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Cloud Computing and Big Data

• Three major trends
– Computers not getting any faster
– More people connected to the Internet
– More devices collecting data

• Computation moving to the cloud



The Dawn of Big Data

• Most companies collect lots of data
– Cheap storage (hardware, software)

• Everyone is hoping to extract insights
– Great examples (Netflix, Uber, Ebay)

• Big Data is Hard!



Big Data is Hard

• Compute the average of 1,000 integers

• Compute the average of 10 terabyte of integers



Goal: Make Big Data Simple



The Challenges of Data Science
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Single tool for 
Ingest, Exploration, Advanced Analytics, Production, Visualization

Databricks is an End-to-End Solution 
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Databricks in a nutshell

Talk outline

• Apache Spark
– ETL, interactive queries, streaming, machine learning

• Cluster and Cloud Management
– Operating thousands of machines in the cloud

• Interactive Workspace
– Notebook environment, Collaboration, Visualization, Versioning, ACLs

• Lessons
– Lessons in building a large scale distributed system in the cloud



PART I:
Apache Spark
What we added to to Spark



Apache Spark

• Resilient Distributed Datasets (RDDs) as core abstraction
– Collection of objects
– Like a LinkedList <MyObjects>

• Spark RDDs are distributed
– RDD collections are partitioned
– RDD partitions can be cached
– RDD partitions can be recomputed
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RDDs continued

• RDDs can be composed
– All RDDs initially derived from data source
– RDDs can be created from other RDDs 
– Two basic operations: map& reduce
– Many other operators: join,filter,union etc
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val text = sc.textFile(”s3://my-bucket/wikipedia")
val words = text.flatMap(line => line.split(" "))
val pairs = words.map(word => (word, 1)) 
val result = pairs.reduceByKey((a, b) => a + b)



Spark Libraries on top of RDDs

• SQL (Spark SQL)
– Full Hive SQL support with UDF, UDAFs, etc
– how: Internally keep RDDs of row objects (or RDD of column segments)

• Machine Learning (MLlib)
– Library of machine learning algorithms
– how: Cache an RDD, repeatedly iterate it

• Streaming (Spark  Streaming)
– Streaming of real-time data
– how: Series of RDDs, each containing seconds of real-time data

• Graph Processing (GraphX)
– Iterative computation on graphs (e.g. social network)
– how: RDD of Tuple<Vertex, Edge, Vertex> and perform self joins

Spark
Streaming

Spark Core

Spark SQL MLlib GraphX



Unifying Libraries

• Early user feedback
– Different use cases for R, Python, Scala, Java, SQL
– How to intermix and go across these?

• Explosion of R Data Frames and Python Pandas
– DataFrame is a table
– Many procedural operations
– Ideal for dealing with semi-structured data

• Problem
– Not declarative, hard to optimize
– Eagerly executes command by command
– Language specific (R dataframes, Pandas)



Unifying Libraries

• Early user feedback
– Different use cases for R, Python, Scala, Java, SQL
– How to intermix and go across these?

• Explosion of R Data Frames and Python Pandas
– DataFrame is a table
– Many procedural operations
– Ideal for dealing with semi-structured data

• Problem
– Not declarative, hard to optimize
– Eagerly executes command by command
– Language specific (R dataframes, Pandas)

Common performance problem in Spark

val pairs = words.map(word => (word, 1))
val grouped = pairs.groupByKey()
val counts = grouped.map((key, values) => (key, values.sum))



Spark Data Frames

• Procedural DataFrames vs declarative SQL
– Two different approaches

• Developed DataFrames for Spark
– DataFrames situated above the SQL optimizer
– DataFrame operations available in R, Python, Scala, Java
– SQL operations return DataFrames

users = context.sql(”select * from users”) # SQL
young = users.filter(users.age < 21) # Python
young.groupBy("gender").count()

tokenizer = Tokenizer(inputCol=”name", outputCol="words") # ML
hashingTF = HashingTF(inputCol="words", outputCol="features") 
lr = LogisticRegression(maxIter=10, regParam=0.01) 
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
model = pipeline.fit(young) # model



Proliferation of Data Solutions

• Customers already run a slew of data management systems
– MySQL category, Cassandra category, S3 category, HDFS category
– ETL all data over to Databricks?

• We added Spark Data Source API
– Open APIs for implementing your own data source
– Examples: CSV, JDBC, Parquet/Avro, ElasticSearch, RedShift, Cassandra

• Features
– Pushdown of predicates, aggregations, column pruning
– Locality information
– User Defined Types (UDTs), e.g. vectors



Proliferation of Data Solutions

• Customers already run a slew of data management systems
– MySQL category, Cassandra category, S3 category, HDFS category
– ETL all data over to Databricks?

• We added Spark Data Source API
– Open APIs for implementing your own data source
– Examples: CSV, JDBC, Parquet/Avro, ElasticSearch, RedShift, Cassandra

• Features
– Pushdown of predicates, aggregations, column pruning
– Locality information
– User Defined Types (UDTs), e.g. vectors

class PointUDT extends UserDefinedType[Point] 
{ 

def dataType = StructType(Seq(
StructField ("x", DoubleType), 
StructField ("y", DoubleType) )) 

def serialize(p: Point) = Row(p.x, p.y)

def deserialize(r: Row) = 
Point(r. getDouble (0), r. getDouble (1)) 

}



Modern Spark Architecture
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Modern Spark Architecture
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Databricks as just-in-time Datawarehouse

• Traditional datawarehouse
– Every night ETL all relevant data to a warehouse
– Precompute cubes of fact tables
– Slow, costly, poor recency

• Spark JIT datawarehouse
– Switzerland of storage: NoSQL, SQL, cloud, …
– Storage remains at source of truth
– Spark used to directly read and cache date
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PART II:
Cluster Management



Spark as a Service in the Cloud

• Experience with Mesos, YARN, …
– Use off-the-shelf cluster manager?

• Problems
– Existing cluster managers were not cloud-aware



Cloud-Aware Cluster Management

• Instance manager
– Responsible for acquiring machines from cloud provider

• Resource manager
– Schedule and configure isolated containers on machine instances

• Spark cluster manager
– Monitor and setup Spark clusters
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Databricks Instance Manager

Instance manager’s job is to manage machine instances

• Pluggable cloud providers
– General interface that can be plugged in with AWS, …
– Availability management (AZ, 1h), configuration management (VPCs)

• Fault-handling
– Terminated or slow instances, spot price hikes
– Seamlessly replace machines

• Payment management
– Bid for spot instances, monitor their price
– Recording cluster usage for payment system
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Databricks Resource Manager

Resource manager’s job is to multiplex tenants on instances

• Isolates tenants using container technology
– Manages multiple versions of Spark
– Configures firewall rules, filters traffic

• Provides fast SSD/in-memory caching across containers
– ramdisk for a fast in-memory cache, mmap to access from Spark JVM 
– Bind-mount into containers for shared in-memory cache
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Databricks Spark Cluster Manager

Spark CM’s job is to setup Spark clusters and multiplex REPLs

• Setting up Spark clusters
– Currently using Standalone mode Spark
– Dynamic resizing of clusters based on load (wip)

• Multiplexing of multiple REPLs
– Many interactive REPLs/notebooks on the same Spark cluster
– ClassLoader isolation and library management
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PART III:
Interactive Workspace



Collaborative Workspace

• Problem
– Real time collaboration on notebooks
– Version control of notebooks
– Access control on notebooks



Pub/sub-based TreeStore

• Web application server
– Stores an in-memory representation of Databricks workspace

• TreeStore is a directory service + a pub-sub service
– In-memory tree structure representing:

directories, notebooks, commands, results
– Browsers subscribe to subtrees and get notifications on updates
– Special handler sends delta-updates over web sockets

• Usage
– Subscribe to a notebook, see live edits of notebook
– Used to create a collaborative environment



PART IV:
Lessons



Lessons
• Loose coupling necessary but hard

– Narrow well-defined APIs, backwards compatibility, upgrades

• State management very hard at scale
– Legacy state: databases, configurations, machines, data formats…

• Cloud software development is superior
– Two week sprints, two week releases, SCRUM …

• Testing is key for evolution and scale
– Step-wise refinement for extension, testing pyramid 70/20/10

• Combine bottom-up with top-down approach
– Top-down  for quick results, bottom-up for modularity/reuse



Thank you & Questions

Databricks is hiring,  taking interns, …

E-mail <ali@databricks.com>


