
Naiad: A Timely Dataflow System

Derek G. Murray Frank McSherry Rebecca Isaacs

Michael Isard Paul Barham Martı́n Abadi

Microsoft Research Silicon Valley

{derekmur,mcsherry,risaacs,misard,pbar,abadi}@microsoft.com

Abstract

Naiad is a distributed system for executing data parallel,

cyclic dataflow programs. It offers the high throughput

of batch processors, the low latency of stream proces-

sors, and the ability to perform iterative and incremental

computations. Although existing systems offer some of

these features, applications that require all three have re-

lied on multiple platforms, at the expense of efficiency,

maintainability, and simplicity. Naiad resolves the com-

plexities of combining these features in one framework.

A new computational model, timely dataflow, under-

lies Naiad and captures opportunities for parallelism

across a wide class of algorithms. This model enriches

dataflow computation with timestamps that represent

logical points in the computation and provide the basis

for an efficient, lightweight coordination mechanism.

We show that many powerful high-level programming

models can be built on Naiad’s low-level primitives, en-

abling such diverse tasks as streaming data analysis, it-

erative machine learning, and interactive graph mining.

Naiad outperforms specialized systems in their target ap-

plication domains, and its unique features enable the de-

velopment of new high-performance applications.

1 Introduction

Many data processing tasks require low-latency inter-

active access to results, iterative sub-computations, and

consistent intermediate outputs so that sub-computations

can be nested and composed. Figure 1 exemplifies these

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).

SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.

ACM 978-1-4503-2388-8/13/11.

http://dx.doi.org/10.1145/2517349.2522738

Low-latency query

responses are delivered

Updates to

data arrive

Complex processing

incrementally re-

executes to reflect

changed data

User queries

are received

Queries are

joined with

processed data

Figure 1: A Naiad application that supports real-

time queries on continually updated data. The

dashed rectangle represents iterative processing that

incrementally updates as new data arrive.

requirements: the application performs iterative process-

ing on a real-time data stream, and supports interac-

tive queries on a fresh, consistent view of the results.

However, no existing system satisfies all three require-

ments: stream processors can produce low-latency re-

sults for non-iterative algorithms [3, 5, 9, 38], batch

systems can iterate synchronously at the expense of la-

tency [27, 30, 43, 45], and trigger-based approaches

support iteration with only weak consistency guaran-

tees [29, 36, 46]. While it might be possible to assemble

the application in Figure 1 by combining multiple exist-

ing systems, applications built on a single platform are

typically more efficient, succinct, and maintainable.

Our goal is to develop a general-purpose system that

fulfills all of these requirements and supports a wide va-

riety of high-level programming models, while achiev-

ing the same performance as a specialized system. To

this end, we have developed a new computational model,

timely dataflow, that supports the following features:

1. structured loops allowing feedback in the dataflow,

2. stateful dataflow vertices capable of consuming and

producing records without global coordination, and

3. notifications for vertices once they have received all

records for a given round of input or loop iteration.

439

Applications

Timely Dataflow

Distributed Runtime

Graph assembly

Libraries

DSLs

(Sec 4)

(Sec 2)

(Sec 3)

(Sec 6)

Figure 2: The Naiad software stack exposes a low-

level graph assembly interface, upon which high-

level libraries, DSLs, and applications can be built.

Together, the first two features are needed to execute it-

erative and incremental computations with low latency.

The third feature makes it possible to produce consistent

results, at both outputs and intermediate stages of com-

putations, in the presence of streaming or iteration.

Timely dataflow exposes a principled set of low-level

primitives to the programmer, who can use those prim-

itives to build higher-level programming abstractions.

Timely dataflow graphs are directed and may include cy-

cles. Stateful vertices asynchronously receive messages

and notifications of global progress. Edges carry records

with logical timestamps that enable global progress to be

measured. Unlike the timestamps used in previous sys-

tems [3, 5, 9], these logical timestamps reflect structure

in the graph topology such as loops, and make the model

suitable for tracking progress in iterative algorithms. We

show that these primitives are sufficient to express exist-

ing frameworks as composable and efficient libraries.

Naiad is our prototype implementation of timely

dataflow for data parallel computation in a distributed

cluster. Like others [16, 42, 43] we target problems

for which the working set fits in the aggregate RAM of

the cluster, in line with our goal of a low-latency sys-

tem. Practical challenges arise when supporting appli-

cations that demand a mix of high-throughput and low-

latency computation. These challenges include coor-

dinating distributed processes with low overhead, and

engineering the system to avoid stalls—from diverse

sources such as lock contention, dropped packets, and

garbage collection—that disproportionately affect com-

putations that coordinate frequently.

We evaluate Naiad against several batch and incre-

mental workloads, and use microbenchmarks to investi-

gate the performance of its underlying mechanisms. Our

prototype implementation outperforms general-purpose

batch processors, and often outperforms state-of-the-

art asynchronous systems which provide few semantic

guarantees. To demonstrate the expressiveness of the

model and the power of our high-level libraries, we build

a complex application based on the dataflow in Figure 1

using tens of lines of code (see §6.4). The resulting ap-

plication responds to queries with 4–100 ms latency.

B C

F

A D

Loop context

Streaming context

In OutEI

Figure 3: This simple timely dataflow graph (§2.1)

shows how a loop context nests within the top-level

streaming context.

2 Timely dataflow

Timely dataflow is a computational model based on a di-

rected graph in which stateful vertices send and receive

logically timestamped messages along directed edges.

The dataflow graph may contain nested cycles, and the

timestamps reflect this structure in order to distinguish

data that arise in different input epochs and loop itera-

tions. The resulting model supports concurrent execu-

tion of different epochs and iterations, and explicit ver-

tex notification after all messages with a specified time-

stamp have been delivered. In this section we define the

structure of timely dataflow graphs, introduce the low-

level vertex programming model, and explain how to ef-

ficiently reason about the delivery of vertex notifications.

2.1 Graph structure

A timely dataflow graph has input vertices and output

vertices, where each input receives a sequence of mes-

sages from an external producer, and each output emits a

sequence of messages back to an external consumer. The

external producer labels each message with an integer

epoch, and notifies the input vertex when it will not re-

ceive any more messages with a given epoch label. The

producer may also “close” an input vertex to indicate

that it will receive no more messages from any epoch.

Each output message is labeled with its epoch, and the

output vertex signals the external consumer when it will

not output any more messages from a given epoch, and

when all output is complete.

Timely dataflow graphs are directed graphs with the

constraint that the vertices are organized into possi-

bly nested loop contexts, with three associated system-

provided vertices. Edges entering a loop context must

pass through an ingress vertex and edges leaving a loop

context must pass through an egress vertex. Addition-

ally, every cycle in the graph must be contained entirely

within some loop context, and include at least one feed-

back vertex that is not nested within any inner loop con-

texts. Figure 3 shows a single loop context with ingress

(‘I’), egress (‘E’), and feedback (‘F’) vertices labeled.

440

This restricted looping structure allows us to design

logical timestamps based on the dataflow graph struc-

ture. Every message bears a logical timestamp of type

Timestamp : (

epoch
︷ ︸︸ ︷

e ∈ N,

loop counters
︷ ︸︸ ︷

〈c1, . . . ,ck〉 ∈ N
k)

where there is one loop counter for each of the k loop

contexts that contain the associated edge. These loop

counters explicitly distinguish different iterations, and

allow a system to track forward progress as messages

circulate around the dataflow graph.

The ingress, egress, and feedback vertices act only on

the timestamps of messages passing through them. The

vertices adjust incoming timestamps as follows:

Vertex Input timestamp Output timestamp

Ingress (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck,0〉)

Egress (e,〈c1, . . . ,ck,ck+1〉) (e,〈c1, . . . ,ck〉)

Feedback (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck +1〉)

For two timestamps t1 = (x1,~c1) and t2 = (x2,~c2)
within the same loop context, we order t1 ≤ t2 if and

only if both x1 ≤ x2 and~c1 ≤~c2, where the latter uses the

lexicographic ordering on integer sequences. This order

corresponds to the constraint on future times at which

one message could result in another, a concept that we

formalize in the following subsections.

2.2 Vertex computation

Timely dataflow vertices send and receive timestamped

messages, and may request and receive notification that

they have received all messages bearing a specific time-

stamp. Each vertex v implements two callbacks:

v.ONRECV(e : Edge, m : Message, t : Timestamp)
v.ONNOTIFY(t : Timestamp).

A vertex may invoke two system-provided methods in

the context of these callbacks:

this.SENDBY(e : Edge, m : Message, t : Timestamp)
this.NOTIFYAT(t : Timestamp).

Each call to u.SENDBY(e,m, t) results in a correspond-

ing invocation of v.ONRECV(e,m, t), where e is an

edge from u to v, and each call to v.NOTIFYAT(t) re-

sults in a corresponding invocation of v.ONNOTIFY(t).
The invocations of ONRECV and ONNOTIFY are

queued, and for the most part the model is flex-

ible about the order in which they may be deliv-

ered. However, a timely dataflow system must guar-

antee that v.ONNOTIFY(t) is invoked only after no

further invocations of v.ONRECV(e,m, t ′), for t ′ ≤ t,

will occur. v.ONNOTIFY(t) is an indication that all

v.ONRECV(e,m, t) invocations have been delivered to

class DistinctCount<S,T> : Vertex<T>

{

Dictionary<T, Dictionary<S,int>> counts;

void OnRecv(Edge e, S msg, T time)

{

if (!counts.ContainsKey(time)) {

counts[time] = new Dictionary<S,int>();

this.NotifyAt(time);

}

if (!counts[time].ContainsKey(msg)) {

counts[time][msg] = 0;

this.SendBy(output1, msg, time);

}

counts[time][msg]++;

}

void OnNotify(T time)

{

foreach (var pair in counts[time])

this.SendBy(output2, pair, time);

counts.Remove(time);

}

}

Figure 4: An example vertex with one input and

two outputs, producing the distinct input records on

output1, and a count for each one on output2.

The distinct records may be sent as soon as they are

seen, but the counts must wait until all records bear-

ing that time have been received.

the vertex, and is an opportunity for the vertex to finish

any work associated with time t.

The ONRECV and ONNOTIFY methods may contain

arbitrary code and modify arbitrary per-vertex state, but

do have an important constraint on their execution: when

invoked with a timestamp t, the methods may only call

SENDBY or NOTIFYAT with times t ′≥ t. This rule guar-

antees that messages are not sent “backwards in time”

and is crucial to support notification as described above.

As an example, Figure 4 contains code for a vertex

with one input and two outputs. The first output is the

set, at each time, of distinct elements observed in the in-

put, and the second output counts how often each distinct

input is observed at that time. The ONRECV method

may send elements on the first output as soon as they

are first observed, allowing for low latency, but to en-

sure correctness the vertex must use ONNOTIFY to delay

sending the counts until all inputs have been observed.

2.3 Achieving timely dataflow

In order to deliver notifications correctly, a timely

dataflow system must reason about the impossibility of

future messages bearing a given timestamp. In this sub-

section we lay a foundation for reasoning about the safe

441

delivery of notifications, and develop tools for a single-

threaded implementation. Section 3 discusses the issues

that arise in a distributed implementation.

At any point in an execution, the set of timestamps at

which future messages can occur is constrained by the

current set of unprocessed events (messages and notifi-

cation requests), and by the graph structure. Messages

in a timely dataflow system flow only along edges, and

their timestamps are modified by ingress, egress, and

feedback vertices. Since events cannot send messages

backwards in time, we can use this structure to compute

lower bounds on the timestamps of messages an event

can cause. By applying this computation to the set of

unprocessed events, we can identify the vertex notifica-

tions that may be correctly delivered.

Each event has a timestamp and a location (either a

vertex or edge), and we refer to these as a pointstamp:

Pointstamp : (t ∈ Timestamp,

location
︷ ︸︸ ︷

l ∈ Edge∪Vertex) .

The SENDBY and NOTIFYAT methods generate new

events: for v.SENDBY(e,m, t) the pointstamp of m is

(t,e) and for v.NOTIFYAT(t) the pointstamp of the no-

tification is (t,v).
The structural constraints on timely dataflow graphs

induce an order on pointstamps. We say a pointstamp

(t1, l1) could-result-in (t2, l2) if and only if there exists

a path ψ = 〈l1, . . . , l2〉 in the dataflow graph such that

the timestamp ψ(t1) that results from adjusting t1 ac-

cording to each ingress, egress, or feedback vertex oc-

curring on that path satisfies ψ(t1) ≤ t2. Each path can

be summarized by the loop coordinates that its vertices

remove, add, and increment; the resulting path summary

between l1 and l2 is a function that transforms a time-

stamp at l1 to a timestamp at l2. The structure of timely

dataflow graphs ensures that, for any locations l1 and l2
connected by two paths with different summaries, one of

the path summaries always yields adjusted timestamps

earlier than the other. For each pair l1 and l2, we find the

minimal path summary over all paths from l1 to l2 us-

ing a straightforward graph propagation algorithm, and

record it as Ψ[l1, l2]. To efficiently evaluate the could-

result-in relation for two pointstamps (t1, l1) and (t2, l2),
we test whether Ψ[l1, l2](t1)≤ t2.

We now consider how a single-threaded scheduler de-

livers events in a timely dataflow implementation. The

scheduler maintains a set of active pointstamps, which

are those that correspond to at least one unprocessed

event. For each active pointstamp the scheduler main-

tains two counts: an occurrence count of how many

outstanding events bear the pointstamp, and a precur-

sor count of how many active pointstamps precede it in

the could-result-in order. As vertices generate and retire

events, the occurrence counts are updated as follows:

Operation Update

v.SENDBY(e,m, t) OC[(t,e)]← OC[(t,e)]+1

v.ONRECV(e,m, t) OC[(t,e)]← OC[(t,e)]−1

v.NOTIFYAT(t) OC[(t,v)]← OC[(t,v)]+1

v.ONNOTIFY(t) OC[(t,v)]← OC[(t,v)]−1

The scheduler applies updates at the start of calls to

SENDBY and NOTIFYAT, and as calls to ONRECV and

ONNOTIFY complete. When a pointstamp p becomes

active, the scheduler initializes its precursor count to the

number of existing active pointstamps that could-result-

in p. At the same time, the scheduler increments the

precursor count of any pointstamp that p could-result-

in. A pointstamp p leaves the active set when its occur-

rence count drops to zero, at which point the scheduler

decrements the precursor count for any pointstamp that

p could-result-in. When an active pointstamp p’s pre-

cursor count is zero, there is no other pointstamp in the

active set that could-result-in p, and we say that p is in

the frontier of active pointstamps. The scheduler may

deliver any notification in the frontier.

When a computation begins the system initializes an

active pointstamp at the location of each input vertex,

timestamped with the first epoch, with an occurrence

count of one and a precursor count of zero. When an

epoch e is marked complete the input vertex adds a new

active pointstamp for epoch e + 1, then removes the

pointstamp for e, permitting downstream notifications

to be delivered for epoch e. When the input vertex is

closed it removes any active pointstamps at its location,

allowing all events downstream of the input to eventu-

ally drain from the computation.

2.4 Discussion

Although the timestamps in timely dataflow are

more complicated than traditional integer-valued time-

stamps [22, 38], the vertex programming model supports

many advanced use cases that motivate other systems.

The requirement that a vertex explicitly request notifi-

cations (rather than passively receive notifications for all

times) allows a programmer to make performance trade-

offs by choosing when to use coordination. For exam-

ple, the monotonic aggregation operators in BloomL [13]

may continually revise their output without coordina-

tion; in Naiad a vertex can achieve this by sending out-

puts from ONRECV. Such an implementation can im-

prove performance inside a loop by allowing fast un-

coordinated iteration, at the possible expense of send-

ing multiple messages before the output reaches its final

value. On the other hand an implementation that sends

only once, in ONNOTIFY, may be more useful at the

boundary of a sub-computation that will be composed

with other processing, since the guarantee that only a

single value will be produced simplifies the downstream

442

SchedulerWorker

A2

A1

B2

B1

C2

C1

Progress tracking

protocol

Process

TCP/IP network

A4

A3

B4

B3

C4

C3

A B CH(m)Logical graph

Figure 5: The mapping of a logical dataflow graph

onto the distributed Naiad system architecture.

sub-computation. Timely dataflow makes it easy to com-

bine both styles of implementation in a single program.

As described, a notification in timely dataflow is guar-

anteed not to be delivered before a time t, and has the ca-

pability to send messages at times greater or equal to t.

We can decouple these two properties of a notification

into a guarantee time tg and capability time tc, which

may be distinct. This generalization for example allows

“state purging” notifications [22] that free resources as-

sociated with tg, but do not generate other events and so

can set tc to ⊤ (i.e., after all processing). Since tc = ⊤,

the notification does not prevent other notifications from

being delivered, and need not introduce any coordina-

tion. Notifications with tg < tc can also be useful to con-

strain otherwise asynchronous execution, for example

by providing “bounded staleness” [11], which guaran-

tees that the system does not proceed more than a defined

number of iterations beyond any incomplete iteration.

3 Distributed implementation

Naiad is our high-performance distributed implementa-

tion of timely dataflow. Figure 5 shows the schematic

architecture of a Naiad cluster: a group of processes

hosting workers that manage a partition of the timely

dataflow vertices. Workers exchange messages locally

using shared memory, and remotely using TCP connec-

tions between each pair of processes. Each process par-

ticipates in a distributed progress tracking protocol, in

order to coordinate the delivery of notifications. We im-

plemented the core Naiad runtime as a C# library, in

22,700 lines of code. In this section, we describe the

techniques that Naiad uses to achieve high performance.

3.1 Data parallelism

Like other dataflow systems [15, 41, 42] Naiad relies on

data parallelism to increase the aggregate computation,

memory, and bandwidth available to applications. A

program specifies its timely dataflow graph as a logical

graph of stages linked by typed connectors. Each con-

nector optionally has a partitioning function to control

the exchange of data between stages. At execution time,

Naiad expands the logical graph into a physical graph

where each stage is replaced by a set of vertices and

each connector by a set of edges. Figure 5 shows a logi-

cal graph and a corresponding physical graph, where the

connector from A to B has partitioning function H(m)

on typed messages m.

The regular structure of data parallel dataflow graphs

simplifies vertex implementations, which can be agnos-

tic to the degree of parallelism in a stage. When a vertex

sends a message on a connector, the system automati-

cally routes the message to the appropriate destination

vertex using the partitioning function. Specifically, the

partitioning function maps a message to an integer, and

the system routes all messages that map to the same inte-

ger to the same downstream vertex. A programmer can

use partitioning functions to hash or range partition in-

coming messages by a key, in order to implement “group

by” or “reduce” functionality [15, 41]. When no par-

titioning function is supplied, the system delivers mes-

sages to a local vertex (e.g., Bi to Ci in Figure 5).

Regular structure also allows Naiad to simplify its

reasoning about the could-result-in relation. Naiad

projects each pointstamp p from the physical graph to

a pointstamp p̂ in the logical graph, and evaluates the

could-result-in relation on the projected pointstamps.

This projection leads to a loss of resolution, since there

are cases where p1 cannot-result-in p2 but p̂1 could-

result-in p̂2. However, using the logical graph ensures

that the size of the data structures used to compute the

relation depends only on the logical graph and not the

much larger physical graph. As we explain in §3.3, using

projected pointstamps also reduces the amount of com-

munication needed for coordination between workers.

3.2 Workers

Each Naiad worker is responsible for delivering mes-

sages and notifications to vertices in its partition of

the timely dataflow graph. When faced with multiple

runnable actions (messages and notifications to deliver)

workers break ties by delivering messages before noti-

fications, in order to reduce the amount of queued data.

Different policies could be used, such as prioritizing the

delivery of messages and notifications with the earliest

pointstamp to reduce end-to-end latency.

443

Workers communicate using shared queues and have

no other shared state. This isolation ensures that only

a single thread of control ever executes within a ver-

tex, and allows much simpler vertex implementations.

Each call to SENDBY implicitly causes the calling ver-

tex to yield if the destination vertex is managed by the

same worker. Thus, the worker may deliver the message

immediately by invoking the appropriate ONRECV call-

back, rather than queuing it for later delivery. At this

point the worker may also deliver queued messages that

have been received from other workers. The ability of a

worker to move between vertices and deliver incoming

remote messages enables Naiad to keep system queues

small and to lower the latency of message delivery.

The existence of cycles in the dataflow graph raises

the possibility of re-entrancy: a vertex interrupted when

it calls SENDBY may be re-entered by one of its ON-

RECV callbacks. By default vertices are not re-entrant,

and the vertex’s worker must enqueue the message for

later delivery; however, a vertex implementation may

optionally specify a bounded depth for re-entrant calls.

Without support for re-entrancy, the implementations

of many iterative patterns would overload the system

queues. Re-entrancy allows the vertex implementation

to coalesce incoming messages in ONRECV, and thereby

reduce overall memory consumption.

3.3 Distributed progress tracking

Before delivering a notification, a Naiad worker must

know that there are no outstanding events at any worker

in the system with a pointstamp that could-result-in the

pointstamp of the notification. We adapt the approach

for progress tracking based on a single global frontier

(§2.3) to a distributed setting in which multiple work-

ers coordinate independent sets of events using a local

view of the global state. We base our initial protocol on

broadcasting occurrence count updates, and then refine

it with two optimizations.

For each active pointstamp each worker maintains a

local occurrence count, representing its local view of

the global occurrence counts, a local precursor count

computed from its local occurrence counts, and a lo-

cal frontier defined using the could-result-in relation on

the local active pointstamps. The worker does not im-

mediately update its local occurrence counts as it dis-

patches events, but instead broadcasts (to all workers,

including itself) progress updates, which are pairs (p ∈
Pointstamp,δ ∈ Z) with δ chosen according to the up-

date rules in §2.3. The broadcasts from a given worker

to another must be delivered in FIFO order, but there is

no constraint on ordering between two workers’ broad-

casts. When a worker receives a progress update (p,δ),
it adds δ to the local occurrence count for p.

This protocol has an important safety property: no lo-

cal frontier ever moves ahead of the global frontier, taken

across all outstanding events in the system. Therefore, if

some worker has a pending notification at p = (t,v) and

p is in the local frontier, p must also be in the global

frontier and the worker can safely deliver the notifica-

tion to v. A formal specification of the protocol and a

safety proof are presented in a separate paper [4].

Optimizing broadcast updates A naive implementa-

tion of the protocol would broadcast every progress up-

date and result in impractical communication demands.

We implement two optimizations that, taken together, re-

duce the volume of communication.

The first optimization uses projected pointstamps in

the progress tracking protocol. The protocol thus keeps

track of occurrence and precursor counts for each stage

and connector, as opposed to each vertex and edge. Al-

though, as noted in §3.1, this representation can reduce

opportunities for concurrency, it substantially reduces

the volume of updates and the size of the state main-

tained for progress tracking.

The second optimization accumulates updates in a lo-

cal buffer before broadcasting them. Updates with the

same pointstamp are combined into a single entry in the

buffer by summing their deltas. Updates may be accu-

mulated as long as every buffered pointstamp p satis-

fies one of two properties: either some other element of

the local frontier could-result-in p, or p corresponds to a

vertex whose net update (the sum of the local occurrence

count, the buffered update count, and any updates that

the worker has broadcast but not yet received) is strictly

positive. When the accumulator receives new progress

updates (either from local workers or other accumula-

tors), it must test whether the accumulated pointstamps

still satisfy this condition: if not, the accumulator broad-

casts all updates in the buffer. When updates are broad-

cast, positive values must be sent before negative values.

Any fixed group of workers can perform this accu-

mulation, and it may be performed hierarchically. By

default Naiad accumulates updates at the process level

and at the cluster level: each process sends accumulated

updates to a central accumulator, which broadcasts their

net effect to all workers. Although this accumulation in-

troduces an additional message delay over direct broad-

casts, it substantially reduces the total number of update

messages, as we evaluate in §5.3.

Our implementation includes two further optimiza-

tions to decrease the expected latency of broadcasting

updates. The central cluster-level accumulator optimisti-

cally broadcasts a UDP packet containing each update

before re-sending updates on the TCP connections be-

tween the accumulator and other processes. Messages

contain a sequence number to ensure that delivery is or-

444

dered and idempotent. In addition, Naiad uses a modifi-

cation of the eventcount synchronization primitive [37]

that allows threads to be woken by either a broadcast

or unicast notification. Without this optimization, wak-

ing workers sequentially adds significant overhead to the

critical path of low-latency iterative computations.

3.4 Fault tolerance and availability

Naiad has a simple but extensible implementation of

fault tolerance: each stateful vertex implements a

CHECKPOINT and RESTORE interface, and the system

invokes these as appropriate to produce a consistent

checkpoint across all workers. Each vertex may either

log data as computation proceeds, and thus respond to

checkpoint requests with low latency; or write a full, and

potentially more compact, checkpoint when requested.

The stateful components of the progress tracking proto-

col implement the same interface; because they are small

and frequently updated, they produce full checkpoints.

When the system periodically checkpoints, all pro-

cesses first pause worker and message delivery threads,

flush message queues by delivering outstanding ON-

RECV events (buffering and logging any messages that

are sent by doing so), and finally invoke CHECKPOINT

on each stateful vertex. The system then resumes worker

and message delivery threads and flushes buffered mes-

sages. Once the desired level of durability is achieved—

e.g., the checkpoint files are flushed to disk, or replicated

to other computers—the checkpoint is complete.

To recover from a failed process, all live processes re-

vert to the last durable checkpoint, and the vertices from

the failed process are reassigned to the remaining pro-

cesses. The RESTORE method reconstructs the state of

each stateful vertex using its respective checkpoint file.

There is an inherent design tension between allow-

ing a system to make fine-grained updates to mutable

state and reliably logging enough information to permit

consistent recovery when a local scheduler fails. Our

current design favors performance in the common case

that there are no failures, at the expense of availability

in the event of a failure. Naiad can consume inputs from

a reliable message queue and write its outputs to a dis-

tributed key-value store [8]. This approach allows the

overall system to satisfy reads and writes while Naiad

recovers from failures, at some cost to freshness. Other

tradeoffs may be more suitable for some applications:

for example, MillWheel [5], a non-iterative streaming

system with a programming model similar to the one de-

fined in §2.2, writes per-key checkpoints for each batch

of messages processed. This policy increases the latency

of each message, but enables faster resumption after a

failure. We discuss the throughput and latency impact of

logging and checkpointing in §6.3.

3.5 Preventing micro-stragglers

Many Naiad computations are sensitive to latency: tran-

sient stalls at a single worker can have a disproportionate

effect on overall performance. For example, in iterative

computations a phase of execution between notifications

can last as little as one millisecond [28], whereas events

such as packet loss, contention on concurrent data struc-

tures, and garbage collection can result in delays ranging

from tens of milliseconds to tens of seconds. The prob-

ability of such an event occurring in a single phase of

execution increases with the size of a cluster, and there-

fore we view the resulting micro-stragglers as the main

obstacle to scalability for low-latency workloads.

Micro-stragglers bear some similarity to the well-

known stragglers in coarse-grained batch-processing

systems, but different mitigation techniques apply.

Workers in a batch-processing system are stateless, so

scheduling duplicate work items can reduce the impact

of stragglers [14, 15, 44]. Naiad maintains mutable state

to decrease the latency of execution: speculatively exe-

cuting duplicate work would require the system to coor-

dinate updates to replicated state, and we expect the cost

to outweigh the benefits.

Rather than dealing with micro-stragglers reactively,

Naiad reduces their impact and avoids them wherever

possible. We now describe several sources of micro-

stragglers and their effective mitigations.

Networking Naiad uses TCP over Ethernet to deliver

remote messages because it offers reliable message de-

livery, and modern Ethernet network interface cards

(NICs) accelerate much of the TCP protocol stack in

hardware. However, the throughput of messages be-

tween a pair of processes is bursty: many iterative com-

putations begin with a large data exchange, but towards

the tail it is common for messages to fit in a single

packet. This bursty pattern can lead to micro-stragglers

on a best-effort network such as ours, and we have taken

several steps to reduce their impact.

The default TCP configuration on Windows penalizes

two processes that exchange a small message in each

direction with a 200 ms delay. Nagle’s algorithm [32]

and delayed acknowledgments [12] are responsible for

this delay. We therefore disable Nagle’s algorithm for

Naiad TCP sockets, and reduce the delayed acknowledg-

ment timeout to 10 ms. In the event of packet loss, the

default retransmission timeout is 300 ms, which is far

longer than many congestion events in Naiad: for ex-

ample, the cluster-level progress tracking accumulator

(§3.3) often aggregates one packet from each process,

and near-simultaneous arrival of these packets can cause

loss due to incast [6]. We therefore reduce the mini-

mum retransmit timeout to 20 ms. Since Naiad aggre-

445

gates messages at the application level, it can maintain

high throughput despite these options.

Our evaluation cluster has a switched Gigabit Ethernet

network with a simple topology: one core switch, and

two top-of-rack switches with 32 ports each. Despite

over-provisioning the inter-switch links with a 40 Gbps

uplink and enabling 802.3x flow control, we observe

packet loss at the NIC receive queues during incast traf-

fic patterns [31]. It is likely that Datacenter TCP [6]

would be beneficial for our workload, but the rack

switches in our cluster lack necessary support for ex-

plicit congestion notification.

Since Naiad controls all aspects of data exchange, it

is likely that a specialized transport protocol would pro-

vide better performance than TCP over Ethernet. We

are investigating the use of RDMA over InfiniBand,

which has the potential to reduce micro-stragglers using

mechanisms such as microsecond message latency, reli-

able multicast, and user-space access to message buffers.

These mechanisms will avoid TCP-related timers in the

operating system, but achieving optimal performance

will require attention to quality of service [35].

Data structure contention To scale out within a sin-

gle machine, most data structures in Naiad—in par-

ticular the vertex state—are accessed from a single

worker thread. Nevertheless, coordination is required

to exchange messages between workers, and Naiad uses

.NET concurrent queues and lightweight spinlocks for

this purpose. These primitives back off by sleeping for

1 ms when contention is detected. Since the default

timer granularity on Windows is 15.6 ms, with typical

scheduling quanta of 100 ms or more, backing off can

result in very high latency for concurrent access to a

contended shared data structure. Decreasing the clock

granularity to 1 ms reduces the impact of these stalls.

Garbage collection The .NET runtime, on which we

implemented Naiad, uses a mark-and-sweep garbage

collector (GC) to reclaim memory. While the .NET GC

is concurrent, it can suspend thread execution during

some allocations and lead to micro-stragglers.

To lower the cost of garbage collection, we engineered

the system to trigger the GC less frequently, and shorten

pauses due to collection. The Naiad runtime and the li-

braries that we have built on top of it avoid object al-

location wherever possible, using buffer pools to recy-

cle message buffers and transient operator state (such as

queues). We use value types extensively, because an ar-

ray of value-typed objects can be allocated as a single

region of memory with a single pointer, and the GC cost

is proportional to the number of pointers (rather than

objects). The .NET runtime supports structured value

types, enabling their use for many Naiad data structures.

4 Writing programs with Naiad

Although one can write Naiad programs directly against

its timely dataflow abstraction, many users find simpler,

higher-level interfaces easier to use. Examples include

SQL, MapReduce [15], LINQ [41], Pregel’s vertex-

program abstraction [27], and PowerGraph’s GAS ab-

straction [16]. We designed Naiad so that common

timely dataflow patterns can be collected into libraries,

allowing users to draw from these libraries when they

meet their needs and to construct new timely dataflow

vertices when they do not, all within the same pro-

gram. This section first shows a simple Naiad program

to highlight the common structure of applications built

on Naiad, then discusses some of the libraries we have

built, and finally sketches the process of writing libraries

and custom vertices using the low-level Naiad API.

4.1 A prototypical Naiad program

All Naiad programs follow a common pattern: first de-

fine a dataflow graph, consisting of input stages, com-

putational stages, and output stages; and then repeat-

edly supply the input stages with data. Input and output

stages follow a push-based model, in which the user sup-

plies new data for each input epoch, and Naiad invokes

a user-supplied callback for each epoch of output data.

The following example fragment uses our library for in-

cremental computation [28], which allows the program-

mer to use patterns familiar from LINQ to implement an

incrementally updatable MapReduce computation:

// 1a. Define input stages for the dataflow.

var input = controller.NewInput<string>();

// 1b. Define the timely dataflow graph.

// Here, we use LINQ to implement MapReduce.

var result = input.SelectMany(y => map(y))

.GroupBy(y => key(y),

(k, vs) => reduce(k, vs));

// 1c. Define output callbacks for each epoch

result.Subscribe(result => { ... });

// 2. Supply input data to the query.

input.OnNext(/* 1st epoch data */);

input.OnNext(/* 2nd epoch data */);

input.OnNext(/* 3rd epoch data */);

input.OnCompleted();

Step 1a defines the source of data, and Step 1c defines

what to do with output data when produced. Step 1b

constructs a timely dataflow graph using SelectMany

and GroupBy library calls, which assemble stages of

pre-defined vertices and behave as their LINQ counter-

parts: SelectMany applies its argument function to

each message, and GroupBy collates the results by a

key function before applying its reduction function.

446

Once the graph is fully assembled, in step 2

OnNext supplies the computation with epochs of in-

put data. The Subscribe stage applies its callback

to each completed epoch of data it observes. Finally,

OnCompleted indicates that no further epochs of input

data exist, allowing Naiad to drain messages and cleanly

shut down the computation.

4.2 Data parallel patterns in Naiad

We packaged several higher-level programming patterns

into libraries implemented on Naiad’s timely dataflow

abstractions. This separation of library code from sys-

tem code makes it easy for users to draw from existing

patterns, create their own patterns, and adapt other pat-

terns, all without requiring access to private APIs. Pub-

lic reusable low-level programming abstractions distin-

guish Naiad from a number of other data parallel sys-

tems [26, 27, 41, 42] that enforce a single high-level

programming model, and conceal the boundary between

this model and lower-level primitives within private sys-

tem code. We hope that this distinction will make Naiad

appealing as the implementation layer for future data

parallel projects.

It was straightforward to implement a library of in-

cremental LINQ-like operators. Most build on unary

and binary forms of a generic buffering operator whose

ONRECV function adds records to lists indexed by

timestamp, and whose ONNOTIFY(t) applies a suitable

transformation to the list(s) for timestamp t. To im-

prove performance, we specialized the implementation

of operators that do not require coordination: for exam-

ple Concat immediately forwards records from both

inputs, Select transforms and outputs data without

buffering, and Distinct outputs a record as soon as it

is seen for the first time. The ability to perform this spe-

cialization in library code (rather than in the core Naiad

runtime) decouples the evolution of the LINQ imple-

mentation from improvements to the underlying system.

We implemented a subset of the Bloom framework

for asynchronous computation [7]. The LINQ operators

Where, Concat, Distinct, and Join are sufficient,

within a loop, to implement Datalog-style queries. None

of these operators invokes NOTIFYAT, and subgraphs

using only these will execute asynchronously (without

coordination) on Naiad. We also implemented a mono-

tonic Aggregate operator that emits records when the

aggregate improves, and is suitable for implementing

BloomL-style aggregation [13]. All of these constructs

compose with other LINQ operators and timely dataflow

stages, and Naiad introduces coordination only where

vertices explicitly require it.

As a final example, we implemented a version of the

Pregel bulk synchronous parallel model for graph algo-

rithms [27] as a Naiad library. A Pregel program op-

erates on a data graph in a series of iterations (or “su-

persteps”) in which messages are exchanged, aggregates

computed, and the graph mutated. While one can build

a Pregel-like implementation using LINQ-style opera-

tors [40], such a collection-oriented pattern makes it

hard to support Pregel’s full semantics including aggre-

gation and graph mutation. Instead we base our Pregel

port on a custom vertex with several strongly typed

inputs and outputs (for messages, aggregated values,

and graph mutations), connected via multiple feedback

edges in parallel.

4.3 Constructing timely dataflow graphs

While we expect most uses of Naiad to rely on libraries

of graph construction patterns, Naiad provides a simple

graph construction interface based on timely dataflow.

The interface is the basis for all libraries, but it also

makes it easy for applications to include ad hoc vertices

that provide specialized functionality.

Graph construction involves two main steps: defin-

ing the behavior of dataflow vertices, and defining the

dataflow topology (including any loops). A Naiad stage

is a collection of vertices defined by a vertex factory,

which is invoked by the system to instantiate each inde-

pendent instance of the vertex. Stages may have multi-

ple inputs and outputs, each of which has an associated

C# record type, and which are connected using typed

streams whose endpoints must have matching record

types. Stage inputs may specify a partitioning require-

ment, and stage outputs a partitioning guarantee, and

the system inserts exchange connectors where necessary

to ensure that input partitioning requirements are satis-

fied. Vertices must provide a typed ONRECV callback

for each input, and must provide an ONNOTIFY callback

if the stage supports notification.

In general, the inputs of a stage must be connected

before its outputs, in order to prevent invalid cycles.

System-provided LoopContext objects allow the pro-

grammer to define multiple ingress, egress, and feedback

stages, and connect them to other computation stages.

Only feedback stages may have their outputs connected

before their inputs, and this ensures that all cycles con-

form to the constraints of valid timely dataflow graphs.

5 Performance evaluation

Naiad is designed to perform effectively in different

modes of operation, supporting both high throughput

and low latency as required by the workload. In this

section we examine Naiad’s behavior in each of these

operating regimes using several micro-benchmarks.

447

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60A
g
g
re

g
a
te

 t
h
ro

u
g
h
p
u
t

(G
b
p
s
)

Number of computers

Ideal
.NET Socket

Naiad

(a) All-to-all exchange throughput (§5.1)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60

T
im

e
 p

e
r

it
e
ra

ti
o
n
 (

m
s
)

Number of computers

95th/5th percentiles
Quartiles

Median

(b) Global barrier latency (§5.2)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

P
ro

to
c
o
l-
re

la
te

d
 t

ra
ff

ic
 (

M
B

)

Number of computers

None
GlobalAcc
LocalAcc

Local+GlobalAcc

(c) Progress tracking optimizations (§5.3)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10 20 30 40 50 60S
p
e
e
d
u
p
 v

s
.

s
in

g
le

 c
o
m

p
u
te

r

Number of computers

 WordCount
WCC

(d) Strong scaling (§5.4)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 10 20 30 40 50 60S
lo

w
d
o
w

n
 v

s
.

s
in

g
le

 c
o
m

p
u
te

r

Number of computers

WCC
 WordCount

(e) Weak scaling (§5.4)

Figure 6: These microbenchmarks evaluate baseline Naiad system performance on synthetic datasets.

The hardware configuration is as follows: two racks of

32 computers, each with two quad-core 2.1 GHz AMD

Opteron processors, 16 GB of memory, and an Nvidia

NForce Gigabit Ethernet NIC. Each rack switch has a

40 Gbps uplink to the core switch. Unless otherwise

stated, graphed points are the average across five trials,

with error bars showing minimum and maximum values.

5.1 Throughput

The first micro-benchmark measures the maximum

throughput for a distributed computation. The program

constructs a cyclic dataflow that repeatedly performs the

all-to-all data exchange of a fixed number of records.

Figure 6a plots the aggregate throughput against the

number of computers.

The uppermost line shows the “Ideal” aggregate

throughput based on the Ethernet bandwidth, and the

middle line shows the sustained all-to-all throughput

achieved at the .NET Socket layer using long-running

TCP connections with 64 KB messages. The middle line

demonstrates the achievable throughput given the net-

work topology, TCP overheads, and .NET API costs.

The final line shows the throughput that Naiad

achieves when an application exchanges a large number

of 8-byte records (50M per computer) between all pro-

cesses in the cluster. The small record size leads to near

worst-case overheads for serialization and evaluating the

partitioning function. The experiment demonstrates that

Naiad’s throughput capabilities scale linearly, though

opportunities exist to improve its absolute performance.

5.2 Latency

The second experiment evaluates the minimal time re-

quired for global coordination. Again, we construct

a simple cyclic dataflow graph, but in this case the

vertices exchange no data and simply request and re-

ceive completeness notifications. No iteration can pro-

ceed until all notifications from the previous iteration

have been delivered. Figure 6b plots the distribution of

times for 100K iterations using median, quartiles, and

95th percentile values. The median time per iteration re-

mains small at 753 µs for 64 computers (512 workers),

but the 95th percentile results show the adverse impact of

micro-stragglers as the number of computers increases.

For many real programs, the subset of vertices in a

stage requesting a completeness notification can be rel-

atively small, and having fewer participants reduces the

cost of coordination. For example, in the tail of a fixed-

point computation, where latency is crucial, communi-

cation patterns typically become sparse and hence the

number of participants in coordination is often small.

5.3 Protocol optimizations

In order to evaluate the optimizations to the progress

tracking protocol described in §3.3, we run a weakly

connected components (WCC) computation on a ran-

dom graph of 300M edges (about 2.2 GB of raw input).

Figure 6c shows the number of bytes of progress proto-

col traffic generated by 8 workers per computer. In this

experiment we plot the results from one run, since the

448

volume of progress protocol traffic for this computation

does not vary significantly between executions.

The optimizations reduce the volume of protocol traf-

fic by one or two orders of magnitude, depending on

whether the accumulation is performed at the computer

level (“LocalAcc”), at the cluster level (“GlobalAcc”),

or both. In practice we find little difference in running

times with and without global accumulation; the reduc-

tion in messages from local accumulation at the com-

puter level is sufficient to prevent progress traffic from

becoming a bottleneck. Although we have not observed

it experimentally, we are aware that the current protocol

may limit scalability, and anticipate that a deeper accu-

mulation and distribution tree will help to disseminate

progress updates more efficiently within larger clusters.

5.4 Scaling

We consider the scaling characteristics of Naiad using

two contrasting applications. WordCount is an embar-

rassingly parallel MapReduce program that computes

word frequencies in a Twitter corpus of size 128 GB un-

compressed, generated by replicating an initial 12.0 GB

corpus. WCC is a weakly connected components com-

putation on a random graph of 200M edges. WCC is

a challenging scalability test: it involves numerous syn-

chronization points and is throughput-limited in early it-

erations of the loop, becoming latency-constrained when

nearing convergence.

In order to evaluate strong scaling, we add compute

resources while keeping the size of the input fixed, so

we expect communication cost to eventually limit fur-

ther scaling. Figure 6d plots the running times for the

two applications. WCC starts to scale more slowly at

around 24 computers and reaches a maximum speedup

of 38× on 64 computers. WordCount scales fairly lin-

early, with 46× speedup on 64 computers.

To evaluate weak scaling, we measure the effect of

increasing both the number of computers and the size

of the input. A computation with perfect weak scaling

would have equal running time for each configuration.

Figure 6e shows how WCC performs on a random in-

put graph with a constant number of edges (18.2M) and

nodes (9.1M) per computer. The running time degrades

by a factor of approximately 1.44× (29.4 s compared to

20.4 s) for a 1.1B edge graph run on 64 computers, rel-

ative to the execution in a single computer. Most of the

deviation from perfect scaling can be explained by the

throughput experiment. For every weak scaling configu-

ration of WCC, the amount of data sent and received by

the workers on a given computer is a constant 360 MB.

When run on a single computer the destination is always

local. However, two computers exchange half of the data

across the network, and 64 computers exchange 63
64

of

the data (355 MB) across the network. From Figure 6a,

the cost of exchanging 355 MB between 64 computers is

∼7.6 s, accounting for most of the 9 s slowdown.

Figure 6e also shows the weak scaling of WordCount,

with 2 GB compressed input per computer. The amount

of data exchanged in WordCount is far smaller than in

WCC, because of the greater effectiveness of combin-

ers before the data exchange, but it still grows with

the number of processes and the computation becomes

throughput-limited during the data exchange. As a re-

sult, WordCount does not achieve perfect weak scaling

(in the worst case 1.23× the single-computer time), but

its weak scaling improves over WCC.

6 Real world applications

We now consider several applications drawn from the

literature on batch, streaming, and graph computation,

and compare Naiad’s expressiveness and performance

against existing systems. The additional properties and

features of other systems complicate a comparison, but

we show that Naiad achieves excellent performance rela-

tive to both general-purpose frameworks and specialized

systems, and that it can express algorithms at a high level

with a modest number of lines of code.

Additionally, we develop and evaluate an example in

the spirit of Figure 1, maintaining statistics derived from

an incremental graph analysis, and serving interactive

queries against the results. We are not aware of another

system that can implement this computation at interac-

tive timescales, whereas Naiad responds to updates and

queries with sub-second latencies.

Unless otherwise specified, the cluster setup and the

meaning of error bars are as described in Section 5.

6.1 Batch iterative graph computation

Najork et al. [34] compare three different approaches to

graph computation on large-scale real world datasets:

using a distributed database (PDW [2]), a general-

purpose batch processor (DryadLINQ [41]), and a

purpose-built distributed graph store (SHS [33]). They

measure the performance of standard graph analyses

over two ClueWeb09 datasets, including the larger 1B

page, 8B edge “Category A” dataset [1]. We compare

their performance numbers with those of Naiad in Ta-

ble 1 on the same problems on equivalent hardware (16

of our cluster computers). The substantial speedups

(up to 600×) demonstrate the power of being able to

maintain application-specific state in memory between

iterations. Systems like DryadLINQ incur a large per-

iteration cost when serializing local state, and thus fa-

vor algorithms that minimize the number of iterations.

449

 1

 10

 100

 0 10 20 30 40 50 60

T
im

e
 p

e
r

it
e
ra

ti
o
n
 (

s
)

Number of computers

Naiad Pregel
Naiad Vertex
PowerGraph
Naiad Edge

(a) PageRank on Twitter follower graph (§6.1)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 10 20 30 40 50 60 70

S
p
e
e
d
u
p
 v

s
.

s
in

g
le

 V
W

Number of computers

Naiad
VW

(b) Logistic regression speedup (§6.2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10

F
ra

c
ti
o
n
 o

f
re

s
p
o
n
s
e
s

Response latency (s)

None
Checkpoint

Logging

0.95

1

 0.1 1 10

(c) k-Exposure response time (§6.3)

Figure 7: These experiments evaluate Naiad performance on diverse real world applications.

Algorithm PDW DryadLINQ SHS Naiad

PageRank 156,982 68,791 836,455 4,656

SCC 7,306 6,294 15,903 729

WCC 214,479 160,168 26,210 268

ASP 671,142 749,016 2,381,278 1,131

Table 1: Running times in seconds of several graph

algorithms on the Category A web graph. Non-Naiad

measurements are due to Najork et al. [34].

Because Naiad eliminates this per-iteration cost, it can

also use algorithms that perform more and sparser iter-

ations. Compared to the published approaches, the in-

cremental algorithms for weakly connected components

(WCC) and approximate shortest paths (ASP) do less

work and exchange substantially less data over the net-

work, but require many more iterations to converge. Our

implementations of PageRank, strongly connected com-

ponents (SCC), WCC, and ASP in Naiad require 30,

161, 49, and 70 lines of non-library code respectively.

Several systems for iterative graph computation have

adopted the computation of PageRank on a Twitter fol-

lower graph [21] as a standard benchmark. The graph

contains 42M nodes and 1.5B edges, and is approxi-

mately 6 GB on disk. In Figure 7a we compare an imple-

mentation of PageRank using sparse matrix-vector mul-

tiplication to the published results for PowerGraph [16],

which were measured on more powerful hardware (EC2

cluster-compute instances with 10 Gbps Ethernet). Each

data point is the average of 10 successive iterations.

We present two “native” Naiad approaches: one par-

titions edges by source vertex (Naiad Vertex), and the

other partitions edges using a space-filling curve (Naiad

Edge), similar in spirit to PowerGraph’s edge partition-

ing which optimizes a vertex cut objective. These imple-

mentations require 30 and 547 lines of code respectively,

where many of the 547 lines could be re-used for other

programs in the GAS model [16]. We also present the

results of an implementation that uses the Naiad port of

the Pregel [27] abstraction, taking 38 lines of code.

While the amount of computation and communica-

tion varies slightly according to the variant of the al-

gorithm used, the dominant difference in running times

comes from layering the algorithm on different abstrac-

tions; for example the Pregel abstraction introduces

overhead by supporting features such as graph muta-

tion while the Naiad Edge implementation includes spe-

cialized dataflow vertices that use the low-level Naiad

API. A strength of Naiad is that most developers, seek-

ing simplicity, can build on high-level libraries, while

crucial vertices can be implemented using the low-level

API when higher performance is essential.

6.2 Batch iterative machine learning

Vowpal Wabbit (VW) is an open-source distributed ma-

chine learning library [17]. It performs an iteration of

logistic regression in three phases: each process updates

its local state; processes independently perform training

on local input data; and finally all processes jointly per-

form a global average (AllReduce) to combine their lo-

cal updates. Ideally, for a fixed input, the duration of the

first and third phases should be independent of the num-

ber of processes, and the duration of the second phase

should decrease linearly with the number of processes.

We modify VW so that the first and second phases

run inside a Naiad vertex. The third phase uses a Naiad

implementation of the AllReduce operation. Figure 7b

shows the speedup for an iteration of logistic regression

on 312M input records using VW’s BFGS optimizer,

compared to a single computer running unmodified VW.

The reduced vector is 268 MB, and each computer runs

three VW processes, which fill 16 GB of RAM.

The constant-time cost of the first and third phases

prevents scaling past 32 computers, but Naiad’s AllRe-

duce implementation gives an asymptotic performance

improvement of 35%. VW uses a binary tree to reduce

and broadcast updates, while the Naiad implementation

uses a data parallel AllReduce with each of k workers

reducing and broadcasting 1/k of the vector. VW’s algo-

rithm scales better on hierarchical networks, but our data

450

parallel variant is better suited to small clusters where

the switches have full bisection bandwidth. The tree-

based algorithm is inherently more susceptible to strag-

glers, and does not optimize communication between

processes on the same computer, adding unnecessary

network traffic. We wrote a tree-based AllReduce in

Naiad for comparison, and verified that it has the same

performance as the native VW implementation.

The experiment shows that Naiad is competitive with

a state-of-the-art custom implementation for distributed

machine learning, and that it is straightforward to build

communication libraries for existing applications using

Naiad’s API. Our AllReduce implementation requires

300 lines of code, around half as many as VW’s AllRe-

duce, and the Naiad code is at a much higher level, ab-

stracting the network sockets and threads being used.

6.3 Streaming acyclic computation

Kineograph ingests continually arriving graph data,

takes regular snapshots of the graph for data parallel

computation, and produces consistent results as new data

arrive [10]. The system is partitioned into ingest nodes

and compute nodes, making direct performance compar-

isons complex. When computing the k-exposure metric

for identifying controversial topics on Twitter, Kineo-

graph processes up to 185,000 tweets per second (t/s) on

32 computers with comparable hardware to ours, taking

an average of 90 s to reflect the input in its output. Re-

ducing the ingestion rate can shrink this delay to 10 s.

We implement k-exposure in 26 lines of code using

standard data parallel operators of Distinct, Join,

and Count. When run on the same Twitter stream as

Kineograph, using 32 computers and ingesting 1,000

tweets per epoch on each machine, the average through-

put over five runs is 482,988 t/s with no fault-tolerance,

322,439 t/s with checkpoints every 100 epochs, and

273,741 t/s with continual logging. Figure 7c presents

the distributions of latencies for the three approaches:

continual logging imposes overhead on each batch, but

the overhead of periodic snapshots is visible only in the

tail when some batches are delayed by up to 10 s. In

each case, all responses return within a few seconds, and

the respective median latencies are 40 ms, 40 ms, and

85 ms. The difference in latency arises in part because

Kineograph synchronously replicates input data before

computation begins, whereas Naiad has the flexibility to

report outputs before it has made its state durable.

6.4 Streaming iterative graph analytics

Finally, we bring together several of the programming

patterns that Naiad handles well, returning to the anal-

ysis task motivated in Figure 1. The goal is to ingest

 1

 10

 100

 1000

 30 35 40 45 50

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
)

Time from start of trace (s)

Fresh 1s delay

Figure 8: Time series of response times for interac-

tive queries on a streaming iterative graph analysis

(§6.4). The computation receives 32,000 tweets/s, and

10 queries/s. “Fresh” shows queries being delayed

behind tweet processing; “1 s delay” shows the bene-

fit of querying stale but consistent data.

a continually arriving stream of tweets, extract hashtags

and mentions of other users, compute the most popular

hashtag in each connected component of the graph of

users mentioning other users, and provide interactive ac-

cess to the top hashtag in a user’s connected component.

The dataflow graph follows the outline in Figure 1.

There are two input stages: one for the stream of tweets

(each containing a user name and the raw tweet text)

and the other for requests, specified by a user name and

query identifier. The tweets feed in to an incremental

connected components computation [28]. To produce

the top hashtag for each component, the computation ex-

tracts the hashtags from each tweet, joins each hashtag

with the component ID (CID) for the user who tweeted

it, and groups the results by CID. Incoming queries are

joined with the CIDs to get the user’s CID, and then

with the top hashtags to produce the top hashtag from

that component. The logic of the program, not including

standard operators and an implementation of connected

components [28], requires 27 lines of code.

We add a new query once every 100 ms, and assess

the latency before Naiad returns the result to the external

program. To generate a constant volume of input data,

we introduce 32,000 tweets per second, which is higher

than the approximate rate of 10,000 tweets per second

in our dataset. We schedule data input according to real

time rather than processing the trace as quickly as possi-

ble, in order to analyze the effect on latency of updates

and queries arriving at different rates.

Figure 8 plots two time series of responses. In the

first (“Fresh”) all responses are produced in less than

one second, but the “shark fin” motif indicates that

queries are queued behind the work to update the com-

ponent structure and popular hashtags, which takes 500–

900 ms, because a correct answer cannot be provided

until this work completes. We can exploit Naiad’s sup-

451

port for overlapped computation by trading off respon-

siveness for staleness. The second time series (“1 s de-

lay”) shows that response times decrease sharply when

the queries refer to computed data that are one second

stale, rather than the data that are concurrently being

processed. When using one-second-stale data most re-

sponse times are less than 10 ms, with occasional peaks

as high as 100 ms when the CID computation interferes

with query execution. A scheduling policy that favors

query processing could achieve still lower latencies.

7 Related work

Dataflow Recent systems such as CIEL [30],

Spark [42], Spark Streaming [43], and Optimus [19]

extend acyclic batch dataflow [15, 18] to allow dynamic

modification of the dataflow graph, and thus support

iteration and incremental computation without adding

cycles to the dataflow. By adopting a batch-computation

model, these systems inherit powerful existing tech-

niques including fault tolerance with parallel recovery;

in exchange each requires centralized modifications to

the dataflow graph, which introduce substantial over-

head that Naiad avoids. For example, Spark Streaming

can process incremental updates in around one second,

while in Section 6 we show that Naiad can iterate and

perform incremental updates in tens of milliseconds.

Stream processing systems support low-latency

dataflow computations over a static dataflow graph, us-

ing punctuations in the stream of records [38] to sig-

nal completeness. Punctuations can implement blocking

operators such as GROUP BY [38], but do not support

general iteration. MillWheel [5] is a recent example of

a streaming system with punctuations (and sophisticated

fault-tolerance) that adopts a vertex API very similar to

Naiad’s, but does not support loops. Chandramouli et

al. propose the flying fixed-point operator [9] to handle

cyclic streams when dataflows do not allow record re-

traction. In contrast, Naiad can execute algorithms that

use retractions, such as sliding-window connected com-

ponents and strongly connected components.

Previous systems have constructed cyclic dataflow

graphs for purposes such as distributed overlays [24]

and routing protocols [23, 25], packet processing in

software [20], and high-throughput server design [39].

Since none of these applications requires the computa-

tion of consistent outputs, they do not contain any mech-

anism for coordinating progress around cycles.

Asynchronous computation Several recent systems

have abandoned synchronous execution in favor of a

model that asynchronously updates a distributed shared

data structure, in order to achieve low-latency incremen-

tal updates [10, 36] and fine-grained computational de-

pendencies [16, 26]. Percolator [36] structures a web

indexing computation as triggers that run when new val-

ues are written into a distributed key-value store. Sev-

eral subsequent systems use a similar computational

model, including Kineograph [10], Oolong [29], and

Maiter [46]. GraphLab [26] and PowerGraph [16] offer

a different asynchronous programming model for graph

computations, based on a shared memory abstraction.

These asynchronous systems are not designed to ex-

ecute dataflow graphs so the notion of completeness of

an epoch or iteration is less important, but the lack of

completeness notifications makes it hard to compose

asynchronous computations. Although GraphLab and

PowerGraph provide a global synchronization mecha-

nism that can be used to write a program that performs

one computation after another [26, §4.5], they do not

achieve task- or pipeline-parallelism between stages of

a computation. Naiad allows programs to introduce co-

ordination only where it is required, to support hybrid

asynchronous and synchronous computation.

8 Conclusions

Naiad’s performance and expressiveness demonstrate

that timely dataflow is a powerful general-purpose low-

level programming abstraction for iterative and stream-

ing computation. Our approach contrasts with that of

many recent data processing projects, which tie new

high-level programming patterns to specialized system

designs [10, 16, 26, 27]. We have shown that Naiad can

implement the features of many of these specialized sys-

tems, with equivalent performance, and can serve as a

platform for sophisticated applications that no existing

system supports.

We believe that separating systems design into a com-

mon platform component and a family of libraries or

domain-specific languages is good for both users and re-

searchers. Researchers benefit from the ability to dif-

ferentiate advances in high-level abstractions from ad-

vances in the design and implementation of low-level

systems, while users benefit from a wider variety of

composable programming patterns and fewer, more fully

realized systems.

Acknowledgments

We would like to thank Mihai Budiu, Janie Chang,

Carlo Curino, Steve Hand, Mike Schroeder, Rusty Sears,

Chandu Thekkath, and Ollie Williams for their helpful

comments on earlier drafts. We would also like to thank

the anonymous SOSP reviewers for their comments, and

Robert Morris for his shepherding of the paper.

452

References

[1] The ClueWeb09 Dataset.

http://lemurproject.org/clueweb09.

[2] Parallel Data Warehouse.

http://www.microsoft.com/en-us/

sqlserver/solutions-technologies/

data-warehousing/pdw.aspx.

[3] Storm: Distributed and fault-tolerant realtime com-

putation. http://storm-project.net/.

[4] M. Abadi, F. McSherry, D. G. Murray, and T. L.

Rodeheffer. Formal analysis of a distributed al-

gorithm for tracking progress. In Proceedings of

the IFIP Joint International Conference on Formal

Techniques for Distributed Systems, June 2013.

[5] T. Akidau, A. Balikov, K. Bekiroǧlu, S. Chernyak,

J. Haberman, R. Lax, S. McVeety, D. Mills,

P. Nordstrom, and S. Whittle. MillWheel: fault-

tolerant stream processing at Internet scale. In Pro-

ceedings of the 39th International Conference on

Very Large Data Bases (VLDB), Aug. 2013.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Pad-

hyey, P. Pately, B. Prabhakarz, S. Senguptay, and

M. Sridharany. Data Center TCP (DCTCP). In

Proceedings of the ACM International Conference

on Applications, Technologies, Architectures and

Protocols for Computer Communications (SIG-

COMM), Aug. 2010.

[7] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R.

Marczak. Consistency analysis in Bloom: a CALM

and collected approach. In Proceedings of the 5th

Conference on Innovative Data Systems Research

(CIDR), Jan. 2011.

[8] B. Calder, J. Wang, A. Ogus, N. Nilakantan,

A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,

J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Kha-

tri, A. Edwards, V. Bedekar, S. Mainali, R. Ab-

basi, A. Agarwal, M. F. ul Haq, M. I. ul Haq,

D. Bhardwaj, S. Dayanand, A. Adusumilli, M. Mc-

Nett, S. Sankaran, K. Manivannan, and L. Rigas.

Windows Azure Storage: a highly available cloud

storage service with strong consistency. In Pro-

ceedings of the 23rd ACM Symposium on Operat-

ing Systems Principles (SOSP), Oct. 2011.

[9] B. Chandramouli, J. Goldstein, and D. Maier.

On-the-fly progress detection in iterative stream

queries. Proceedings of the Very Large Database

Endowment (PVLDB), 2(1):241–252, Aug. 2009.

[10] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng,

M. Wu, F. Yang, L. Zhou, F. Zhao, and E. Chen.

Kineograph: taking the pulse of a fast-changing

and connected world. In Proceedings of the Eu-

roSys Conference, Apr. 2012.

[11] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger,

G. Gibson, K. Keeton, and E. Xing. Solving the

straggler problem with bounded staleness. In Pro-

ceedings of the 14th Workshop on Hot Topics in

Operating Systems (HotOS), May 2013.

[12] D. D. Clark. Window and acknowledgement strat-

egy in TCP. RFC 813, July 1982.

[13] N. Conway, W. R. Marczak, P. Alvaro, J. M.

Hellerstein, and D. Maier. Logic and lattices

for distributed programming. In Proceedings of

the 3rd ACM Symposium on Cloud Computing

(SoCC), Oct. 2012.

[14] J. Dean and L. A. Barroso. The tail at scale. Com-

munications of the ACM, 56(2):74–80, Feb. 2013.

[15] J. Dean and S. Ghemawat. MapReduce: Simplified

data processing on large clusters. In Proceedings of

the 6th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), Dec. 2004.

[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and

C. Guestrin. PowerGraph: distributed graph-

parallel computation on natural graphs. In Pro-

ceedings of the 10th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI),

Oct. 2012.

[17] D. Hsu, N. Karampatziakis, J. Langford, and

A. Smola. Parallel online learning. In R. Bekker-

man, M. Bilenko, and J. Langford, editors, Scal-

ing Up Machine Learning: Parallel and Dis-

tributed Approaches. Cambridge University Press,

Dec. 2011.

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-

terly. Dryad: Distributed data-parallel programs

from sequential building blocks. In Proceedings of

the EuroSys Conference, Mar. 2007.

[19] Q. Ke, M. Isard, and Y. Yu. Optimus: A dynamic

rewriting framework for execution plans of data-

parallel computation. In Proceedings of the Eu-

roSys Conference, Apr. 2013.

[20] E. Kohler, R. Morris, B. Chen, J. Jannotti, and

M. F. Kaashoek. The Click Modular Router. ACM

Transactions on Computer Systems, 18(3):263–

297, Aug. 2000.

453

http://lemurproject.org/clueweb09
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/data-warehousing/pdw.aspx
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/data-warehousing/pdw.aspx
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/data-warehousing/pdw.aspx
http://storm-project.net/

[21] H. Kwak, C. Lee, H. Park, and S. Moon. What

is Twitter, a social network or a news media? In

Proceedings of the 19th International World Wide

Web Conference (WWW), Apr. 2010.

[22] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos,

T. Johnson, and D. Maier. Out-of-order processing:

a new architecture for high-performance stream

systems. Proceedings of the Very Large Database

Endowment (PVLDB), 1(1):274–288, Aug. 2008.

[23] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay,

J. M. Hellerstein, P. Maniatis, R. Ranakrishnan,

T. Roscoe, and I. Stoica. Declarative networking:

language, execution and optimization. In Proceed-

ings of the ACM International Conference on Man-

agement of Data (SIGMOD), June 2006.

[24] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,

T. Roscoe, and I. Stoica. Implementing declarative

overlays. In Proceedings of the 20th ACM Sym-

posium on Operating Systems Principles (SOSP),

Oct. 2005.

[25] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ra-

makrishnan. Declarative routing: extensible rout-

ing with declarative queries. In Proceedings of

the ACM International Conference on Applica-

tions, Technologies, Architectures and Protocols

for Computer Communications (SIGCOMM), Aug.

2005.

[26] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,

C. Guestrin, and J. M. Hellerstein. GraphLab: A

new parallel framework for machine learning. In

Proceedings of the 26th Conference on Uncertainty

in Artificial Intelligence (UAI), July 2010.

[27] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.

Dehnert, I. Horn, N. Leiser, and G. Czajkowski.

Pregel: a system for large-scale graph processing.

In Proceedings of the ACM International Confer-

ence on Management of Data (SIGMOD), June

2010.

[28] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.

Differential dataflow. In Proceedings of the 6th

Conference on Innovative Data Systems Research

(CIDR), Jan. 2013.

[29] C. Mitchell, R. Power, and J. Li. Oolong: asyn-

chronous distributed applications made easy. In

Proceedings of the 3rd Asia-Pacific Workshop on

Systems (APSys), July 2012.

[30] D. G. Murray, M. Schwarzkopf, C. Smowton,

S. Smith, A. Madhavapeddy, and S. Hand. CIEL:

a universal execution engine for distributed data-

flow computing. In Proceedings of the 8th USENIX

Symposium on Networked Systems Design and Im-

plementation (NSDI), Mar. 2011.

[31] D. Nagle, D. Serenyi, and A. Matthews. The

Panasas ActiveScale storage cluster: Delivering

scalable high bandwidth storage. In Proceedings of

the ACM/IEEE Supercomputing Conference (SC),

Nov. 2004.

[32] J. Nagle. Congestion control in IP/TCP internet-

works. RFC 896, Jan. 1984.

[33] M. Najork. The scalable hyperlink store. In Pro-

ceedings of the 20th ACM Conference on Hypertext

and Hypermedia, June 2009.

[34] M. Najork, D. Fetterly, A. Halverson, K. Kentha-

padi, and S. Gollapudi. Of hammers and nails: an

empirical comparison of three paradigms for pro-

cessing large graphs. In Proceedings of the 5th

ACM International Conference on Web Search and

Data Mining (WSDM), Feb. 2012.

[35] J. Pelissier. Providing quality of service over

InfiniBandTMArchitecture fabrics. In Proceedings

of the 8th IEEE Symposium on High Performance

Interconnects (HOT Interconnects), 2000.

[36] D. Peng and F. Dabek. Large-scale incremental

processing using distributed transactions and noti-

fications. In Proceedings of the 9th USENIX Sym-

posium on Operating Systems Design and Imple-

mentation (OSDI), Oct. 2010.

[37] D. P. Reed and R. K. Kanodia. Synchronization

with eventcounts and sequencers. Communications

of the ACM, 22(2):115–123, Feb. 1979.

[38] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras.

Exploiting punctuation semantics in continuous

data streams. IEEE Transactions on Knowledge

and Data Engineering, 15(3), May/June 2002.

[39] M. Welsh, D. Culler, and E. Brewer. SEDA: an

architecture for well-conditioned, scalable internet

services. In Proceedings of the 18th ACM Sym-

posium on Operating Systems Principles (SOSP),

Oct. 2001.

[40] R. Xin, J. Gonzalez, M. Franklin, and I. Sto-

ica. GraphX: A resilient distributed graph sys-

tem on spark. In Proceedings of the Graph Data-

management Experiences and Systems (GRADES)

Workshop, June 2013.

454

[41] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlings-

son, P. K. Gunda, and J. Currey. DryadLINQ:

A system for general-purpose distributed data-

parallel computing using a high-level language.

In Proceedings of the 8th USENIX Symposium

on Operating Systems Design and Implementation

(OSDI), Dec. 2008.

[42] M. Zaharia, M. Chowdhury, T. Das, A. Dave,

J. Ma, M. McCauley, M. Franklin, S. Shenker, and

I. Stoica. Resilient Distributed Datasets: A fault-

tolerant abstraction for in-memory cluster comput-

ing. In Proceedings of the 9th USENIX Symposium

on Networked Systems Design and Implementation

(NSDI), Apr. 2012.

[43] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker,

and I. Stoica. Discretized Streams: Fault-tolerant

streaming computation at scale. In Proceedings of

the 24th ACM Symposium on Operating Systems

Principles (SOSP), Nov. 2013.

[44] M. Zaharia, A. Konwinski, A. D.Joseph, R. Katz,

and I. Stoica. Improving MapReduce performance

in heterogeneous environments. In Proceedings of

the 8th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), Dec. 2008.

[45] Y. Zhang, Q. Gao, L. Gao, and C. Wang. PrIter: A

distributed framework for prioritized iterative com-

putations. In Proceedings of the 2nd ACM Sympo-

sium on Cloud Computing (SoCC), Oct. 2011.

[46] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Acceler-

ate large-scale iterative computation through asyn-

chronous accumulative updates. In Proceedings of

the 3rd ACM Workshop on Scientific Cloud Com-

puting (ScienceCloud), June 2012.

455

	Introduction
	Timely dataflow
	Graph structure
	Vertex computation
	Achieving timely dataflow
	Discussion

	Distributed implementation
	Data parallelism
	Workers
	Distributed progress tracking
	Fault tolerance and availability
	Preventing micro-stragglers

	Writing programs with Naiad
	A prototypical Naiad program
	Data parallel patterns in Naiad
	Constructing timely dataflow graphs

	Performance evaluation
	Throughput
	Latency
	Protocol optimizations
	Scaling

	Real world applications
	Batch iterative graph computation
	Batch iterative machine learning
	Streaming acyclic computation
	Streaming iterative graph analytics

	Related work
	Conclusions

