. degree in computer sarhogathematics
from Yale University in 1975 and the Ph.D. degree in computer science from Carkkgion
University in 1981. Prof. Leiserson’s research contributions include systotigputing, VLSI
graph layout, the retiming method of digital circuit optimization, and the &#-interconnection
network. He was principal architect of the networks of Thinking Machines’ Connectachie

25

Model CM5 Supercomputer. He has designed and engineered many parallel algoinitiods
ing ones for matrix linear algebra, graph algorithms, optimization, and sortiegand his stu-
dents have won prizes in international competition for their parallel chessgonsgstarTech and
*Socrates. He is coauthor of the textbdakoduction to Algorithmswhich is published jointly
by The MIT Press and McGraw-Hill. Prof. Leiserson is a member of IE&EM, and SIAM, and
serves as General Chair for the ACM Symposium on Parallel Algorithms arfdt@ctures.

KEITH H. RANDALL received B.S. degrees in Mathematics and Computer Science from MIT
in 1993, and an M.S. degree in Computer Science from MIT in 1994. He expects tcerbceiv
Ph.D. from MIT in 1997. His research interests include routing, parallel algost and schedul-
ing.

YuLl ZHou received his B.S. in Electric Engineering from the University of Sciemoe
Technology of China in 1983, and M.S. and Ph.D. in Computer Science from the Graduate School
of Arts and Sciences, Harvard University in 1990. Since then he has workeelliT Laboratory
for Computer Science as a research associate on compilers for parall@mpnomgg languages in
the Computation Structures Group. He is currently a member of the technidahsiar&T
Bell Laboratories. His main research interests are programming langaadearallel/distributed
computing.

26

