
Databricks
Building and Operating a Big Data Service
Based on Apache Spark

Ali Ghodsi <ali@databricks.com>

Cloud Computing and Big Data

• Three major trends
– Computers not getting any faster
– More people connected to the Internet
– More devices collecting data

• Computation moving to the cloud

The Dawn of Big Data

• Most companies collect lots of data
– Cheap storage (hardware, software)

• Everyone is hoping to extract insights
– Great examples (Netflix, Uber, Ebay)

• Big Data is Hard!

Big Data is Hard

• Compute the average of 1,000 integers

• Compute the average of 10 terabyte of integers

Goal: Make Big Data Simple

The Challenges of Data Science

6

Building a
cluster

Build and
deploy data
applications

Production
Deployment

Data
Exploration

Dashboards
& Reports

Data
Warehousing

Advanced
Analytics

Import and explore data with different tools

ETL

Single tool for
Ingest, Exploration, Advanced Analytics, Production, Visualization

Databricks is an End-to-End Solution

7

Automatically
Managed
Clusters

Short time to value

Data
Warehousing

Dashboards
& Reports

Production
Deployment

Dashboards
3rd party apps

Real-time
query engine

Job scheduler

ETL

Diverse data
source connectors

Data
Exploration

Advanced
Analytics

Built-in librariesNotebooks &
visualization

Databricks in a nutshell

Talk outline

• Apache Spark
– ETL, interactive queries, streaming, machine learning

• Cluster and Cloud Management
– Operating thousands of machines in the cloud

• Interactive Workspace
– Notebook environment, Collaboration, Visualization, Versioning, ACLs

• Lessons
– Lessons in building a large scale distributed system in the cloud

PART I:
Apache Spark
What we added to to Spark

Apache Spark

• Resilient Distributed Datasets (RDDs) as core abstraction
– Collection of objects
– Like a LinkedList <MyObjects>

• Spark RDDs are distributed
– RDD collections are partitioned
– RDD partitions can be cached
– RDD partitions can be recomputed

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

RDDs continued

• RDDs can be composed
– All RDDs initially derived from data source
– RDDs can be created from other RDDs
– Two basic operations: map& reduce
– Many other operators: join,filter,union etc

1 2 3 4 5 6 7 8 9 10 11 12

2 4 6 8 10 12 14 16 18 20 22 24

val text = sc.textFile(”s3://my-bucket/wikipedia")
val words = text.flatMap(line => line.split(" "))
val pairs = words.map(word => (word, 1))
val result = pairs.reduceByKey((a, b) => a + b)

Spark Libraries on top of RDDs

• SQL (Spark SQL)
– Full Hive SQL support with UDF, UDAFs, etc
– how: Internally keep RDDs of row objects (or RDD of column segments)

• Machine Learning (MLlib)
– Library of machine learning algorithms
– how: Cache an RDD, repeatedly iterate it

• Streaming (Spark Streaming)
– Streaming of real-time data
– how: Series of RDDs, each containing seconds of real-time data

• Graph Processing (GraphX)
– Iterative computation on graphs (e.g. social network)
– how: RDD of Tuple<Vertex, Edge, Vertex> and perform self joins

Spark
Streaming

Spark Core

Spark SQL MLlib GraphX

Unifying Libraries

• Early user feedback
– Different use cases for R, Python, Scala, Java, SQL
– How to intermix and go across these?

• Explosion of R Data Frames and Python Pandas
– DataFrame is a table
– Many procedural operations
– Ideal for dealing with semi-structured data

• Problem
– Not declarative, hard to optimize
– Eagerly executes command by command
– Language specific (R dataframes, Pandas)

Unifying Libraries

• Early user feedback
– Different use cases for R, Python, Scala, Java, SQL
– How to intermix and go across these?

• Explosion of R Data Frames and Python Pandas
– DataFrame is a table
– Many procedural operations
– Ideal for dealing with semi-structured data

• Problem
– Not declarative, hard to optimize
– Eagerly executes command by command
– Language specific (R dataframes, Pandas)

Common performance problem in Spark

val pairs = words.map(word => (word, 1))
val grouped = pairs.groupByKey()
val counts = grouped.map((key, values) => (key, values.sum))

Spark Data Frames

• Procedural DataFrames vs declarative SQL
– Two different approaches

• Developed DataFrames for Spark
– DataFrames situated above the SQL optimizer
– DataFrame operations available in R, Python, Scala, Java
– SQL operations return DataFrames

users = context.sql(”select * from users”) # SQL
young = users.filter(users.age < 21) # Python
young.groupBy("gender").count()

tokenizer = Tokenizer(inputCol=”name", outputCol="words") # ML
hashingTF = HashingTF(inputCol="words", outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.01)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
model = pipeline.fit(young) # model

Proliferation of Data Solutions

• Customers already run a slew of data management systems
– MySQL category, Cassandra category, S3 category, HDFS category
– ETL all data over to Databricks?

• We added Spark Data Source API
– Open APIs for implementing your own data source
– Examples: CSV, JDBC, Parquet/Avro, ElasticSearch, RedShift, Cassandra

• Features
– Pushdown of predicates, aggregations, column pruning
– Locality information
– User Defined Types (UDTs), e.g. vectors

Proliferation of Data Solutions

• Customers already run a slew of data management systems
– MySQL category, Cassandra category, S3 category, HDFS category
– ETL all data over to Databricks?

• We added Spark Data Source API
– Open APIs for implementing your own data source
– Examples: CSV, JDBC, Parquet/Avro, ElasticSearch, RedShift, Cassandra

• Features
– Pushdown of predicates, aggregations, column pruning
– Locality information
– User Defined Types (UDTs), e.g. vectors

class PointUDT extends UserDefinedType[Point]
{

def dataType = StructType(Seq(
StructField ("x", DoubleType),
StructField ("y", DoubleType)))

def serialize(p: Point) = Row(p.x, p.y)

def deserialize(r: Row) =
Point(r. getDouble (0), r. getDouble (1))

}

Modern Spark Architecture

Spark Core

Spark
StreamingSpark SQL MLlib GraphX

Modern Spark Architecture

{JSON}

Data Sources

DataFrames

Spark Core

Spark
StreamingSpark SQL MLlib GraphX

Databricks as just-in-time Datawarehouse

• Traditional datawarehouse
– Every night ETL all relevant data to a warehouse
– Precompute cubes of fact tables
– Slow, costly, poor recency

• Spark JIT datawarehouse
– Switzerland of storage: NoSQL, SQL, cloud, …
– Storage remains at source of truth
– Spark used to directly read and cache date

Spark Core

Spark
StreamingSpark SQL MLlib GraphX

{JSON}

Data Sources

DataFrames

PART II:
Cluster Management

Spark as a Service in the Cloud

• Experience with Mesos, YARN, …
– Use off-the-shelf cluster manager?

• Problems
– Existing cluster managers were not cloud-aware

Cloud-Aware Cluster Management

• Instance manager
– Responsible for acquiring machines from cloud provider

• Resource manager
– Schedule and configure isolated containers on machine instances

• Spark cluster manager
– Monitor and setup Spark clusters

Resource
Manager

Databricks Cluster Manager

Instance
Manager

Spark Cluster
Manager

Databricks Instance Manager

Instance manager’s job is to manage machine instances

• Pluggable cloud providers
– General interface that can be plugged in with AWS, …
– Availability management (AZ, 1h), configuration management (VPCs)

• Fault-handling
– Terminated or slow instances, spot price hikes
– Seamlessly replace machines

• Payment management
– Bid for spot instances, monitor their price
– Recording cluster usage for payment system

Resource
Manager

Databricks Cluster Manager

Instance
Manager

Spark
Cluster

Manager

Databricks Resource Manager

Resource manager’s job is to multiplex tenants on instances

• Isolates tenants using container technology
– Manages multiple versions of Spark
– Configures firewall rules, filters traffic

• Provides fast SSD/in-memory caching across containers
– ramdisk for a fast in-memory cache, mmap to access from Spark JVM
– Bind-mount into containers for shared in-memory cache

Resource
Manager

Databricks Cluster Manager

Instance
Manager

Spark
Cluster

Manager

Databricks Spark Cluster Manager

Spark CM’s job is to setup Spark clusters and multiplex REPLs

• Setting up Spark clusters
– Currently using Standalone mode Spark
– Dynamic resizing of clusters based on load (wip)

• Multiplexing of multiple REPLs
– Many interactive REPLs/notebooks on the same Spark cluster
– ClassLoader isolation and library management

Resource
Manager

Databricks Cluster Manager

Instance
Manager

Spark
Cluster

Manager

PART III:
Interactive Workspace

Collaborative Workspace

• Problem
– Real time collaboration on notebooks
– Version control of notebooks
– Access control on notebooks

Pub/sub-based TreeStore

• Web application server
– Stores an in-memory representation of Databricks workspace

• TreeStore is a directory service + a pub-sub service
– In-memory tree structure representing:

directories, notebooks, commands, results
– Browsers subscribe to subtrees and get notifications on updates
– Special handler sends delta-updates over web sockets

• Usage
– Subscribe to a notebook, see live edits of notebook
– Used to create a collaborative environment

PART IV:
Lessons

Lessons
• Loose coupling necessary but hard

– Narrow well-defined APIs, backwards compatibility, upgrades

• State management very hard at scale
– Legacy state: databases, configurations, machines, data formats…

• Cloud software development is superior
– Two week sprints, two week releases, SCRUM …

• Testing is key for evolution and scale
– Step-wise refinement for extension, testing pyramid 70/20/10

• Combine bottom-up with top-down approach
– Top-down for quick results, bottom-up for modularity/reuse

Thank you & Questions

Databricks is hiring, taking interns, …

E-mail <ali@databricks.com>

