
Open source tools for large-scale neuroscience
Jeremy Freeman

Available online at www.sciencedirect.com

ScienceDirect
New technologies for monitoring and manipulating the nervous

system promise exciting biology but pose challenges for

analysis and computation. Solutions can be found in the form of

modern approaches to distributed computing, machine

learning, and interactive visualization. But embracing these

new technologies will require a cultural shift: away from

independent efforts and proprietary methods and toward an

open source and collaborative neuroscience.

Address
HHMI Janelia Research Center, 19700 Helix Drive, Ashburn, VA 20147,

United States

Corresponding author: Freeman, Jeremy (freemanj11@janelia.hhmi.org)

URL: http://www.jeremyfreeman.net/

Current Opinion in Neurobiology 2015, 32:156–163

This review comes from a themed issue on Large-Scale Recording

Technology

Edited by Francesco P Battaglia and Mark J Schnitzer

For a complete overview see the Issue and the Editorial

http://dx.doi.org/10.1016/j.conb.2015.04.002

0959-4388/# 2015 The Author. Published by Elsevier Ltd. This is an

open access article under the CC BY license (http://creativecom-

mons.org/licenses/by/4.0/).

‘‘I am absolutely convinced that in a few decades, histor-

ians of science will describe the period we are in right now

as one of deep and significant transformations to the very

structure of science. And in that process, the rise of free

openly available tools plays a central role.’’

—Fernando Perez, creator of iPython [1].

Understanding the brain has always been a shared en-

deavor. But thus far, most efforts have remained individ-

uated: labs pursuing independent research goals, slowly

disseminating information via journal publications, and

when analyzing their data, repeatedly reinventing the

wheel.

New experimental technologies are forcing a paradigm

shift. Data sets are getting both larger and more complex.

Many labs have more data than they have time to analyze,

even for basic processing, let alone rich data exploration.

The scale and complexity of the problems we want to

tackle demands shared solutions.
Current Opinion in Neurobiology 2015, 32:156–163
Large-scale, high-resolution optical recordings of neural

activity present a particularly exciting and challenging

case study, and will be the focus of this essay. As encap-

sulated in an earlier review, the ‘‘operational principles of

a neural circuit must be deduced through analysis of its

structure and function’’ [2]. Crucial to this effort is

monitoring neural activity: at single-neuron resolution,

in large populations, across multiple brain areas, or even

the entire brain, during behavior.

Imaging methods – including two-photon laser scanning

microscopy[3], light-sheet imaging [4,5], and light-field

imaging [6,7] – monitor neural activity via protein sensors

that convert changes in neural state, like changes in Ca2+

concentration, into changes in fluorescence (the case of

two-photon imaging in head-fixed behaving mice is de-

scribed in detail in another review in this same issue,

Peron et al.).

The raw recorded data are time-varying images. Current-

ly, a two-photon imaging experiment monitoring a region

of mouse visual cortex can yield 512 � 512 � 4 pixel at

8 Hz, resulting in �60 GB per hour, while a whole-brain

light-sheet imaging experiment in a larval zebrafish can

yield 1000 � 2000 � 40 pixel at 2 Hz, resulting in

�1.2 TBs per hour. These numbers describe one record-

ing session from one animal, whereas most experiments

involve many of each. Improvements in the spatial extent

and temporal resolution of these technologies [8,9] will

only make these data sizes larger.

To understand the analytical challenges posed by imag-

ing data, it is worth first understanding the typical data

analysis steps. In its abstract form, this sequence shares

much in common with data analytics in many industry

settings (Figure 1).

Images must first be preprocessed by registering across

time to compensate for motion, the form of which may

differ across experimental preparations and imaging mo-

dalities. Typically, this is followed by some kind of

extraction of identified neuronal signals; for example:

segmentation through morphological analysis of image

structure [10�,11], activity-based identification and

demixing of correlated fluorescence patterns [12�,13�],
or some combination of the two [14]. Which methods are

most appropriate will depend on the model system,

resolution and sampling in both space and time, the

indicator of neural activity, and the area imaged. For

large data sets covering diverse morphological structures,
www.sciencedirect.com

http://crossmark.crossref.org/dialog/?doi=10.1016/j.conb.2015.04.002&domain=pdf
mailto:freemanj11@janelia.hhmi.org
http://www.jeremyfreeman.net/
http://www.sciencedirect.com/science/journal/09594388/32
http://dx.doi.org/10.1016/j.conb.2015.03.002
http://dx.doi.org/10.1016/j.conb.2015.04.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/09594388

Open source brain mapping Freeman 157

Figure 1

Raw
data

Extracted
signals

A
na

ly
si

s

Exploration

Visualization

Sharing

 Interactive feedback

Current Opinion in Neurobiology

Most large-scale analytics, whether in industry or neuroscience,

involve common patterns. Raw data are massive in size. Often, they

are processed so as to extract signals of interest, which are then used

for statistical analysis, exploration, and visualization. But raw data can

be analyzed or visualized directly (top arrow). And the results of each

successive step informs how to perform the earlier ones (feedback

loops). Icons below highlight some of the technologies, discussed in

this essay, that are core to the modern large-scale analysis workflow.
voxel-wise analyses may provide a complementary alter-

native [4,15��]. In either case, temporal filtering is re-

quired to remove artifacts (e.g. trends), and

deconvolution can be used to try to identify spikes

[16]. Having identified neurons and their responses, we

want to understand them. This process is more explor-

atory, and can include relating neural responses to prop-

erties of the stimulus or behavior of an animal [17�],
identifying topological or low-dimensional structure in

the data [18], or inferring functional coupling [19].

The first challenge is that there is currently little agree-

ment as to how to solve these problems. Many existing

approaches are ad-hoc, especially for basic data proces-

sing. Analyses are often more focused on suiting the

needs of individual labs than the community, and algo-

rithmic sophistication is valued above ease of implemen-

tation—both unsurprising given the ordinary incentive

structures in academia. Little is available in the way of

vetting or benchmarking or standardization, partly due to

the lack of curated ‘‘ground-truth’’ data sets, in formats

that are easily accessible from modern, distributed com-

puting environments.

The second challenge is that all aspects of analysis must

scale to potentially massive data sets, but single worksta-

tion solutions designed for smaller datasets remain the

norm. To process raw data efficiently, we need to both

load the data and operate on it in parallel. Many opera-

tions are ‘‘embarrassingly parallel’’ – we apply the exact
www.sciencedirect.com
same function to different portions of the data – but

require different strategies for splitting up the data (‘‘par-

titioning’’) depending on whether operations act locally in

time, space, or both. Distributing a complete sequence of

steps from data to result can quickly become complex.

Some algorithms are also more scalable than others. For

example, parallelizing an image registration algorithm

that applies an operation to the image at each time point

might be trivial, but parallelizing an algorithm that exam-

ines pairs of time points, and updates parameters after

examining each pair, might be a significant challenge.

Even for algorithms that scale well, complete processing

pipelines usually require multiple passes over the same

data—e.g. image filtering, registration, temporal filtering,

factorization etc. Especially when data do not fit in the

memory of a single machine, it becomes essential to

minimize unnecessary reloading, and to efficiently com-

bine sequences of operations.

After reducing a data set to, say, the time series of

hundreds or many thousands of neurons, scalability

remains a challenge, but in a different form. The data

can be loaded into the memory of one machine, but fitting

a complex model to every neuron becomes frustratingly

slow, and fitting network models with coupling across

neurons becomes intractable because they can create – in

the process of analysis – objects that no longer fit in

memory.

In approaching these challenges, we must balance the

need for standardization and scalability with the impor-

tance of flexibility and interactivity. Different stages of

analysis inform one another, with the results of one step

suggesting a change to another (indicated by the feedback

loops in Figure 1). It may prove beneficial to focus less on

particular algorithms, and more on the access patterns and

forms of useful distribution common to all algorithms,

yielding modular frameworks into which new algorithms

can be incorporated and compared.

Solving these challenges will not only require new tools,

but also a new culture. Most labs develop custom analysis

strategies, using proprietary tools like Matlab that are

poorly suited to collaborative development, inventing

creative algorithms but only applying them to data from

the lab in which they were developed, because they are

hard to reproduce, require complex configuration, and

barely run on single workstations.

Imagine, instead: fast open-source libraries for common

analyses, available to anyone and developed by all, with

intuitive, modular code bases supporting customization,

comparison, and benchmarking of pipelines and param-

eters, implemented in distributed systems that can run

in cloud computing environments, with web-based

interfaces for interactively exploring data and visualiz-

ing results. An exciting new ecosystem of open-source
Current Opinion in Neurobiology 2015, 32:156–163

158 Large-Scale Recording Technology
computing technologies (Figure 1), described below,

will make this vision a reality.

Distributed computing and storage
The first challenge of any large data set is, simply, its sheer

size. Even if the goal is extracting a smaller representation,

we must load and process the raw data, sometimes all at

once. This is difficult when data do not fit in the memory of

a single machine, especially if we want to try analyses in an

exploratory fashion, and, as discussed above, work with

different distributed representations of the data.

There is a long history of solving such problems by

parallelizing both storage and computation across large

clusters of computers. Especially over the last decade, the

trend in such distributed systems has been toward ever

higher levels of abstraction that let a user specify com-

putations in terms of algorithms and queries while hiding

complexities like data distribution, load balancing, and

parallelization strategies.

Early efforts in high-performance computing, such as the

message passing interface (MPI), emphasized inter-pro-

cess communication and fast computation over the pro-

cessing of massive data volumes, and were fairly complex

to program. In the early 2000s, researchers at Google

developed a set of abstractions for distributed storage

and parallel processing of massive data sets on commodity

hardware: the Google File System and a programming

model called MapReduce [20��]. The central idea of

MapReduce is to divide a workflow into two steps: a

map step, which applies a function to partitions of the
Figure 2

Raw data Map Reduce

Result

dog
cat
rabbit
lizard
goat
goat
lizard
rabbit
cat
dog
cat
gog
lizard
goat

dog, 1
rabbit, 1
rabbit, 1
lizard, 1
goat, 1
lizard, 1
rabbit, 1
cat, 1
dog, 1
cat, 1
dog, 1
lizard, 1
goat, 1

dog, 1

dog, 3
cat, 2
lizard, 3
rabbit, 3
goat, 2

dog, 1
dog, 1

cat, 1
cat, 1

lizard, 1
lizard, 1
lizard, 1

rabbit, 1
rabbit, 1
rabbit, 1

goat, 1
goat, 1

(a)

Distributed computing approaches. (a) The MapReduce programming mode

words, are processed into key-value pair records of the form (word, 1) in pa

same key (the word) are combined and an associative operator, addition, c

sequences more complex operations (adapted from Ref. [23��]). Each large

gray bubbles represent partitions. RDDs are related to one another by trans

independently and in parallel; other transformations, like groupByKey, requi

represent data loaded directly from disk; gray bubbles are intermediate obje

output from the final RDD – the black bubble on the far right – the graph of

Current Opinion in Neurobiology 2015, 32:156–163
data in parallel, and a reduce step, which aggregates across

partitions using an associative operator. These abstrac-

tions were inspired by related concepts from functional

programming, where many of the ideas underlying paral-

lel computing first originated.

A now-classic example of MapReduce is counting words

in a potentially massive corpus of text (Figure 2a). Here,

as in most cases, the data are represented as ‘‘key-value’’

pairs (k, v), where the key (k) is an identifier and the value

(v) represents the data on which to operate. To solve the

word-count problem, in the map step, the ‘‘mappers’’

work in parallel to convert words from partitions of the

input data into (k, v) pairs, where the key is the word and

the value is 1. In the reduce step, the ‘‘reducers’’ aggre-

gate all the values labeled with each key using the

addition operator, resulting in a list of counts for each

word. This approach elegantly scales – with enough

computers or ‘‘nodes’’ – to massive data sets, and a

surprisingly wide variety of analyses and machine learn-

ing algorithms can be expressed using the MapReduce

abstraction [21�]. An open source version of MapReduce

developed at Yahoo! around 2006, called Hadoop [22],

made the programming model accessible to a broad

audience and was widely adopted in industry.

But the Hadoop MapReduce approach has limitations,

many of which are particularly relevant to neuroscience.

First, in typical Hadoop MapReduce workflows, data are

loaded from disk during each analysis, so it can be slow to

implement operations that require repeatedly querying

the data, including the iterative computations common in
Stage 1
groupByKey

map

union

reduce

join

Stage 2 Stage 3

(b)

Current Opinion in Neurobiology

l applied to counting words. Raw data, a potentially very large list of

rallel during the ‘‘Map’’ step. During the ‘‘Reduce’’, records with the

omputes a sum for each word. (b) Diagram showing how Spark

rounded rectangle is a resilient distributed dataset (RDD); colored or

formations. Simple ones, like map, apply an operation to each partition

re moving (or shuffling) data among partitions. Colored bubbles

cts, which can be cached into memory. When a user requests the

 operations is compiled into three stages.

www.sciencedirect.com

Open source brain mapping Freeman 159
machine learning algorithms and neural analyses (e.g. k-

means clustering, independent component analysis, etc.).

Second, it can be difficult to chain operations together in

the kinds of complex workflows mentioned above; for

example, registering images across time, computing a

summary statistic on each voxel’s time series, performing

an image-based morphometric analysis of neuronal shape,

and then extracting time series within sub-regions from

the original data. Such complex sequences can be both

hard for a user to express, and inefficient to implement.

A new platform, called Spark, developed by researchers at

Berkeley’s AmpLab around 2009 [23��], addresses many

of these limitations through a new abstraction, the resil-

ient distributed dataset (RDD), and an associated execu-

tion engine. An RDD is a distributed collection of records

– e.g. words, image patches, neuron traces – and can be

manipulated through a family of high-level operators that

process the data in parallel in a variety of ways. When

sequences of operations are chained together by a user,

the underlying implementation compiles the ‘‘graph’’ of

the desired operations into a small number of efficient

tasks (Figure 2b). From the perspective of a user, this

makes it easy to specify where you want to load data from,

and what you want to do with the data – as a sequence of

RDD operations – and Spark handles the complex task of

executing that entire sequence efficiently across a cluster.

Spark also allows data to be ‘‘cached’’ (stored for later use)

in the distributed RAM of a cluster, enabling faster

repeated queries. This is especially important because

data loading and reloading is often a key bottleneck in

complex pipelines. Raw imaging data, for example, can be

loaded and cached and then exposed to a complex se-

quence of operations, or repeated interactive analyses,

without ever reloading from disk. Finally, Spark’s APIs in

Java, Scala, and Python allow complex operations to be

expressed intuitively, with minimal amounts of code. The

Python API is particularly appealing for neuroscience for

reasons discussed below.

All these technologies must load raw data at some point and

different options are available for storing that data. Con-

ventionally, Hadoop MapReduce runs alongside the

Hadoop Distributed File System (HDFS), which stores

partitions of data on the hard drives of cluster nodes. When

running on Amazon’s EC2, Hadoop or Spark can also load

data from Amazon’s Simple Storage Service (S3), which is

an appealing choice for storing massive amounts of com-

pute-accessible and easily shareable data (for archival pur-

poses, data can be moved from S3 to a longer-term low-

accessibly storage layer called Glacier). Tools for working

with Spark on Google’s cloud computing environment,

Google Compute Engine, and the associated Google Cloud

Storage, are currently in development1. Spark can also

load data directly from shared network drives, such as a
1 https://github.com/broxtronix/spark_gce.

www.sciencedirect.com
Networked File System (NFS), making it appealing for

academic high-performance computing environments with

existing NFS (but not necessarily HDFS). The most

common input formats for these tools, such as text files

or Hadoop Sequence Files, are not well-suited to neural

data, usually for reasons of space efficiency or the need for

compatibility with existing pipelines. We and others have

been developing support for custom input formats, e.g.

images and binary array data; see, for example, these recent

additions to the Spark and Thunder projects2. New formats

designed for distributed frameworks, such as Apache Par-

quet (http://parquet.apache.org/documentation/latest/),

should also be explored.

Deploying these distributed systems in a cloud-based

environment – such as Amazon’s EC2 or Google’s Com-

pute Engine – provides significant computing power

without the requirement of an academic high-perfor-

mance cluster or an industrial data center. Cloud deploy-

ment also makes it easier to build tools that run identically

for all users, especially with virtual machine platforms

like Docker. However, cloud deployment for neurosci-

ence does require transferring data to cloud storage,

which may become a bottleneck. Deploying on academic

clusters requires at least some support from cluster

administrators but keeps the data closer to the computa-

tion.

Despite the diversity of deployment and storage options,

most of these tools are designed so that analyses and data

formats can be used identically in many environments,

facilitating standardization and sharing.

Languages for statistical computation
Once we can load and process data, we want to perform

statistical computations, including everything from basic

image or time series processing and signal extraction, to

fitting complex network models in large population

recordings.

Many open source tools exist for statistical computing,

and many are superior to their proprietary alternatives.

Python is an appealing choice. As a general purpose

language, Python can interface with many external lan-

guages and components (e.g. C/C++ code, web servers).

Python also has a rich ecosystem of libraries: NumPy (for

numerical computing), SciPy (for statistical computing),

scikit-learn (for machine learning), scikit-image (for im-

age processing), and Pandas (for data manipulation)

[24,25,26��,27,28]. And iPython provides a powerful, in-

teractive Python shell [29–31]. Existing libraries in Py-

thon for working with neural imaging data including

SIMA (motion registration and image segmentation for

fluorescence imaging) [32], nipy (analysis of fMRI data)
2 https://github.com/apache/spark/pull/1658 and https://github.com/

freeman-lab/thunder/releases/tag/v0.4.0.

Current Opinion in Neurobiology 2015, 32:156–163

http://parquet.apache.org/documentation/latest/
https://github.com/broxtronix/spark_gce
https://github.com/apache/spark/pull/1658
https://github.com/freeman-lab/thunder/releases/tag/v0.4.0
https://github.com/freeman-lab/thunder/releases/tag/v0.4.0

160 Large-Scale Recording Technology
[33], pycortex (surface rendering for fMRI data), and

Thunder (distributed analytics for images and time series

using Spark, see more below) [15��]. Especially among

statisticians, R is a popular alternative to Python, and

offers a suite of libraries for complex statistical modeling

but lacks some of Python’s generality and extensibility.

Julia is a particularly exciting new technical computing

language that outperforms R, Python, and Matlab for

many local computations [34]. It is early in development

and has yet to feature libraries for neural analysis, or even

basic statistical modeling, but has promise for this use

case.

These languages and libraries are still primarily used on

single machines, but there are several strategies for use at

scale. The Hadoop Streaming API supports writing

Hadoop MapReduce jobs in Python, and Spark supports

Python through its Python API (‘‘PySpark’’). Thunder,

for example, is built on top of PySpark and makes

extensive use of Python’s scientific computing libraries

[15��,35]. Thunder offers a variety of data manipulation

and analytic approaches directly relevant to spatial and

temporal neural data. Simple, embarrassingly parallel

operations can often be scaled up trivially, but more

complex analyses, especially those examining joint rela-

tionships across a data set, require new implementations.

A set of more general-purpose, highly-optimized machine

learning algorithms have been implemented directly in

Spark’s MLlib machine learning library, including k-

means clustering, collaborative filtering, and logistic re-

gression, though MLlib has yet to support the same

variety of operations available in, say, R or scikit-learn.

As alternatives iPython offers its own strategies for par-

allelization, including compatibility with MPI, and Julia

offers user-controllable forms of parallelization.

Why is Matlab not on this list? Although Matlab is likely

the most widely used platform among neuroscientists

today [36], it is hard to recommend as a primary analysis

tool in a future of open and collaborative science. User-

developed Matlab code can be shared, but Matlab itself

is closed-source and expensive. Although easy to use for

beginners, and perhaps useful for educational purposes,

Matlab has limited or clunky support for distributed

computing, or even more basic modern features like

functional and object-oriented programming and con-

tinuous automated testing. These crucial features make

software easier to maintain, test, collaborate on, share,

and integrate with other services, especially web-based

ones [37–39]. More fundamentally, as we look toward a

future where research and data are to be publicly shared,

it seems inappropriate to allow a single, for-profit entity

to effectively tax the reproducibility of results—much

in the same way for-profit journals tax the distribution

of knowledge. Finally, outside of niche applications,

Matlab is much less widely used in industry data sci-

ence; if we want to train students to succeed within and
Current Opinion in Neurobiology 2015, 32:156–163
outside academia, we should teach them more than just

Matlab.

Visualizing and interacting
For complex data sets, visualization is just as important as

analysis. Graphical representations inform both our un-

derstanding of data and our development of analyses; a

visualization can be the best guide for how an algorithm

works [40]. Given the rich variety of data in neuroscience

– images, time series, networks, behavior – there is a need

for both custom visualizations suited to these data types,

but also sufficient flexibility for exploration and interac-

tivity. For effective communication and reproducibility,

any scientific finding should be presented through visua-

lizations that anyone can generate from raw data.

Several open-source tools exist for visualizing analysis

results within the computing environments described

above, including matplotlib and seaborn for Python,

ggplot2 for R, and gadfly for Julia. Some of these libraries

are purely for visualization, whereas others integrate

visualization with statistical computations and data ma-

nipulation, in particular the ggplot2 library, which is

based on a set of abstractions for generating and manipu-

lating graphics from data known as ‘‘the grammar of

graphics’’ [41��,42]. Javascript-based platforms empha-

size web visualization and interactivity, including D3.js

(‘‘data-driven documents’’) and three.js or the X toolkit

(for 3D visualizations with WebGL). These libraries are

powerful, but it can be hard for new users to implement

custom visualizations from scratch. Particularly useful

would be ways to plot interactive visualizations from

within analysis environments; at least three open-source

projects in active development are filling this gap (mpld3,

Bokeh, and Lightning), and could be combined with web

app frameworks like Meteor.js to build powerful, inter-

active visualization environments.

Rethinking visualizations as interactive environments is

especially exciting because it frees us from the constraint

of communicating fixed and potentially biased represen-

tations of data. The typical neuroscience journal article

shows, in sequence, a single example in rich detail (e.g. a

single neuron or animal), a summary of a small population,

and then a summary across the dataset. Imagine instead

an interactive representation with all levels dynamically

accessible. Such visualizations will require flexibly ren-

dering large datasets and analyses at multiple scales,

which is an exciting active area of development and

may benefit from techniques used in astronomy and

geospatial analysis; spatial querying systems designed

for cosmology, for example, are being adapted to query

anatomical neural data [43].

There is also rapidly growing interest in the ‘‘data analysis

notebook’’. These notebooks – the iPython notebook

being a particularly popular example [29–31] – combine
www.sciencedirect.com

Open source brain mapping Freeman 161
executable code blocks, notes, and graphics in an inter-

active document that runs in a web browser, and provides

a seamless front-end to a computer, or a large cluster of

computers if running against a framework like Spark.

Notebooks are a particularly appealing way to dissemi-

nate information; a recent neuroimaging paper [44], for

example, provided all of its analyses in a version-con-

trolled repository hosted on GitHub with iPython note-

books that generate all the figures in the paper [45��]—a

clear model for the future of reproducible science.

Summary
Technological developments are rapidly pushing the

boundaries of what we can measure and manipulate in

the brains of awake behaving animals. Our understanding

of the brain will depend, ultimately, on our ability to

design the right experiments and ask the right questions.

But the ability to rapidly manipulate, analyze, and visu-

alize our data, in shared and collaborative environments,

with tools developed and vetted by and for the commu-

nity will prove crucial to that effort. The family of open-

source tools described above suggests an exciting future

for modern neuroscience.

This essay provided only a sketch; several challenges

remain to make it a reality, both technical and cultural:

Standardizing data formats
Collaborative development of analyses would benefit

greatly if data sets were routinely shared and vetted by

the community, and made available in standard formats.

A priori standardization, however, is difficult because

analyses and access patterns – which are constantly

evolving – affect the way data should be represented

and stored. Furthermore, formats useful for local storage

(e.g. HDF5) may not be readily compatible with distrib-

uted systems [46]. Perhaps instead we should design data

formats in lock step with the design of our analysis or

visualization tools; there is precedence for this in many

other communities (e.g. the ADAM project for distribut-

ed genomics https://github.com/bigdatagenomics/adam).

Vetting and benchmarking
Too many existing analysis approaches are ad-hoc, devel-

oped for a particular kind of data, and not sufficiently

generalizable or flexible. As we integrate more of our

analysis approaches into distributed systems and share

more of our data, we can use this opportunity to systemati-

cally benchmark and vet our approaches. For example, to

solve problems in imaging data analysis like source extrac-

tion/segmentation, and spike inference, we can hold data

analysis challenges or competitions on standardized data

sets with ground truth, and develop common frameworks

that integrate multiple algorithms (see also review in this
www.sciencedirect.com
issue by Peron et al., and the NeuroFinder source extrac-

tion challenge, http://codeneuro.org/neurofinder/).

Properly valuing contributions
To support the development of shared, open-source tools,

the standards by which academic science values work

must change. In particular, our community should con-

sider significant contributions to code repositories – as

documented and community-reviewed on GitHub – as on

par with published peer-reviewed journal articles.

Unifying local and distributed computing
In neuroscience applications, we often analyze data at

different scales; for example, testing an analysis exten-

sively on a subset of data and then scaling the same

analysis out to a massive data set. Due to overheads,

distributed solutions rarely outperform, and may under-

perform, local implementations for small data sets. We

need new abstractions that automatically perform com-

putations as efficiently as possible in either regime.

Incorporating GPUs
Most of the tools discussed above emphasize CPU-based

computation and parallelization. Computing with GPUs

(graphics processing unit) is a powerful alternative, espe-

cially for some image processing and linear algebra rou-

tines [7,10�], but may be less useful for loading and

processing massive volumes of data due to demands on

RAM and IO. Designing ways to fully combine the

advantages of CPUs and GPUs in parallel computing is

an exciting area for future work.

Moving toward streaming analytics
As spatial scales and temporal resolutions increase, even

with massive industry-scale storage, data may become too

large to store permanently in any form. Especially with

new technologies for manipulating neural activity, we will

want analyses performed online, for guiding targeted,

closed-loop manipulations of both neural activity and

experimental paradigms. To perform analyses online,

we will need scalable streaming computing architectures,

new programming models and algorithms suitable for data

streams, and new strategies for interactive streaming

visualization. We are actively exploring these problems

using the distributed streaming platform Spark Streaming

[47,48] and the visualization project Lightning (http://

lightning-viz.org/). Working with streaming data will ul-

timately require not only new tools and algorithms, but

entirely new ways of thinking about our experiments.

Conflict of interest statement
Nothing declared.

Acknowledgments
Thanks to Jascha Swisher, Jason Wittenbach, Andrew Osheroff, Nicholas
Sofroniew, and Karel Svoboda for helpful comments on earlier versions of
this essay. Thanks also to Michael Broxton, Michael Waskom, Matthew
Conlen, Patrick Kaifosh, Matei Zaharia, Tathagata Das, Xiangrui Meng, and
Current Opinion in Neurobiology 2015, 32:156–163

https://github.com/bigdatagenomics/adam
http://codeneuro.org/neurofinder/
http://lightning-viz.org/
http://lightning-viz.org/

162 Large-Scale Recording Technology
Deep Ganguli, all advocates of both neuroscience and open source who
have inspired my thinking on these subjects.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
� of special interest

1. Perez, F. In Memoriam, John D. Hunter III: 1968-2012.
hblog.fperez.orgi at hhttp://blog.fperez.org/2013/07/in-
memoriam-john-d-hunter-iii-1968-2012.htmli.

2. O’Connor DH, Huber D, Svoboda K: Reverse engineering the
mouse brain. Nature 2009, 461:923-929.

3. Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F: High-
speed in vivo calcium imaging reveals neuronal network
activity with near-millisecond precision. Nat Methods 2010,
7:399-405.

4. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ: Whole-brain
functional imaging at cellular resolution using light-sheet
microscopy. Nat Methods 2013, 10:413-420.

5. Vladimirov N et al.: Light-sheet functional imaging in fictively
behaving zebrafish. Nat Methods 2014, 11:883-884.

6. Prevedel R et al.: Simultaneous whole-animal 3D imaging of
neuronal activity using light-field microscopy. Nat Methods
2014, 11:727-730.

7. Broxton M et al.: Wave optics theory and 3-D deconvolution
for the light field microscope. Opt Express 2013,
21:25418-25439.

8. Lecoq J et al.: Visualizing mammalian brain area interactions
by dual-axis two-photon calcium imaging. Nat Neurosci 2014,
17:1825-1829.

9. Stirman JN, Smith IT, Kudenov MW, Smith SL: Wide field-of-view,
twin-region two-photon imaging across extended cortical
networks. bioRxiv 2014 http://dx.doi.org/10.1101/011320.

10.
�

Amat F et al.: Fast, accurate reconstruction of cell lineages
from large-scale fluorescence microscopy data. Nat Methods
2014, 11:951-958.

Describes a hybrid CPU and GPU-based algorithm for segmenting and
tracking cell locations and lineages, derived from terabyte-scale high-
resolution anatomical imaging data. Demonstrates the benefits of incor-
porating GPUs in image processing routines

11. Pachitariu M, Packer AM, Pettit N: Extracting regions of interest
from biological images with convolutional sparse block
coding. Adv Neural Inf Proc Syst 2013, 26.

12.
�

Mukamel EA, Nimmerjahn A, Schnitzer MJ: Automated analysis
of cellular signals from large-scale calcium imaging data.
Neuron 2009, 63:747-760.

An approach for automatically segmenting and demixing neural signals
from imaging data using spatio-temporal independent component ana-
lysis. Provides a thorough account of not only the core computations
involved (PCA and ICA) but the necessary preprocessing and post-
processing steps

13.
�

Pnevmatikakis EA et al.: A structured matrix factorization
framework for large scale calcium imaging data analysis. q-
bio.NC 2014. arXiv.

A broad review and implementation of matrix-factorization based
approaches to extracting regions of interest from imaging data. Con-
siders both spatial demixing and temporal deconvolution, and provides
efficient, parallelizable algorithms

14. Podgorski K, Dunfield D, Haas K: Functional clustering drives
encoding improvement in a developing brain network during
awake visual learning. PLoS Biol 2012, 10:e1001236.

15.
��

Freeman J et al.: Mapping brain activity at scale with cluster
computing. Nat Methods 2014, 11:941-950.

Presents an open-source library for analyzing massive neural data sets
using the Spark distributed computing platform. Along with describing the
library itself – Thunder – this paper provides a useful overview of the
challenges and considerations that arise when using a distributed com-
puting engine to analyze scientific data
Current Opinion in Neurobiology 2015, 32:156–163
16. Vogelstein JT et al.: Fast nonnegative deconvolution for spike
train inference from population calcium imaging.
J Neurophysiol 2010, 104:3691-3704.

17.
�

Miri A, Daie K, Burdine RD, Aksay E, Tank DW: Regression-based
identification of behavior-encoding neurons during large-
scale optical imaging of neural activity at cellular resolution.
J Neurophysiol 2011, 105:964-980.

Comprehensive and detailed overview of how to use regression analyses
to relate calcium imaging signals to behavioral events. Emphasizes a
variety of practical statistical and signal processing issues, and considers
both pixel-wise and ROI analyses

18. Cunningham JP, Yu BM: Dimensionality reduction for large-
scale neural recordings. Nat Neurosci 2014, 17:1500-1509.

19. Pillow JWet al.: Spatio-temporal correlations and visualsignalling
in a complete neuronal population. Nature 2008, 454:995-999.

20.
��

Dean J, Ghemawat S: MapReduce: simplified data processing
on large clusters. Commun ACM 2004.

Foundational paper describing the MapReduce programming abstraction
and its implementation at Google. Technical, but incredibly readable, this
is an important paper for anyone beginning to work with or think about
massively parallel analytics, even if not directly using the MapReduce
engine model

21.
�

Chu C-T et al.: Map-reduce for machine learning on multicore.
Adv Neural Inf Proc Syst 2007, 19.

Shows how a variety of analyses and machine learning algorithms can all
be expressed using the MapReduce programming model. Implementa-
tion details may not be relevant to more modern versions, but concep-
tually useful in understanding the basics of the approach

22. Shvachko K, Kuang H, Radia S, Chansler R: The Hadoop
distributed file system. IEEE 26th Symposium on Mass Storage
Systems and Technologies; IEEE: 2010:1-10.

23.
��

Zaharia M, Chowdhury M, Das T, Dave A, Ma J: Resilient
distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. NSDI. 2012.

Presents the architectural and design principles behind the Spark dis-
tributed computing platform, its Resilient Distributed Dataset abstraction,
and its execution engine, and is full of intuitive examples and diagrams.
Given Spark’s rapidly growing adoption in both industry and science, this
will surely come to be considered a foundational paper

24. van der Walt S, Colbert SC, Varoquaux G: The NumPy array: a
structure for efficient numerical computation. cs.MS 2011.
arXiv, article number: 1102.1523.

25. Pedregosa F et al.: Scikit-learn: machine learning in Python.
cs.LG 2012. arXiv, article number: 1201.0490.

26.
��

Buitinck L et al.: API design for machine learning software:
experiences from the scikit-learn project. cs.LG 2013. arXiv,
article number: 1309.0238.

Explains the thinking behind the API of scikit-learn, a popular, usable, and
extendable machine learning library for Python. Provides an inside look
into the design decisions underlying the library’s development, and its
elegant API, which emphasizes a set of key operations – fitting, estimat-
ing, and transforming – that have proven influential and have been
adopted by other libraries

27. Abraham A et al.: Machine learning for neuroimaging with
scikit-learn. Front Neuroinf 2014, 8:14.

28. van der Walt S et al.: Scikit-image: image processing in Python.
cs.MS 2014:e453. arXiv, article number: 1407.6245.

29. Perez F, Granger BE: IPython: a system for interactive scientific
computing. Comput Sci Eng 2007, 9:21-29.

30. Rossant C: Learning IPython for interactive computing and data
visualization. Birmingham, UK: Packt Publishing Ltd; 2013.

31. Rossant C: IPython interactive computing and visualization
cookbook. Birmingham, UK: Packt Publishing Ltd; 2014.

32. Kaifosh P, Zaremba JD, Danielson NB, Losonczy A: SIMA: Python
software for analysis of dynamic fluorescence imaging data.
Front Neuroinf 2014, 8:80.

33. Gorgolewski K et al.: Nipype: a flexible, lightweight and
extensible neuroimaging data processing framework in
python. Front Neuroinf 2011, 5:13.
www.sciencedirect.com

http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0245
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0245
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0250
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0250
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0250
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0250
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0255
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0255
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0255
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0260
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0260
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0265
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0265
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0265
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0270
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0270
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0270
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0275
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0275
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0275
http://dx.doi.org/10.1101/011320
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0285
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0285
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0285
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0290
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0290
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0290
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0295
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0295
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0295
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0300
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0300
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0300
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0305
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0305
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0305
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0310
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0310
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0315
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0315
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0315
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0320
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0320
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0320
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0320
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0325
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0325
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0330
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0330
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0335
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0335
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0340
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0340
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0345
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0345
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0345
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0350
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0350
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0350
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0355
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0355
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0355
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0360
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0360
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0365
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0365
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0365
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0370
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0370
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0375
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0375
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0380
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0380
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0385
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0385
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0390
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0390
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0395
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0395
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0395
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0400
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0400
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0400

Open source brain mapping Freeman 163
34. Bezanson J, Karpinski S, Shah VB, Edelman A: Julia: a fast
dynamic language for technical computing. cs.PL 2012. arXiv,
article number: 1209.5145.

35. Freeman, J. Spark as a platform for large-scale neuroscience.
hdatabricks.comi at hhttps://databricks.com/blog/2014/10/01/
spark-as-a-platform-for-large-scale-neuroscience.htmli.

36. Wallisch P et al.: MATLAB for neuroscientists. Burlington, MA:
Academic Press; 2010.

37. Tjoa, S. I used Matlab. Now I use Python. hstevetjoa.comi at
hhttps://stevetjoa.com/305/i.

38. Rossant C. Why use Python for scientific computing?
hcyrille.rossant.neti at hhttp://cyrille.rossant.net/why-using-
python-for-scientific-computing/i.

39. Feldman P. Eight advantages of Python over Matlab.
hphillipmfeldman.orgi at hhttp://phillipmfeldman.org/Python/
Advantages_of_Python_Over_Matlab.htmli.

40. Bostock M. Visualizing algorithms. hbost.ocks.orgi at hhttp://
bost.ocks.org/mike/algorithms/i.

41.
��

Wickham H: A layered grammar of graphics. J Comput Graph
Stat 2010, 19:3-28.

Presents the concept behind a ‘‘grammar of graphics’’ and its application
in a graphics library called ggplot2 for the R statistical computing
language. A powerful and inspiring set of concepts about statistical
graphics, elegantly explained by a modern pioneer of the field
www.sciencedirect.com
42. Wilkinson L, Wills D, Rope D, Norton A, Dubbs R: The grammar of
graphics. New York, NY: Springer Science & Business Media; 2006.

43. Burns R, Vogelstein JT, Szalay AS: From cosmos to
connectomes: the evolution of data-intensive science. Neuron
2014, 83:1249-1252.

44. Waskom ML, Kumaran D, Gordon AM, Rissman J, Wagner AD:
Frontoparietal representations of task context support the
flexible control of goal-directed cognition. J Neurosci 2014,
34:10743-10755.

45.
��

Waskom ML. hhttps://github.com/WagnerLabPapers/
Waskom_JNeurosci_2014i. An impressive example of how to
make science reproducible. This github repository contains all the
code required to reproduce the results in the companion paper, as
well as interactive iPython notebooks that make it easy for readers
to generate the figures.

46. Heber G, Folk M, Koziol QA: Big HDF FAQs. 2014:. hwww.
hdfgroup.orgi at hhttp://www.hdfgroup.org/pubs/papers/
Big_HDF_FAQs.pdfi.

47. Zaharia M, Das T, Li H, Shenker S, Stoica I: Discretized streams:
an efficient and fault-tolerant model for stream processing on
large clusters. In Proceedings of the 4th USENIX conference on
Hot Topics in Cloud Computing. 2012.

48. Freeman, J. Introducing streaming k-means in Spark
1.2. hdatabricks.comi at hhttps://databricks.com/blog/2015/01/
28/introducing-streaming-k-means-in-spark-1-2.htmli.
Current Opinion in Neurobiology 2015, 32:156–163

http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0405
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0405
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0405
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0415
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0415
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0440
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0440
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0445
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0445
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0450
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0450
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0450
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0455
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0455
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0455
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0455
http://www.hdfgroup.org/
http://www.hdfgroup.org/
http://www.hdfgroup.org/pubs/papers/Big_HDF_FAQs.pdf
http://www.hdfgroup.org/pubs/papers/Big_HDF_FAQs.pdf
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0470
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0470
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0470
http://refhub.elsevier.com/S0959-4388(15)00075-6/sbref0470

	Open source tools for large-scale neuroscience
	Distributed computing and storage
	Languages for statistical computation
	Visualizing and interacting
	Summary
	Standardizing data formats
	Vetting and benchmarking
	Properly valuing contributions
	Unifying local and distributed computing
	Incorporating GPUs
	Moving toward streaming analytics
	Conflict of interest statement
	References and recommended reading
	Acknowledgments

