
Ligra: A Lightweight Graph Processing
Framework for Shared Memory

Julian Shun
Carnegie Mellon University

jshun@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Abstract
There has been significant recent interest in parallel frameworks
for processing graphs due to their applicability in studying so-
cial networks, the Web graph, networks in biology, and unstruc-
tured meshes in scientific simulation. Due to the desire to process
large graphs, these systems have emphasized the ability to run on
distributed memory machines. Today, however, a single multicore
server can support more than a terabyte of memory, which can fit
graphs with tens or even hundreds of billions of edges. Further-
more, for graph algorithms, shared-memory multicores are gener-
ally significantly more efficient on a per core, per dollar, and per
joule basis than distributed memory systems, and shared-memory
algorithms tend to be simpler than their distributed counterparts.

In this paper, we present a lightweight graph processing frame-
work that is specific for shared-memory parallel/multicore ma-
chines, which makes graph traversal algorithms easy to write. The
framework has two very simple routines, one for mapping over
edges and one for mapping over vertices. Our routines can be ap-
plied to any subset of the vertices, which makes the framework
useful for many graph traversal algorithms that operate on subsets
of the vertices. Based on recent ideas used in a very fast algorithm
for breadth-first search (BFS), our routines automatically adapt to
the density of vertex sets. We implement several algorithms in this
framework, including BFS, graph radii estimation, graph connec-
tivity, betweenness centrality, PageRank and single-source shortest
paths. Our algorithms expressed using this framework are very sim-
ple and concise, and perform almost as well as highly optimized
code. Furthermore, they get good speedups on a 40-core machine
and are significantly more efficient than previously reported results
using graph frameworks on machines with many more cores.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Algorithms, Performance

Keywords Shared Memory, Graph Algorithms, Parallel Program-
ming

1. Introduction
There has been significant recent interest in processing large
graphs, and recently several packages have been developed for pro-
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cessing such large graphs on parallel machines including the par-
allel Boost graph library (PBGL) [19], Pregel [34], Pegasus [24],
GraphLab [29, 30], PowerGraph [17], the Knowledge Discovery
Toolkit [8, 31], GPS [40], Giraph [16], and Grace [39]. Motivated
by the need to process very large graphs, most of these systems
(with the exception of the original GraphLab [29] and Grace) have
been designed to work on distributed memory parallel machines.

In this paper, we study Ligra, a lightweight interface for graph
algorithms that is particularly well suited for graph traversal prob-
lems. Such problems visit possibly small subsets of the vertices on
each step. The interface is lightweight in that it supplies only a few
functions, the implementation is simple, and it is fast.

Our work is motivated in part by Beamer et. al.’s recent work
on a very fast BFS for shared memory machines [3, 4]. They use a
hybrid BFS which uses a sparse representation of the vertices when
the frontier is small and a dense representation when it is large. Our
interface supports hybrid graph traversal algorithms and for BFS,
we achieve close to the same efficiency (time and space) as the
optimized BFS of Beamer et. al., and our code is much simpler than
theirs. In addition, we apply it to many other applications including
betweenness centrality, graph radii estimation, graph connectivity,
PageRank and single-source shortest paths.

Ligra is designed for shared memory machines. Compared
to distributed memory systems, communication costs are much
cheaper in shared memory systems, leading to performance bene-
fits. Although shared memory machines cannot scale to the same
size as distributed memory clusters, current commodity single unit
servers can easily fit graphs with well over a hundred billion edges
in memory1, large enough for any of the graphs reported in the
papers mentioned above.2 Shared memory along with the exist-
ing support for parallel code (CilkPlus [27] in our case) on mul-
ticores allows for our lightweight implementation. Furthermore,
these multicore servers have sufficient memory bandwidth to get
quite good speedups over sequential codes (up to 39 fold on 40
cores in our experiments). Shared memory algorithms tend to be
simpler than their distributed counterparts. Unlike in distributed
memory, race conditions can occur in shared memory, but as we
later show, this can be dealt with in our system with appropriate
uses of the atomic compare-and-swap instruction. Compared to the
distributed memory systems mentioned above, our system is over
an order of magnitude faster on a per-core basis for the benchmarks

1 For example, the Intel Sandy Bridge based Dell R910 has 32 cores (64
hyperthreads) and can be configured with up to 2 Terabytes of memory, and
the AMD Opteron based Dell R815 has 64 cores and can be configured with
up to 1 Terabyte of memory.
2 The largest graph in the papers cited is a synthetic 127 billion edges in the
Pregel paper [34]. The rest of the papers do not use any graphs larger than
20 billion edges. The largest non-synthetic graph described is the Yahoo
graph with 6.6 billion directed edges [42].



1: Parents = {−1, . . . ,−1} . initialized to all -1’s
2:
3: procedure UPDATE(s, d)
4: return (CAS(&Parents[d], −1 , s ))
5:
6: procedure COND(i)
7: return (Parents[i] == −1)
8:
9: procedure BFS(G, r) . r is the root

10: Parents[r] = r
11: Frontier = {r} . vertexSubset initialized to contain only r
12: while (SIZE(Frontier) 6= 0) do
13: Frontier = EDGEMAP(G, Frontier,UPDATE, COND)

Figure 1. Pseudocode for Breadth-First Search in our framework.
The compare-and-swap function CAS(loc,oldV,newV) atomically
checks if the value at location loc is equal to oldV and if so it
updates loc with newV and returns true. Otherwise it leaves loc
unmodified and returns false.

we could compare with, and typically faster even on absolute terms
to the largest systems run, which sometimes have two orders of
magnitude more cores. Finally, commodity shared memory servers
are quite reliable, often running for up to months or possibly years
without a failure.

Ligra supports two data types, one representing a graph G =
(V,E) with vertices V and edges E, and another for represent-
ing subsets of the vertices V , which we refer to as vertexSub-
sets. Other than constructors and size queries, the interface supplies
only two functions, one for mapping over vertices (VERTEXMAP)
and the other for mapping over edges (EDGEMAP). Since a ver-
texSubset is a subset of V , the VERTEXMAP can be used to map
over any subset of the original vertices, and hence its utility in
traversal algorithms—or more generally in any algorithm in which
only (possibly small) subsets of the graph are processed on each
round. The EDGEMAP also processes a subset of the edges, which
is specified using a vertexSubset to indicate the valid sources, and
a Boolean function to indicate the valid targets of each edge. Ab-
stractly, a vertexSubset is simply a set of integer labels for the in-
cluded vertices and the VERTEXMAP simply applies the user sup-
plied function to each integer. It is up to the user to maintain any
vertex based data. The implementation switches between a sparse
and dense representation of the integers depending on the size of
the vertexSubset. In our interface, multiple vertexSubsets can be
maintained and furthermore, a vertexSubset can be used for multi-
ple graphs with different edge sets, as long as the number of vertices
in the graphs are the same.

With this interface a breadth-first search (BFS), for example,
can be implemented as shown in Figure 1. This version of BFS
uses a Parents array (initialized all to −1, except for the root r
where Parents[r] = r) in which each vertex will point to its parent
in a BFS tree. As with standard parallel versions of BFS [28, 41],
on each step i (starting at 0) the algorithm maintains a frontier of all
vertices reachable from the root r in i steps. Initially a vertexSubset
containing just the root vertex is created to represent the frontier
(line 11). Using EDGEMAP, each step checks the neighbors of the
frontier to see which have not been visited, updates those to point to
their parent in the frontier, and adds them to the next frontier (line
13). The user supplied function UPDATE (lines 3–4) atomically
checks to see if a vertex has been visited using a compare and swap
(CAS) and returns true if not previously visited (Parents[i] ==
−1). The COND function (lines 6–7) tells EDGEMAP to consider
only target vertices which have not been visited (here, this is not
needed for correctness, but is used for efficiency). The EDGEMAP
function returns a new vertex set containing the target vertices for
which UPDATE returns true, i.e., all the vertices in the next frontier

(line 13). The BFS completes when the frontier is empty and hence
no more vertices are reachable.

The interface is designed to allow the edges to be processed in
different orders depending on the particular situation. This is dif-
ferent from many of the interfaces mentioned in the first paragraph
(e.g. Pregel, GraphLab, GPS and Giraph) which are vertex based
and have the user hardcode how to loop over the out-edges or in-
edges. Our implementation supports a few different ways to tra-
verse the edges. One way is to loop over each vertex in a sparse
representation of the active source vertices applying the function
to each out-edge (this is basically the order Pregel, GPS and Gi-
raph supports). This loop over the out-edges can either be parallel
or sequential depending on the degree of the vertex (Pregel and the
others do not support parallel looping over out-edges, although the
most recent version of GraphLab does [17]). A dense representa-
tion of the set of source vertices could also be used. Another way
to map over the edges is to loop over all destination vertices se-
quentially or in parallel, and for each in-edge check if the source is
in the source vertex set and apply the edge function if so. Finally,
we can simply apply a flat map over all edges checking which need
to be applied.

In this paper, we apply the Ligra framework to a collection
of problems: breadth-first search, betweenness centrality, graph
radii estimation, graph-connectivity, PageRank, and Bellman-Ford
single-source shortest paths. All of these applications have the
property that they work in rounds and each round potentially pro-
cesses only a subset of the vertices. In the case of BFS, each vertex
is only processed once but in the others they can be processed mul-
tiple times. For example, in the shortest paths algorithm a vertex
only needs to be added to the active vertex set if its distance has
changed. Similarly in a variant of PageRank, a vertex needs to be
processed only if its PageRank value has changed by more than
some delta since it was last processed.

Betweenness centrality, a technique for measuring the “impor-
tance” of vertices in a graph, is basically a version of BFS that
accumulates statistics along the way and propagates first in the for-
ward direction and then backward direction. In betweenness cen-
trality, one needs to keep around the frontiers during the forward
traversal to facilitate the backward traversal. In Ligra, this is easily
done by storing the vertexSubsets in each iteration during the for-
ward traversal. In contrast, this cannot be easily expressed in Pregel
and GraphLab, because although vertices can be made inactive in
Pregel and GraphLab, the state is associated with the vertices as
opposed to being separate.

Our contributions are threefold:

1. We provide an abstraction based on edgeMaps, vertexMaps
and vertexSubsets for programming a class of parallel graph
algorithms.

2. We provide an efficient and lightweight implementation of our
framework, and applications using the framework.

3. We provide experimental evaluation of using the framework and
timing results of our applications on various input graphs.

The Ligra code and applications can be found at www.cs.
cmu.edu/˜jshun/ligra/.

2. Related Work
Beamer et. al [3, 4] recently developed a very fast BFS for shared-
memory machines.They use a hybrid BFS consisting of the conven-
tional top-down approach, where each vertex on the current fron-
tier explores all of its neighbors and adds unvisited neighbors to
the next frontier (write-based), and a bottom-up approach, where
each unvisited vertex in the graph tries to find any parent (visited
vertex) among its neighbors (read-based). While the neighbor vis-



its in the top-down approach will mostly be to unvisited vertices
when the frontier is small, for large frontiers many of the edges
will be to neighbors already visited. The edges to visited neigh-
bors can be avoided in the bottom-up approach because an unvis-
ited vertex can stop checking once it has found a parent; this makes
it more efficient than the top-down approach for large frontiers. The
disadvantage of the bottom-up approach is that it processes all of
the vertices, so is more expensive than the top-down approach for
small frontiers. Beamer et. al.’s hybrid BFS switches between the
two approaches based on the size of the frontier, and the represen-
tation of the active set of vertices also switches between sparse and
dense accordingly. They show that for small-world and scale-free
graphs, the hybrid BFS achieves a significant speedup over previ-
ous BFS implementations based on the top-down approach. We use
this same idea in a more general setting.

Pegasus [24] and the Knowledge Discovery Toolbox (KDT)
[15, 31] process graphs by using sparse matrix operations with
generalized matrix operations. Each row/column corresponds to a
vertex and each non-zero in the matrix represents an edge. Pegasus
uses the Hadoop implementation of MapReduce in the distributed-
computing setting, and includes implementations for PageRank,
random walk with restart, graph diameter/radii, and connected
components. It does not allow a sparse representation of the ver-
tices and therefore is inefficient when only a small subset of ver-
tices are active. Also, because it is built on top of MapReduce, it
is hard to make it perform well. KDT provides a set of generalized
matrix-vector building blocks for graph computations. It is built on
top of the the Combinatorial BLAS [8], a lower-level generalized
sparse matrix library for the distributed setting. Using the building
blocks, the KDT developers implement algorithms for breadth-first
search, betweenness centrality, PageRank, belief propagation and
Markov Clustering. Since the abstraction allows for sparse vectors
as well as sparse matrices, it is suited for the case when only a small
number of vertices are active. However, it does not switch repre-
sentations of the vertex sets based on its density. We give some
performance comparisons with both systems in Section 6.

Pregel is an API for processing large graphs in the distributed
setting [34]. It is a vertex-centric framework, where vertices can
loop over their edges and send messages to all their out-neighbors.
These messages are then collected at the target vertex, possibly us-
ing associative combining. The system is bulk-synchronous so the
received value is not seen until the next round. The reported per-
formance of Pregel is relatively slow, likely due to the overhead of
the framework and the use of a distributed memory machine. The
GPS [40] and Giraph [16] systems are public source implemen-
tations of the Pregel interface with some additional features. The
GPS system allows for graph partitioning and reallocation during
the computation. This improves performance over Pregel, but only
marginally.

GraphLab is a framework for asynchronous parallel graph com-
putations in machine learning. It works in both shared-memory and
distributed-memory architectures [29, 30]. It differs from Pregel in
that it does not work in bulk-synchronous steps, but rather allows
the vertices to be processed asynchronously based on a sched-
uler. The vertex functions can run at any time as long as specified
consistency rules are obeyed. It is therefore well-suited for the
machine learning types of applications for which it is defined,
where each vertex accumulates information from its neighbors
states and updates its state, possibly asynchronously. The recent
PowerGraph framework combines the shared-memory and asyn-
chronous properties of GraphLab with the associative combining
concept of Pregel [17]. In contrast to our vertexSubset data type,
both Pregel and GraphLab assume a single graph, and do not allow
for multiple vertex sets, since state is associated with the vertices.

Grace is a graph management system for shared-memory [39].
It uses graph partitioning techniques and batched updates to ex-
ploit locality. Updates to the graph are done transactionally. Their
reported times are slower than that of our system for applications
like BFS and PageRank, after accounting for differences in input
size and machine specifications.

GraphChi is a system for handling graph computations using
just a PC [26]. It uses a novel parallel sliding windows method
for processing graphs from disk. Although their running times are
slower than ours, their system is designed for processing graphs out
of memory, whereas we assume the graphs fit in memory.

Galois is a graph system for shared-memory based on set itera-
tors [38]. Unlike our EDGEMAP and VERTEXMAP functions, their
set iterator does not abstract the internal details of the loop from the
user. Their sets of active elements for each iteration must be gener-
ated directly by the user, unlike our EDGEMAP which generates a
vertexSubset which can be used for the next iteration.

Green-Marl is a domain-specific language for writing graph al-
gorithms for shared-memory [21]. Graph traversal algorithms us-
ing Green-Marl are written using built-in breadth-first search (BFS)
and depth-first search (DFS) primitives whose implementations are
built into the compiler. Their language does not support operations
over arbitrary sets of vertices on each iteration of the traversal,
and instead the user must explicitly filter out the vertices to skip.
This makes it less flexible than our framework, which can operate
on arbitrary vertexSubsets. In Green-Marl, for traversal algorithms
which cannot be expressed using a BFS or DFS (e.g. radii estima-
tion and Bellman-Ford shortest paths), the user has to write the for-
loops themselves. On the other hand, such algorithms are naturally
expressed in our framework.

Other high-performance libraries for parallel graph computa-
tions include the Parallel Boost Graph Library (PBGL) [19] and
the Multithreaded Graph Library (MTGL) [5]. The former is devel-
oped for the distributed-memory setting and the latter is developed
for massively multithreaded architectures. These libraries provide
few higher-level abstractions beyond the graphs themselves.

3. Preliminaries
A variable var with type type is denoted as var : type. We denote a
function f by f : X 7→ Y if each x ∈ X has a unique value y ∈ Y
such that f(x) = y. We denote the Cartesian product of sets A and
B by A × B where A × B = {(a, b) : a ∈ A ∧ b ∈ B}. We
define the Boolean value set bool to be the set {0, 1} (equivalently
{false,true}).

We denote a directed unweighted graph by G = (V,E) where
V is the set of vertices and E is the set of (directed) edges in the
graph. Graphs have type graph, vertices have type vertex and edges
have type vertex × vertex, where the first vertex is the source of
the edge and the second the target. We will use the convention of
denoting the number of vertices in a graph by |V | and number of
edges in a graph by |E|. We denote a weighted graph by G =
(V,E,w), wherew is a function which maps an edge to a real value
(w : vertex× vertex 7→ R), and each edge e ∈ E is associated with
the weight w(e). N+(v) denotes the set of out-neighbors of vertex
v in G and deg+(v) denotes the out-degree of v in G. Similarly,
N−(v) and deg−(v) denote the in-neighbors and in-degree of v in
G.

A compare-and-swap (CAS) is an atomic instruction that takes
three arguments—a memory location (loc), an old value (oldV) and
a new value (newV); if the value stored at loc is equal to oldV
it atomically stores newV at loc and returns true, and otherwise
it does not modify loc and returns false. In our implementations,
we use CAS’s both directly and as a subroutine to other atomic
functions, such an as atomic increment. Throughout the paper we
use the notation &x to refer to the memory location of variable x.



4. Framework
4.1 Interface
For an unweighted graph G = (V,E) or weighted graph G =
(V,E,w(E)), our framework provides a vertexSubset type, which
represents a subset of vertices U ⊆ V . Note that V , and hence U ,
may be shared among graphs with different edge sets. Except for
some constructor functions and some optional arguments described
in Section 4.4, the following describes our interface.

1. SIZE(U : vertexSubset) : N.
Returns |U |.

2. EDGEMAP(G : graph,
U : vertexSubset,
F : (vertex × vertex) 7→ bool,
C : vertex 7→ bool) : vertexSubset.

For an unweighted graph G = (V,E) EDGEMAP applies the
function F to all edges with source vertex inU and target vertex
satisfying C. More precisely, for an active edge set

Ea = {(u, v) ∈ E | u ∈ U ∧ C(v) = true},
F is applied to each element in Ea, and the return value of
EDGEMAP is a vertexSubset:

Out = {v | (u, v) ∈ Ea ∧ F (u, v) = true}.
In this framework, F can run in parallel, so the user must ensure
parallel correctness. F is allowed to side effect any data that it is
associated with (and does so when used in the graph algorithms
we discuss later), so F , C, Ea and Out can depend on order.
The function C is useful in algorithms where a value associated
with a vertex only needs to be updated once (i.e. breadth-first
search). If the user does not need the this functionality, a default
function Ctrue which always returns true may be supplied.
For weighted graphs, F takes the edge weight as an additional
argument.

3. VERTEXMAP(U : vertexSubset,
F : vertex 7→ bool) : vertexSubset.

Applies F to every vertex in U . Its returns a vertexSubset:

Out = {u ∈ U | F (u) = true}
As with EDGEMAP, the function F can run in parallel.

4.2 Implementation
We index the vertices V of a graph from 0 to |V |−1. A vertexSub-
set U ⊂ V is therefore a set of integers in the range 0, . . . , |V |−1.
In our implementation this set is either represented sparsely as an
array of |U | integers (not necessarily sorted) or as a Boolean array
of length |V |, true in location i if and only if i ∈ U . For exam-
ple, for a graph with 8 vertices the sparse representation of a vertex
subset {0, 2, 3} could be [0, 2, 3] or [3, 0, 2] and the corresponding
dense representation would be [1, 0, 1, 1, 0, 0, 0, 0]. The implemen-
tation of vertexSubset contains routines for converting its sparse
representation to a dense representation and vice versa. In the fol-
lowing pseudocode we assume unweighted graphs, but it can easily
be extended to weighted graphs. Also we overload notation and use
U and Out both to denote subsets of vertices and also to denote the
vertexSubsets representing them.

For a given graphG = (V,E), a vertexSubset representing a set
of vertices U ⊆ V and functions F and C, the EDGEMAP function
(pseudocode shown in Algorithm 1) calls one of EDGEMAPSPARSE
(Algorithm 2) and EDGEMAPDENSE (Algorithm 3) based on |U |
and the number of outgoing edges of U (if this quantity is greater
than some threshold, it calls EDGEMAPDENSE, and otherwise it
calls EDGEMAPSPARSE). EDGEMAPSPARSE loops through all

vertices present in U in parallel and for a given u ∈ U applies
F (u, ngh) to all of u’s neighbors ngh in G in parallel. It returns
a vertexSubset that is represented sparsely. The work performed
by EDGEMAPSPARSE is proportional to |U | plus the sum of the
out-degrees of U . On the other hand, EDGEMAPDENSE loops
through all vertices in V in parallel and for each vertex v ∈ V
it sequentially applies the function F (ngh, v) for each of v’s neigh-
bors ngh that are in U , until C(u) returns false. It returns a dense
representation of a vertexSubset. For EDGEMAPSPARSE, since a
sparse representation of a vertexSubset is returned, duplicate ver-
tex IDs in the output vertexSubset must be removed. Intuitively
EDGEMAPSPARSE should be more efficient than EDGEMAP-
DENSE for small vertexSubsets, while for larger vertexSubsets
EDGEMAPDENSE should be faster. The threshold of when to
use EDGEMAPSPARSE versus EDGEMAPDENSE is set to |E|/20,
which we found to work well across all of our applications.

Algorithm 1 EDGEMAP

1: procedure EDGEMAP(G, U , F , C)
2: if (|U | + sum of out-degrees of U > threshold) then
3: return EDGEMAPDENSE(G, U , F , C)
4: else return EDGEMAPSPARSE(G, U , F , C)

Algorithm 2 EDGEMAPSPARSE

1: procedure EDGEMAPSPARSE(G, U , F , C)
2: Out = {}
3: parfor each v ∈ U do
4: parfor ngh ∈ N+(v) do
5: if (C(ngh) == 1 and F (v, ngh) == 1) then
6: Add ngh to Out
7: Remove duplicates from Out
8: return Out

Algorithm 3 EDGEMAPDENSE

1: procedure EDGEMAPDENSE(G, U , F , C)
2: Out = {}
3: parfor i ∈ {0, . . . , |V | − 1} do
4: if (C(i) == 1) then
5: for ngh ∈ N−(i) do
6: if (ngh ∈ U and F (ngh, i) == 1) then
7: Add i to Out
8: if (C(i) == 0) then break
9: return Out

The VERTEXMAP function (Algorithm 4) takes as inputs a
vertexSubset representing the vertices U and a Boolean function
F , and applies F to all vertices in U . It returns a vertexSubset
representing subset Out ⊆ U containing vertices u such that F (u)
returns true.

Algorithm 4 VERTEXMAP

1: procedure VERTEXMAP(U , F )
2: Out = {}
3: parfor u ∈ U do
4: if (F (u) == 1) then Add u to Out
5: return Out

4.3 Graph Representation
Our code represents in-edges and out-edges as arrays. In particular
the in-edges for all vertices are kept in one array partitioned by
their target vertex and storing the source vertices. Similarly, the out-
edges are in an array partitioned by the source vertices and storing
the target vertices. Each vertex points to the start of their in-edge
and out-edge partitions and also maintains their in-degree and out-
degree. Note that EDGEMAPSPARSE only uses the out-edges and



EDGEMAPDENSE only uses the in-edges. To transpose a graph (i.e.
switch the direction of all edges), which is needed in betweenness
centrality, we swap the roles of the in-edges and out-edges. When
a graph is symmetric (or undirected) the in-neighbors and out-
neighbors are the same so only one copy needs to be stored. For
weighted graphs, the weights are interleaved with the edge targets
in the edge array for cache efficiency.

4.4 Optimizations
Here we discuss several optimizations to our interface and imple-
mentation. These optimizations affect only performance and not
correctness.

Note that EDGEMAPSPARSE applies F in parallel to target ver-
tices (second argument), while EDGEMAPDENSE applies F se-
quentially given a target vertex. Therefore the F in EDGEMAP-
DENSE does not need to be atomic with respect to the target vertex.
An optimization is for EDGEMAP to accept two version of its func-
tion F , the first of which must be correct when run in parallel with
respect to both arguments, and the second of which must be cor-
rect when run in parallel only with respect to the first argument
(source vertex). Both functions should behave exactly the same if
EDGEMAP were run sequentially. If this optimization is used, then
EDGEMAPSPARSE would use the first version of F as before, but
EDGEMAPDENSE would use the second version of F (which we
found to be slightly faster for some applications).

The default threshold of when to use EDGEMAPSPARSE versus
EDGEMAPDENSE is |E|/20, but if the user discovers a better
threshold, it can be passed as an optional argument to EDGEMAP.

If the user is careful in defining the F and C functions passed
to EDGEMAP to guarantee that no duplicate vertices will appear in
the output vertexSubset of EDGEMAP, then the remove-duplicates
stage of EDGEMAPSPARSE can be bypassed. Our EDGEMAP func-
tion takes a flag indicating whether duplicate vertices need to be
removed.

For EDGEMAPDENSE, the inner for-loop is sequential (see Al-
gorithm 3) because the behavior of C may allow it to break early
(e.g., in BFS, breaking after the first valid parent is found). If in-
stead the user wants to run the inner for-loop in parallel and give
up the option of breaking early, a flag can be passed to EDGEMAP
to indicate this.

Since EDGEMAPDENSE is read-based, we also provide a write-
based version of EDGEMAPDENSE called EDGEMAPDENSE-
WRITE (shown in Algorithm 5). This write-based version loops
through all vertices in V in parallel and for vertices contained
in U it applies F (now required to correct when run in parallel
with respect to both arguments) to all of its neighbors in paral-
lel, as in EDGEMAPSPARSE. It returns a dense representation of
a vertexSubset. We found EDGEMAPDENSE-WRITE to be more
efficient than EDGEMAPDENSE only for two of our applications—
PageRank and Bellman-Ford shortest paths. In our framework,
the user may pass a flag to EDGEMAP specifying whether to use
EDGEMAPDENSE (default) or EDGEMAPDENSE-WRITE when
the vertexSubset is dense. The user would need to figure out ex-
perimentally which version is more efficient.

Algorithm 5 EDGEMAPDENSE-WRITE

1: procedure EDGEMAPDENSE-WRITE(G, U , F , C)
2: Out = {}
3: parfor i ∈ {0, . . . , |V | − 1} do
4: if (i ∈ U ) then
5: parfor ngh ∈ N+(i) do
6: if (C(ngh) == 1 and F (i, ngh) == 1) then
7: Add ngh to Out
8: return Out

For VERTEXMAP, if the user knows that the input and output
vertexSubsets are the same, an optimized version of VERTEXMAP
that avoids creating a new vertexSubset can be used.

5. Applications
Here we describe six applications of our framework. In the follow-
ing discussions, the “frontiers” of the algorithms are represented as
vertexSubsets.

5.1 Breadth-First Search
A breadth-first search (BFS) algorithm takes a graph G = (V,E)
and a starting vertex r ∈ V , and computes a breadth-first search
tree rooted at r containing all nodes reachable from r. A simple
parallel algorithm processes each level of the BFS in parallel. The
number of iterations required is equal to the (unweighted) distance
of the furthest node reachable from the starting vertex, and the
algorithm processes each edge at most once. There has been recent
work on developing fast parallel breadth-first search algorithms for
shared-memory machines [3, 4, 28, 41] and these algorithms have
been shown to be practical for many real-world graphs.

In our framework, a breadth-first search implementation is very
simple as we described in Section 1. To make the computation more
efficient for dense frontiers for which EDGEMAPDENSE is used,
we can also provide a version of UPDATE, which is not atomic with
respect to d and does not use a CAS. The code for BFS is shown
in Figure 1.

5.2 Betweenness Centrality
Centrality indices for graphs have been widely studied in social
network analysis because they are useful indicators of the relative
importance of nodes in a graph. One such index is the betweenness
centrality index [13].

To precisely define the betweenness centrality index, we first
introduce some additional definitions. For a graph G = (V,E)
and some s, t ∈ V , let σst be the number of shortest paths from
s to t in G. For vertices s, t, v ∈ V , define σst(v) to be the
number of shortest paths from s to t that pass through v. Define
δst(v) = σst(v)

σst
to be the pair-dependency of s, t on v. The be-

tweenness centrality of a vertex v, denoted by CB(v) is equal to∑
s 6=v 6=t∈V δst(v). A naive method to compute the betweenness

centrality scores is to perform a BFS starting at each vertex to com-
pute the pair-dependencies, and then sum the pair-dependencies for
each v ∈ V . There are O(|V |2) pair-dependency terms associated
with each vertex, hence this method requires O(|V |3) operations.

Brandes [6] presents an algorithm which avoids the explicit
summation of pair-dependencies and runs in (|V ||E|+|V |2 log |V |)
operations for weighted graphs and O(|V ||E| + |V |2) operations
for unweighted graphs. Brandes’ defines the dependency of a ver-
tex r on a vertex v as follows:

δr•(v) =
∑
t∈V

δrt(v) (1)

For any given r, Brandes’ algorithm computes δr•(v) for all v
in linear time for unweighted graphs, by using the following two
equations, where Pr(v) is defined to contain all immediate parents
of v in the BFS tree rooted at r:

σrv =
∑

u∈Pr(v)

σru (2)

δr•(v) =
∑

w:v∈Pr(w)

σrv

σrw
× (1 + δr•(w)) (3)

The algorithm works in two phases: the first phase of the algorithm
computes the number of shortest paths from r to each vertex using
Equation 2, and the second phase computes the dependency scores



via Equation 3. The first phase is similar to a forward BFS from
vertex r and the second phase works backwards from the last fron-
tier of the BFS. This algorithm can be parallelized in two way—(1)
for each vertex, the traversal can be done in parallel, and (2) each
vertex can perform their individual computations independently in
parallel with other vertices’ computations. Although much more ef-
ficient than the naive algorithm, Brandes’ algorithm still requires at
least quadratic time, and is thus prohibitive for large graphs. To ad-
dress this problem, there has been work on computing approximate
betweenness centrality scores based on using the pair-dependency
contributions from just a sample of the vertices of the vertices and
scaling the betweenness centrality scores appropriately [2, 14]. The
KDT package provides a parallel implementation of batched com-
putation of betweenness centrality scores by running multiple indi-
vidual computations independently in parallel [31].

We describe the betweenness centrality computation from a
single root vertex—these computations can be run independently
in parallel for any sample of the vertices. The computation here
is different from the BFS described in Section 5.1 in that instead
of finding a parent, each vertex v needs to maintain a count of the
number of shortest paths passing through it. This means the number
of updates to v is equal to its number of parents in the BFS tree,
instead of just one update as in BFS.

The psuedocode for our implementation is shown in Algorithm
6. The frontier is initialized to contain just r. For the first phase
we use an array of integers NumPaths, which is initialized to all
0’s except for the root vertex which has NumPaths[r] set to 1.
By traversing the graph in a breadth-first manner and updating the
NumPaths value for each v that is traversed, we obtain the number
of shortest paths passing through each v from r (NumPaths[v]
will remain 0 if v is unreachable from r). The PATHSUPDATE
function passed to EDGEMAP is shown in lines 13–18. As there can
be multiple updates to some NumPaths[v] in parallel, the update
attempt is repeated with a compare-and-swap until successful. Line
18 guarantees that a vertex is placed on the frontier only once, since
the old NumPaths value will be 0 for at most one update. Each
frontier of the search is stored in a Levels array for use in the second
phase.

To keep track of vertices that have been visited (and avoid hav-
ing to remove duplicates in EDGEMAPSPARSE), we also maintain
a Boolean array Visited. Visited is initialized to all 0’s (except for
the root vertex whose entry is set to 1), and we set a vertex’s en-
try in Visited to 1 after it is first visited in the computation. To do
this, we use a VERTEXMAP and pass the VISIT function shown in
lines 9–11 of Algorithm 6 to VERTEXMAP. The COND function in
lines 27–28 makes EDGEMAP only consider unvisited target ver-
tices. The psuedocode for the first phase starting at a root vertex is
shown in lines 32 to 36.

For the second phase, we use a new array Dependencies (ini-
tialized to all 0.0) and reuse the Visited array (reinitialized to all
0). Also we transpose the graph (line 40), since edges now need to
point in the reverse direction. The algorithm operates on the ver-
texSubsets in the Levels array returned from the first phase in re-
verse order, uses the same VISIT and COND functions as in the first
phase, and passes the DEPUPDATE function shown in lines 20 to
25 of Algorithm 6 to EDGEMAP. Psuedocode for the second phase
of the betweenness-centrality computation is shown in lines 42–46.

5.3 Graph Radii Estimation and Multiple BFS
For a graphG = (V,E), the radius of a node v ∈ V is the shortest
distance to the furthest reachable node of v. The diameter of the
graph is the maximum radius over all v ∈ V . For unweighted
graphs, one simple method for computing the radii of all nodes (and
hence the diameter of the graph) is to run |V | BFS’s, one starting at
each vertex. However, for large graphs this method is impractical

Algorithm 6 Betweenness Centrality
1: NumPaths = {0, . . . , 0} . initialized to all 0
2: Visited = {0, . . . , 0} . initialized to all 0
3: NumPaths[r] = 1
4: Visited[r] = 1
5: currLevel = 0
6: Levels = [ ]
7: Dependencies = {0.0, . . . , 0.0} . initialized to all 0.0
8:
9: procedure VISIT(i)

10: Visited[i] = 1
11: return 1
12:
13: procedure PATHSUPDATE(s, d)
14: repeat
15: oldV = NumPaths[d]
16: newV = oldV + NumPaths[s]
17: until (CAS(&NumPaths[d], oldV, newV) == 1)
18: return (oldV == 0)
19:
20: procedure DEPUPDATE(s, d)
21: repeat
22: oldV = Dependencies[d]

23: newV = oldV +
NumPaths[d]
NumPaths[s] × (1 + Dependencies[s])

24: until (CAS(&Dependencies[d], oldV, newV) == 1)
25: return (oldV == 0.0)
26:
27: procedure COND(i)
28: return (Visited[i] == 0)
29:
30: procedure BC(G, r)
31: Frontier = {r} . vertexSubset initialized to contain only r
32: while (SIZE(Frontier) 6= 0) do . Phase 1
33: Frontier = EDGEMAP(G, Frontier, PATHSUPDATE, COND)
34: Levels[currLevel] = Frontier
35: Frontier = VERTEXMAP(Frontier,VISIT)
36: currLevel = currLevel + 1
37:
38: Visited = {0, . . . , 0} . reinitialize to all 0
39: currLevel = currLevel− 1
40: TRANSPOSE(G) . transpose graph
41:
42: while (currLevel ≥ 0) do . Phase 2
43: Frontier = Levels[currLevel]
44: VERTEXMAP(Frontier,VISIT)
45: EDGEMAP(G, Frontier,DEPUPDATE, COND)
46: currLevel = currLevel− 1
47: return Dependencies

as each BFS requires O(|V | + |E|) operations, leading to a total
of O(|V |2 + |V ||E|) operations (see [11]). This approach can be
parallelized by running the BFS’s independently in parallel, and
also by parallelizing each individual BFS, but currently this is still
impractical for large graphs.

There has been work on techniques to estimate the diameter of
a graph. Magnien et. al. [33] describe several techniques for com-
puting upper and lower bounds on the diameter of a graph, using
BFS’s and spanning subgraphs. They describe a method called the
double sweep lower bound, which works by first running a BFS
from some node v and then a second BFS from the furthest node
from v (call it w). The radius of w is then taken to be a lower
bound on the diameter of the graph. Their method can be repeated
by picking more vertices to run BFS’s from. Ferrez et. al. [12] per-
form experiments with parallel implementations of some of these
methods. Another approach based on counting neighborhood sizes
was described by Palmer et. al. [37]. Their algorithm approximates
the neighborhood function for each vertex in a graph, which is more
general than computing graph radii. Kang et. al. [23] parallelize this



algorithm using MapReduce. Cohen [10] describes an algorithm for
approximating neighborhood sizes, which requires O(|E| log |V |)
expected number of operations for undirected graphs.

We implement the simple method for estimating graph radii by
performing BFS’s from a sample of K vertices. Its accuracy can
be improved by using the double sweep method of Magnien et. al.
[33]. Instead of running the BFS’s in parallel independently, we
run multiple BFS’s together. In the multiple-BFS algorithm, each
vertex maintains a bit-vector of length K. Initially K vertices are
chosen randomly to act as “source” vertices and each of these K
vertices has exactly one unique bit in their bit-vector set to 1; all
other vertices have their bit-vectors initialized to all 0’s. The K
sampled vertices are placed on the initial frontier of the multiple-
BFS search. In each iteration, each frontier vertex bitwise-ORs
its vector into each of its neighbors’ vectors. Vertices whose bit-
vectors changed in an iteration are placed on the frontier for the
next iteration. The algorithm iterates until none of the bit-vectors
change.

For a sample of size K this algorithm simulates running K
BFS’s in parallel, but without computing the BFS tree (which is
not needed for the radii computation). Storing the iteration number
in which a vertex v’s bit-vector last changed is a lower-bound on
the radius of v since at least one of the K sampled vertices took
this many rounds to reach v. If K is set to be the number of bits in
a word (32 or 64) this algorithm is more efficient than naively per-
forming K individual BFS’s in two ways: (1) the frontiers of the
K BFS’s could overlap in any given iteration and this algorithm
stores the union of these frontiers usually leading to fewer edges
traversed per iteration and (2) performing a bitwise-OR on bit-
vectors can pass information from more than one of the K BFS’s
while only requiring one arithmetic operation. Note that this algo-
rithm only estimates the diameter of the connected components of
the graph which contain at least one of the K sampled vertices; if
there are multiple connected components in the graph, one would
first compute in parallel the components of the graph and then run
the multiple-BFS algorithm in parallel on each component.

To implement the multiple-BFS algorithm in our framework
(pseudocode shown in Algorithm 7), we maintain two bit-vectors,
Visited and NextVisited, which are initialized to all 0’s, except for
the K sampled vertices each of which has a unique bit in their
Visited bit-vector set to 1. We also maintain an array Radii, which
for each vertex stores the iteration number in which the bit-vector
of the vertex last changed. It is initialized to all ∞ except for the
K sampled vertices which have a Radii entry of 0. At the end of
the algorithm, Radii contains the estimated (lower-bound) radius of
each vertex, the maximum of which is a lower-bound on the graph
diameter. In the pseudocode, we use “|” to denote the bitwise-OR
operation. The initial frontier contains theK sampled vertices. The
update function RADIIUPDATE passed to EDGEMAP is shown in
lines 6–12 of Algorithm 7. ATOMICOR(x, y) performs a bitwise-
OR of y with the value stored at x and atomically updates x with
this new value. It is implemented using a compare-and-swap. The
reason we have both Visited and NextVisited is so that new bits
that a vertex receives in an iteration do not get propagated to its
neighbors in the same round, otherwise the values in Radii would
be incorrect. The compare-and-swap on line 11 guarantees that any
Radii entry is updated at most once (and returns true) per iteration.
Therefore any vertex will be placed at most once on the next
frontier, eliminating the need for removing duplicates. As in the
other implementations, we can provide a version of RADIIUPDATE
non-atomic with respect to d to EDGEMAP.

The ORCOPY function (lines 14–16) passed to VERTEXMAP
simply takes an index i, performs a bitwise-OR of NextVisited[i]
and Visited[i] and stores the result in NextVisited[i]. We use this
because the roles of NextVisited and Visited are switched between

iterations. The while loop in lines 22–26 is executed until the
entries of the Radii array do not change (or equivalently, none of
the bit-vectors change).

Algorithm 7 Radii Estimation
1: Visited = {0, . . . , 0} . initialized to all 0
2: NextVisited = {0, . . . , 0} . initialized to all 0
3: Radii = {∞, . . . ,∞} . initialized to all∞
4: round = 0
5:
6: procedure RADIIUPDATE(s, d)
7: if (Visited[d] 6= Visited[s]) then
8: ATOMICOR(&NextVisited[d],Visited[d] | Visited[s])
9: oldRadii = Radii[d]

10: if (Radii[d] 6= round) then
11: return CAS(&Radii[d], oldRadii, round)

12: return 0
13:
14: procedure ORCOPY(i)
15: NextVisited[i] = NextVisited[i] | Visited[i]
16: return 1
17:
18: procedure RADII(G)
19: Sample K vertices and for each one set a unique bit in Visited to 1
20: Initialize Frontier to contain the K sampled vertices
21: Set the Radii entries of the sampled vertices to 0
22: while (SIZE(Frontier) 6= 0) do
23: round = round + 1
24: Frontier = EDGEMAP(G, Frontier, RADIIUPDATE, Ctrue)
25: Frontier = VERTEXMAP(Frontier,ORCOPY)
26: SWAP(Visited,NextVisited) . switch roles of bit-vectors
27: return Radii

5.4 Connected Components
For an undirected graph G = (V,E), a connected component
C ⊆ V is one in which all vertices in C can reach one another.
The connected components problem is to find C1, . . . , Ck such
that each Ci is a connected component,

⋃
i Ci = V , and there is

no path between vertices belonging to different components.
One method of computing the connected components of a graph

is to maintain an array IDs of size |V | initialized such that IDs[i] =
i, and iteratively have every vertex update its IDs entry to be the
minimum IDs entry of all of its neighbors inG. The total number of
operations performed by this algorithm isO(d(|V |+|E|)) where d
is the diameter of G. For high-diameter graphs, this algorithm can
perform much worse than standard edge-based algorithms which
require onlyO(|V |+|E|) operations [11, 22], but for low-diameter
graphs it runs reasonably well. We show this algorithm as a simple
application of our framework.

The pseudocode for our implementation is shown in Algorithm
8. The initial frontier contains all vertices in V . In addition to
the IDs array, we maintain a second array prevIDs (used to check
whether a vertex has been placed on the frontier in a given iteration
yet), and pass the CCUPDATE function shown in lines 4–8 of
Algorithm 8 to EDGEMAP. WRITEMIN(x, y) atomically updates
the value at location x to be the minimum of x’s old value and
y, and is implemented with a compare-and-swap. It returns true if
the value at location x was changed, and false otherwise. Line 7
places a vertex on the next frontier if and only if its ID changed in
the iteration. To synchronize the values of prevIDs and IDs after
every iteration, we pass the COPY function to VERTEXMAP. The
while loop in lines 16–18 is executed until IDs remains the same
as prevIDs. When the algorithm terminates, all vertices in the same
component will have the same value stored in their IDs entry.



Algorithm 8 Connected Components
1: IDs = {0, . . . , |V | − 1} . initialized such that IDs[i] = i
2: prevIDs = {0, . . . , |V | − 1} . initialized such that prevIDs[i] = i
3:
4: procedure CCUPDATE(s, d)
5: origID = IDs[d]
6: if (WRITEMIN(&IDs[d], IDs[s])) then
7: return (origID == prevIDs[d])
8: return 0
9:

10: procedure COPY(i)
11: prevIDs[i] = IDs[i]
12: return 1
13:
14: procedure CC(G)
15: Frontier = {0, . . . , |V | − 1} . vertexSubset initialized to V
16: while (SIZE(Frontier) 6= 0) do
17: Frontier = VERTEXMAP(Frontier, COPY)
18: Frontier = EDGEMAP(G, Frontier, CCUPDATE, Ctrue)

19: return IDs

5.5 PageRank
PageRank is an algorithm that was first used by Google to compute
the relative importance of webpages [7]. It takes as input a graph
G = (V,E), a damping factor 0 ≤ γ ≤ 1 and a convergence
constant ε. It initializes a PageRank vector PR of length |V | to
have all entries set to 1

|V | , and iteratively applies the following
equation for all indices v, until the sum of the differences of PR
values between iterations drops to below ε:

PR[v] =
1− γ
|V |

+ γ
∑

u∈N−(v)

PR[u]

deg+(u)
(4)

This leads to a very simple implementation in our framework.
We also describe a variant of PageRank (PageRank-Delta) which
applies Equation (4) to only a subset of V in an iteration. By
choosing the subset to contain only vertices whose PageRank entry
that changed by more than a certain amount, we can speed up the
computation.

The pseudocode for our implementation of PageRank is shown
in Algorithm 9. In every iteration, the frontier contains all vertices.
Our implementation maintains two arrays pcurr and pnext each of
length |V |. pcurr is initialized to 1

|V | for each entry and pnext is ini-
tialized to all 0.0’s. The PRUPDATE function passed to EDGEMAP
is shown in lines 5–7. ATOMICINCREMENT(x, y) atomically adds
y to the value at location x and stores the result in location x; it
can be implemented with a compare-and-swap. Each iteration of
the while loop (lines 18–22) applies an EDGEMAP, uses a VER-
TEXMAP to process the result of the EDGEMAP, computes the er-
ror for the iteration and switches the roles of pnext and pcurr. The
PRLOCALCOMPUTE function (lines 9–13) passed to VERTEXMAP
normalizes the result of the EDGEMAP by γ, adds a constant, com-
putes the absolute difference between pnext and pcurr, and resets pcurr

to 0.0 for the next iteration (since the roles of pnext and pcurr become
switched). The while loop is executed until the error drops below ε.

PageRank-Delta is a variant of PageRank in which vertices are
active in an iteration only if they have accumulated enough change
in their PR value. This idea is used in GraphLab for computing
PageRank [30]. In our framework, in each EDGEMAP vertices
pass their changes (deltas) in PR value to their neighbors, and
all vertices accumulate a sum of delta contributions from their
neighbors. Each VERTEXMAP only updates and returns vertices
whose accumulated delta contributions from neighbors is more than
a δ-fraction of its PR value since the last time it was active. Such
an implementation allows for vertices which do not influence the
PR values much to stay inactive, thereby shrinking the frontier. We

Algorithm 9 PageRank
1: pcurr = { 1

|V | , . . . ,
1
|V |} . initialized to all 1

|V |
2: pnext = {0.0, . . . , 0.0} . initialized to all 0.0
3: diff = {} . array to store differences
4:
5: procedure PRUPDATE(s, d)
6: ATOMICINCREMENT(&pnext[d],

pcurr[s]

deg+(s)
)

7: return 1
8:
9: procedure PRLOCALCOMPUTE(i)

10: pnext[i] = (γ × pnext[i]) + 1−γ
|V |

11: diff[i] =
∣∣pnext[i]− pcurr[i]

∣∣
12: pcurr[i] = 0.0
13: return 1
14:
15: procedure PAGERANK(G, γ, ε)
16: Frontier = {0, . . . , |V | − 1} . vertexSubset initialized to V
17: error =∞
18: while (error > ε) do
19: Frontier = EDGEMAP(G, Frontier, PRUPDATE, Ctrue)
20: Frontier = VERTEXMAP(Frontier, PRLOCALCOMPUTE)
21: error = sum of diff entries
22: SWAP(pcurr, pnext)

23: return pcurr

can implement PageRank-Delta in our framework by modifying the
function passed to EDGEMAP to pass the deltas instead of the PR
values, and modifying the function passed to VERTEXMAP to only
perform updates and return true for the vertices whose accumulated
delta contributions from neighbors since it was last active is more
than a δ-fraction of its PR value. Due to space limitations, we do
not show the pseudocode for this algorithm.

5.6 Bellman-Ford Shortest Paths
The single-source shortest paths problem takes as input a weighted
graph G = (V,E,w(E)) and a root vertex r, and either computes
the shortest path distance from r to each vertex in V (if a vertex is
unreachable from r, then the distance returned is∞), or reports the
existence of a negative cycle.

If the edge weights are all non-negative, then the single-source
shortest paths problem can be solved with Dijkstra’s algorithm [11].
Parallel variants of Dijkstra’s algorithm have been studied [36], and
have been shown to work well on real-world graphs [32]. However,
Dijkstra’s algorithm does not work with negative edge weights,
and the Bellman-Ford algorithm can be used instead in this case.
Although in the worst case the Bellman-Ford algorithm requires
O(|V ||E|) operations, in contrast to the O(|E| + |V | log |V |)
worst-case operations of Dijkstra’s algorithm, in practice it can re-
quire many fewer than the worst case since on every step only some
of the vertices might change distances. It is therefore important to
take advantage of this fact and only process vertices when they ac-
tually change distance.

We first describe the standard Bellman-Ford algorithm [11] and
then show how it can be implemented in our framework. The
algorithm initializes the shortest paths array SP to all ∞ except
for the root vertex which has an entry of 0. A RELAX procedure is
repeatedly invoked by Bellman-Ford. RELAX takes G as an input
and checks for each edge (u, v) if SP[u] + w(u, v) < SP[v]; if
so, it sets SP[v] to SP[u] + w(u, v). If a call to RELAX does not
change any SP values then the algorithm terminates. If RELAX is
called |V | or more times, then there is a negative cycle in G and
the Bellman-Ford algorithm reports the existence of one.

To implement the Bellman-Ford algorithm in our framework
(pseudocode shown in Algorithm 10) we maintain a Visited array
in addition to the SP array. Since only vertices whose SP value



has changed in an iteration need to propagate its SP value to its
neighbors, the Visited array (initialized to all 0’s) keeps track of
which vertices had their SP value changed in an iteration. The
update function passed to EDGEMAP is shown in lines 4–7 of
Algorithm 10 (note that since this algorithm works on weighted
graphs, the update function has the edge weight as an additional
argument). It uses WRITEMIN (as described in Section 5.4) to
posssibly update SP with a smaller path length. The compare-and-
swap on line 6 guarantees that a vertex is placed on the frontier at
most once per iteration. The initial frontier contains just the root
vertex r. Each iteration of the while loop in lines 17–20 applies the
EDGEMAP, which outputs a vertexSubset containing the vertices
whose SP value changed. In order to reset the Visited array after
an EDGEMAP, the BFRESET function (lines 9–11) is passed to
VERTEXMAP. The algorithm either runs until no SP values change
or runs for |V | iterations and reports the existence of a negative-
weight cycle. An iteration here differs from the RELAX procedure
in that RELAX processes all vertices each time.

Algorithm 10 Bellman-Ford
1: SP = {∞, . . . ,∞} . initialized to all∞
2: Visited = {0, . . . , 0} . initialized to all 0
3:
4: procedure BFUPDATE(s, d, edgeWeight)
5: if (WRITEMIN(&SP[d], SP[s] + edgeWeight)) then
6: return CAS(&Visited[d], 0, 1)
7: else return 0
8:
9: procedure BFRESET(i)

10: Visited[i] = 0
11: return 1
12:
13: procedure BELLMAN-FORD(G, r)
14: SP[r] = 0
15: Frontier = {r} . vertexSubset initialized to contain just r
16: round = 0
17: while (SIZE(Frontier) 6= 0 and round < |V |) do
18: round = round + 1
19: Frontier = EDGEMAP(G, Frontier, BF-UPDATE, Ctrue)
20: Frontier = VERTEXMAP(Frontier, BF-RESET)

21: if (round == |V |) then return “negative-weight cycle”
22: else return SP

6. Experiments
All of the experiments presented in this paper were performed on a
40-core Intel machine (with hyper-threading) with 4×2.4GHz Intel
10-core E7-8870 Xeon processors, a 1066MHz bus, and 256GB of
main memory. The parallel programs were compiled with Intel’s
icpc compiler (version 12.1.0) using CilkPlus [27] with the -O3
flag. The sequential programs were compiled using g++ 4.4.1 with
the -O2 flag. We also ran experiments on a 64-core AMD Opteron
machine, but the results are slower than the ones from the Intel
machine so we only report the latter.

The input graphs used in our experiments are shown in Table 1.
3D-grid is a grid graph in 3-dimensional space in which every ver-
tex has six edges—one connecting it to each of its two neighbors
in each dimension. Random-local is a synthetic graph in which
every vertex has edges to five randomly chosen neighbors, where
the probability of an edge between two vertices is inversely corre-
lated with their distance in the vertex array (vertices tend to have
edges to other vertices that are close in memory). The rMat graphs
are synthetic graphs with a power-law distribution of degrees [9].
RMat24 (scale 24) contains 1.68 × 107 vertices and was gener-
ated with parameters a = 0.5, b = c = 0.1, d = 0.3. RMat27
(scale 27) is one of the Graph500 benchmark graphs [18], and was
generated with parameters a = 0.57, b = c = 0.19, d = 0.05.

Twitter is a real-world graph of the Twitter social network con-
taining 41.7 million vertices and 1.47 billion directed edges [25] .
Yahoo is a real-world graph of the Web containing 1.4 billion ver-
tices and 6.6 billion directed edges (12.9 billion after symmetrizing
and removing duplicates) [42]. With the exception of Pregel, Yahoo
is the largest real-world graph reported by other graph processing
systems.

The number of edges reported is the number of directed edges
in the graph with duplicate edges removed. The synthetic graphs
are all symmetric, and we symmetrized the Yahoo graph for our
experiments so that we have a larger graph. We used the original
asymmetric Twitter graph. For the synthetic weighted graphs, the
edge weights were generated randomly and were verified to contain
no negative cycles. We used unit weights on the Twitter and Yahoo
graphs for our Bellman-Ford experiments.

Input Num. Vertices Num. Directed Edges
3D-grid 107 6× 107

random-local 107 9.8× 107

rMat24 1.68× 107 9.9× 107

rMat27 1.34× 108 2.12× 109

Twitter 4.17× 107 1.47× 109

Yahoo* 1.4× 109 12.9× 109

Table 1. Graph inputs. *The original asymmetric graph has 6.6×
109 edges.

Table 2 shows the running times for our implementations on
each of the input graphs using a single thread and 40 cores with
hyper-threading. All of the implementations used EDGEMAP-
DENSE for the dense iterations with the exception of Bellman-Ford,
PageRank and PageRank-Delta, which used EDGEMAPDENSE-
WRITE, an optimization described in Section 4.4 (we found it to
be more efficient in these cases). Figure 2 shows that all of our
implementations scale well with the number of threads (“80” on
the x-axis is 40 cores with hyper-threading).

For BFS, we achieve a 10–28 fold speedup. Using our frame-
work we are able integrate the ideas of [3] to give a simple imple-
mentation of BFS, which is almost as fast as their highly optimized
implementation. Our running times are better than those reported in
[1, 28, 41], which do not take advantage of changes in the frontier
density. Compared to the sequential BFS implementation in [41],
we are faster on two or more threads.

For betweenness centrality (performing the two-phase compu-
tation for a single source) we achieve a 12–32 fold speedup on 40
cores. The KDT system [31] reports that on 256 cores (2.1 GHz
AMD Opteron) their batched implementation of betweenness cen-
trality (performs the two-phase computation for multiple sources in
parallel) traverses almost 125 million edges per second on an rMat
graph with 218 vertices and 16× 218 edges. On rMat27 our imple-
mentation traverses 526 million edges per second using 40 cores
on the Intel Nehalem machine, but it is difficult to directly com-
pare because our machine is different and we do not do a batched
computation. For the Twitter graph, since we transpose the graph
for the second phase, the in-degree of some of the vertices in-
creases dramatically, so we found that using a parallel inner loop in
EDGEMAPDENSE, an optimization described in Section 4.4, was
more efficient.

We ran our graph radii estimation implementation using a 64-bit
vector for each vertex (K = 64) and achieve a 23–35× speedup on
40 cores. Kang et. al. [23] implement a slightly different algorithm
for estimating the radii distribution using MapReduce, and run
experiments on the Yahoo M45 Hadoop cluster (480 machines with
2 quad-core Intel Xeon 1.86 GHz processors per machine). Using
90 machines their reported runtime for 3 iterations on a 2 billion-
edge graph is almost 30 minutes. Using a 40-core machine we are



Application 3D-grid random-local rMat24 rMat27 Twitter Yahoo
(1) (40h) (SU) (1) (40h) (SU) (1) (40h) (SU) (1) (40h) (SU) (1) (40h) (SU) (1) (40h) (SU)

Breadth-First Search 2.9 0.28 10.4 2.11 0.073 28.9 2.83 0.104 27.2 11.8 0.423 27.9 6.92 0.321 21.6 173 8.58 20.2
Betweenness Centrality 9.15 0.765 12.0 8.53 0.265 32.2 11.3 0.37 30.5 113 4.07 27.8 47.8 2.64 18.1 634 23.1 27.4

Graph Radii 351 10.0 35.1 25.6 0.734 34.9 39.7 1.21 32.8 337 12.0 28.1 171 7.39 23.1 1280 39.6 32.3
Connected Components 51.5 1.71 30.1 14.8 0.399 37.1 14.1 0.527 26.8 204 10.2 20.0 78.7 3.86 20.4 609 29.7 20.5
PageRank (1 iteration) 4.29 0.145 29.6 6.55 0.224 29.2 8.93 0.25 35.7 243 6.13 39.6 72.9 2.91 25.1 465 15.2 30.6

Bellman-Ford 63.4 2.39 26.5 18.8 0.677 27.8 17.8 0.694 25.6 116 4.03 28.8 75.1 2.66 28.2 255 14.2 18.0

Table 2. Running times (in seconds) of algorithms over various inputs on a 40-core machine (with hyper-threading). (SU) indicates the
speedup of the application (single-thread time divided by 40-core time).

able to process the rMat27 graph of similar size until completion (9
iterations) in 12 seconds.

Our connected components implementation achieves a 20–37
fold speedup on 40 cores. The Pegasus library [24] also has a
connected components algorithm implemented for the MapReduce
framework. For a graph with 59,000 vertices and 282 million edges,
and using 90 machines of the Yahoo M45 cluster, they report a
runtime of over 10 minutes for 6 iterations. In contrast, for the much
larger rMat27 graph (also requiring 6 iterations) our algorithm
completes in about 10 seconds on the 40-core machine.

For a single iteration, our PageRank implementation achieves a
29–39 fold speedup on 40 cores. GPS [40] reports a running time
of 144 minutes for 100 iterations (1.44 minutes per iteration) of
PageRank on a web graph with 3.7 billion directed edges on an
Amazon EC2 cluster using 30 large instances, each with 4 vir-
tual cores and 7.5GB of memory. In contrast, our PageRank im-
plementation takes less than 20 seconds per iteration on the larger
Yahoo graph. For PageRank on the Twitter graph [25], our sys-
tem is slightly faster per iteration (2.91 seconds vs. 3.6 seconds)
on 40 cores than PowerGraph [17] on 8× 64 cores (processors are
2.933 GHz Intel Xeon X5570 with 3200 MHz bus). We also com-
pared our implementations of PageRank and PageRank-Delta, run
to convergence with a damping factor of γ = 0.85 and parameters
ε = 10−7 and δ = 10−2. Figure 2(e) shows that PageRank-Delta is
faster (by more than a factor of 6 on rMat24) because in any given
iteration it processes only vertices whose accumulated change is
above a δ-fraction of its PageRank value at the time it was previ-
ously active. We do not analyze the error (which depends on δ) of
our PageRank-Delta implementation in this work—the purpose of
this experiment is to show that our framework also works well for
non-graph traversal problems.

Our parallel implementation of Bellman-Ford achieves a 18–
28× speedup on 40 cores. In Figure 2(f) we compare this imple-
mentation with a naive one which visits all vertices and edges in
each iteration, and our more efficient version is almost twice as
fast. The single-source shortest paths algorithm of Pregel [34] for
a binary tree with 1 billion vertices takes almost 20 seconds on a
cluster of 300 multicore commodity PCs. We ran our Bellman-Ford
algorithm on a larger binary tree with 227(≈ 1.68× 107) vertices,
and it completed in under 2 seconds (time not shown in Table 2).
Compared to our implementation of the standard sequential algo-
rithm described in [11], our parallel implementation is faster on a
single thread.

Since the Yahoo graph is highly disconnected, we computed
the number of vertices and directed edges traversed for BFS and
betweenness centrality and found it to be 701 million and 12.8
billion respectively (this is the largest connected component of the
graph). The number of vertex and edge traversals for the graph
radii algorithm (K = 64) on the Yahoo graph were 2.7 billion
and 50 billion respectively. Note that doing 64 individual BFS’s
to compute the same thing would require many more vertex and
edge traversal; our implementation of radii estimation (multiple-

BFS) reduces the number of traversals (and hence running time) by
combining the operations of multiple BFS’s into fewer operations.

Figure 3 shows scalability plots for the various applications.
The experiments were performed on random graphs of varying
size with the number of directed edges being ten times the number
of vertices. We see that the implementations scale quite well with
increasing graph size, with some noise due to the variability in the
structures of the different random graphs.

Figure 4 shows plots of the size of the frontier plus the num-
ber of outgoing edges for each iteration and each application on
rMat24. The rMat24 graph is a scale-free graph and hence able to
take advantage of the hybrid BFS idea of Beamer et. al. [4]. The
y-axes are shown in log-scale. We also plot the threshold, above
which EDGEMAP uses the dense implementation and below which
EDGEMAP uses the sparse implementation. For BFS, betweenness
centrality (same frontier plot as that of BFS), radii estimation and
Bellman-Ford, the frontier is initially sparse, switches to dense af-
ter a few iterations and then switches back to sparse later. For con-
nected components and PageRank-Delta, the frontier starts off as
dense (the vertexSubset contains all vertices), and becomes sparser
as the algorithm continues. See [4] for a more detailed analysis of
frontier plots for BFS.

7. Conclusions
We have described Ligra, a simple framework for implementing
graph traversal algorithms on shared-memory machines. Further-
more, our implementations of several graph algorithms using the
framework are efficient and scalable, and often achieve better run-
ning times than ones reported by other graph libraries/systems. In
addition to the algorithms discussed in this paper, we believe other
algorithms such as maximum flow, biconnected components, be-
lief propagation, and Markov clustering can also benefit from our
framework. Currently, Ligra does not support algorithms based on
modifying the input graph, and extending Ligra to support graph
modification is a direction for future work. Recently, GPU sys-
tems have been explored for implementing graph traversal prob-
lems [20, 35]. It is possible that our framework can be extended to
this context.
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Figure 2. Log-log plots of running times on rMat24 on a 40-core machine (with hyper-threading).
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