
APriL 2009 | voL. 52 | no. 4 | communicAtionS of the Acm 65

conVentional WiSdom in computer architecture
produced similar designs. Nearly every desktop
and server computer uses caches, pipelining,
superscalar instruction issue, and out-of-order
execution. Although the instruction sets varied, the
microprocessors were all from the same school of

design. The relatively recent switch
to multicore means that micropro-
cessors will become more diverse,
since no conventional wisdom has yet
emerged concerning their design. For
example, some offer many simple pro-
cessors vs. fewer complex processors,
some depend on multithreading, and
some even replace caches with explic-

itly addressed local stores. Manufac-
turers will likely offer multiple prod-
ucts with differing numbers of cores
to cover multiple price-performance
points, since Moore’s Law will permit
the doubling of the number of cores
per chip every two years.4 While di-
versity may be understandable in this
time of uncertainty, it exacerbates the

Roofline:
An insightful
Visual
Performance
model for
multicore
Architectures

Doi:10.1145/1498765.1498785

The Roofline model offers insight on how
to improve the performance of software
and hardware.

BY SAmueL WiLLiAmS, AnDReW WAteRmAn, AnD DAViD PAtteRSon

66 communicAtionS of the Acm | APriL 2009 | voL. 52 | no. 4

contributed articles

think the model will work with kernels
where the operations are not arithme-
tic, as discussed later, so we needed a
more general term than “arithmetic.”

The proposed Roofline model ties
together floating-point performance,
operational intensity, and memory
performance in a 2D graph. Peak float-
ing-point performance can be found
through hardware specifications or
microbenchmarks. The working sets
of the kernels we consider here do
not fit fully in on-chip caches, so peak
memory performance is defined by
the memory system behind the cach-
es. Although one can find memory
performance through the STREAM
benchmark,22 for this work we wrote
a series of progressively optimized
microbenchmarks designed to deter-
mine sustainable DRAM bandwidth.
They include all techniques to get the
best memory performance, including

tensity” to mean operations per byte
of DRAM traffic, defining total bytes
accessed as those bytes that go to the
main memory after they have been fil-
tered by the cache hierarchy. That is,
we measure traffic between the caches
and memory rather than between the
processor and the caches. Thus, op-
erational intensity predicts the DRAM
bandwidth needed by a kernel on a
particular computer.

We say “operational intensity” in-
stead of, say, “arithmetic intensity”16 or
“machine balance”8,9 for two reasons:
First, arithmetic intensity and ma-
chine balance measure traffic between
the processor and the cache, whereas
efficiency-level programmers want to
measure traffic between the caches
and DRAM. This subtle change allows
them to include memory optimiza-
tions of a computer into our bound-
and-bottleneck model. Second, we

already difficult jobs of programmers,
compiler writers, and even architects.
Hence, an easy-to-understand model
that offers performance guidelines
would be especially valuable.

Such a model need not be perfect,
just insightful. The 3Cs (compulsory,
capacity, and conflict misses) model
for caches is an analogy.19 It is not per-
fect, as it ignores potentially important
factors like block size, block-allocation
policy, and block-replacement policy.
It also has quirks; for example, a miss
might be labeled “capacity” in one de-
sign and “conflict” in another cache
of the same size. Yet the 3Cs model
has been popular for nearly 20 years
precisely because it offers insight into
the behavior of programs, helping pro-
grammers, compiler writers, and archi-
tects improve their respective designs.

Here, we propose one such model
we call Roofline, demonstrating it on
four diverse multicore computers us-
ing four key floating-point kernels.

Performance models
Stochastic analytical models4,24 and
statistical performance models7,25 can
accurately predict program perfor-
mance on multiprocessors but rarely
provide insight into how to improve
the performance of programs, compil-
ers, and computers1 and can be diffi-
cult to use by nonexperts.25

An alternative, simpler approach
is “bound and bottleneck analysis.”
Rather than try to predict perfor-
mance, it provides “valuable insight
into the primary factors affecting the
performance of computer systems. In
particular, the critical influence of the
system bottleneck is highlighted and
quantified.”20

The best-known example of a per-
formance bound is surely Amdahl’s
Law,3 which says the performance gain
of a parallel computer is limited by the
serial portion of a parallel program
and was recently applied to heteroge-
neous multicore computers.4,18

Roofline model
For the foreseeable future, off-chip
memory bandwidth will often be the
constraining resource in system per-
formance.23 Hence, we want a model
that relates processor performance to
off-chip memory traffic. Toward this
goal, we use the term “operational in-

figure 1: Roofline model for (a) AmD opteron X2 and (b) opteron X2 vs. opteron X4.

(a)

peak memory bandwidth (stream) peak floating-point performance

operational intensity (flops/Byte)

o
pe

ra
tio

na
l i

nt
en

si
ty

 1

(m
em

or
y-

bo
un

d)

o
pe

ra
tio

na
l i

nt
en

si
ty

 2

(c
om

pu
te

-b
ou

nd
)A

tt
ai

n
ab

le
 G

f
lo

p
s/

se
c

128

64

32

16

8

4

2

1

1/2

1/4 1/2 1 2 4 8 16

(b)

opteron x4

opteron x2

operational intensity (flops/Byte)

A
tt

ai
n

ab
le

 G
f

lo
p

s/
s

128

64

32

16

8

4

2

1

1/2

1/4 1/2 1 2 4 8 16

contributed articles

APriL 2009 | voL. 52 | no. 4 | communicAtionS of the Acm 67

the Roofline sets
an upper bound
on performance of
a kernel depending
on the kernel’s
operational
intensity. if we
think of operational
intensity as a
column that hits
the roof, either
it hits the flat part
of the roof,
meaning
performance is
compute-bound,
or performance
is ultimately
memory-bound.

prefetching and data alignment. (See
Section A.1 in the online Appendixa for
more detail of how to measure proces-
sor and memory performance and op-
erational intensity.)

Figure 1a outlines the model for a
2.2GHz AMD Opteron X2 model 2214
in a dual-socket system. The graph is
on a log-log scale. The y-axis is attain-
able floating-point performance. The
x-axis is operational intensity, varying
from 0.25 Flops/DRAM byte-accessed
to 16 Flops/DRAM byte-accessed.
The system being modeled has peak
double precision floating-point per-
formance of 17.6 GFlops/sec and peak
memory bandwidth of 15GB/sec from
our benchmark. This latter measure is
the steady-state bandwidth potential
of the memory in a computer, not the
pin bandwidth of the DRAM chips.

One can plot a horizontal line show-
ing peak floating-point performance
of the computer. The actual floating-
point performance of a floating-point
kernel can be no higher than the hori-
zontal line, since this line is the hard-
ware limit.

How might we plot peak memory
performance? Since the x-axis is Flops
per Byte and the y-axis is GFlops/sec,
gigabytes per second (GB/sec)—or
(GFlops/sec)/(Flops/Byte)—is just a
line of unit slope in Figure 1. Hence,
we can plot a second line that bounds
the maximum floating-point perfor-
mance that the memory system of
the computer can support for a given
operational intensity. This formula
drives the two performance limits in
the graph in Figure 1a:

Attainable
GFlops/sec

=min

Peak Floating-Point
Performance

Peak Memory Operational
Bandwidth

×
 Intensity

The two lines intersect at the point
of peak computational performance
and peak memory bandwidth. Note that
these limits are created once per multi-
core computer, not once per kernel.

For a given kernel, we can find a
point on the x-axis based on its opera-
tional intensity. If we draw a vertical
line (the pink dashed line in the fig-
ures) through that point, the perfor-
mance of the kernel on that computer

a Please go to doi.acm.org/10.1145/1498765.149
8785#supp

must lie somewhere along that line.
The horizontal and diagonal lines

give this bound model its name. The
Roofline sets an upper bound on per-
formance of a kernel depending on
the kernel’s operational intensity. If
we think of operational intensity as a
column that hits the roof, either it hits
the flat part of the roof, meaning per-
formance is compute-bound, or it hits
the slanted part of the roof, meaning
performance is ultimately memory-
bound. In Figure 1a, a kernel with
operational intensity 2.0 Flops/Byte
is compute-bound and a kernel with
operational intensity 1.0 Flops/Byte is
memory-bound. Given a Roofline, you
can use it repeatedly on different ker-
nels, since the Roofline doesn’t vary.

Note that the ridge point (where the
diagonal and horizontal roofs meet) of-
fers insight into the computer’s overall
performance. The x-coordinate of the
ridge point is the minimum operation-
al intensity required to achieve maxi-
mum performance. If the ridge point is
far to the right, then only kernels with
very high operational intensity can
achieve the maximum performance
of that computer. If it is far to the left,
then almost any kernel can potentially
hit maximum performance. As we ex-
plain later, the ridge point suggests
the level of difficulty for programmers
and compiler writers to achieve peak
performance.

To illustrate, we compare the Opter-
on X2 with two cores in Figure 1a to its
successor, the Opteron X4 with four
cores. To simplify board design, they
share the same socket. Hence, they
have the same DRAM channels and
can thus have the same peak memory
bandwidth, although prefetching is
better in the X4. In addition to dou-
bling the number of cores, the X4
also has twice the peak floating-point
performance per core; X4 cores can
issue two floating-point SSE2 instruc-
tions per clock cycle, whereas X2 cores
can issue two instructions every other
clock. As the clock rate is slightly fast-
er—2.2GHz for X2 vs. 2.3GHz for X4—
the X4 is able to achieve slightly more
than four times the peak floating-point
performance of the X2 with the same
memory bandwidth.

Figure 1b compares the Roofline
models for these two systems. As ex-
pected, the ridge point shifts right

68 communicAtionS of the Acm | APriL 2009 | voL. 52 | no. 4

contributed articles

from 1.0 Flops/Byte in the Opteron X2
to 4.4 in the Opteron X4. Hence, to re-
alize a performance gain using the X4,
kernels need an operational intensity
greater than 1.0 Flops/Byte.

 Adding ceilings to the model
The Roofline model provides an upper
bound to performance. Suppose a pro-
gram performs far below its Roofline.
What optimizations should one im-
plement and in what order? Another
advantage of bound-and-bottleneck
analysis is that “a number of alterna-
tives can be treated together, with a
single bounding analysis providing
useful information about them all.”20

We leverage this insight to add mul-
tiple ceilings to the Roofline model to
guide which optimizations to imple-
ment. It is similar to the guidelines
loop balance gives the compiler. We
can think of each optimization as a
“performance ceiling” below the ap-
propriate Roofline, meaning you can-
not break through a ceiling without
first performing the associated opti-
mization.

For example, to reduce computa-
tional bottlenecks on the Opteron X2,
almost any kernel can be helped with
two optimizations:

Improve instruction-level parallelism
(ILP) and apply SIMD. For superscalar
architectures, the highest performance
comes when fetching, executing, and
committing the maximum number
of instructions per clock cycle. The
goal is to improve the code from the
compiler to increase ILP. The highest
performance comes from completely
covering the functional unit latency.
One way to hide instruction latency is
by unrolling loops. For x86-based ar-
chitectures, another way is using float-
ing-point SIMD instructions whenever
possible, since a SIMD instruction op-
erates on pairs of adjacent operands;
and

Balance floating-point operation mix.
The best performance requires that
a significant fraction of the instruc-
tion mix be floating-point operations
(discussed later). Peak floating-point
performance typically also requires
an equal number of simultaneous
floating-point additions and multipli-
cations, since many computers have
multiply-add instructions or an equal
number of adders and multipliers.

Memory bottlenecks can be reduced
with the help of three optimizations:

Restructure loops for unit stride ac-
cesses. Optimizing for unit-stride
memory accesses engages hardware

prefetching, significantly increasing
memory bandwidth;

Ensure memory affinity. Most micro-
processors today include a memory
controller on the same chip with the

figure 2: Roofline model with ceilings for opteron X2.

2. floating-point balance

5. software prefetching

5. software prefetching

1. ilP or simD

4. memory affinity

4. memory affinity

tlP only

3. unit stride accesses only

3. unit stride accesses only

operational intensity (flops/Byte)

operational intensity (flops/Byte)

operational intensity (flops/Byte)

(a) Computational Ceilings

(b) Bandwidth Ceilings

(c) Optimization Regions

peak memory bandwidth (stream)

peak memory bandwidth (stream)

peak memory bandwidth (stream)

peak floating-point performance

peak floating-point performance

peak floating-point performance

2. floating-point balance

1. ilP or simD

tlP only

kernel 1 kernel 2

A
tt

ai
n

ab
le

 G
f

lo
p

s/
se

c
A

tt
ai

n
ab

le
 G

f
lo

p
s/

se
c

A
tt

ai
n

ab
le

 G
f

lo
p

s/
se

c

128

64

32

16

8

4

2

1

1/2

128

64

32

16

8

4

2

1

1/2

128

64

32

16

8

4

2

1

1/2

1/8

1/8

1/8

1/4

1/4

1/4

1/2

1/2

1/2

1

1

1

2

2

2

4

4

4

8

8

8

16

16

16

contributed articles

APriL 2009 | voL. 52 | no. 4 | communicAtionS of the Acm 69

optimizations to try. The middle of
Figure 2c shows that computational
optimizations and memory bandwidth
optimizations overlap; we picked the
colors to highlight this overlap. For
example, Kernel 2 falls in the blue
trapezoid on the right, suggesting the
programmer should work only on the
computational optimizations. If a ker-
nel fell in the yellow triangle on the
lower left, the model would suggest
trying just memory optimizations. Ker-
nel 1 falls in the green (= yellow + blue)
parallelogram in the middle, suggest-
ing the programmer try both types of
optimization. Note that the Kernel 1
vertical line falls below the floating-
point imbalance optimization, so opti-
mization 2 may be skipped.

The ceilings of the Roofline model
suggest which optimizations the pro-
grammer should perform. The height
of the gap between a ceiling and the
next higher ceiling is the potential
reward for trying this optimization.
Thus, Figure 2 suggests that optimiza-
tion 1, which improves ILP/SIMD, has
a large potential benefit for optimizing
computation on that computer, and
optimization 4, which improves mem-
ory affinity, has a large potential ben-
efit for improving memory bandwidth
on that computer.

The order of the ceilings suggests
the optimization order, so we rank
the ceilings from bottom to top; those
most likely to be realized by a compiler
or with little effort by a programmer
are at the bottom and those that are
difficult for a programmer to imple-
ment or inherently lacking in a kernel
are at the top. The one quirky ceiling is
floating-point balance, since the actu-
al mix depends on the kernel. For most
kernels, achieving parity between mul-
tiplies and additions is difficult, but
for a few kernels, parity is natural. One
example is sparse matrix-vector mul-
tiplication; for this domain, we would
place floating-point mix as the lowest
ceiling, since it is inherent. Like the
3Cs model, as long as the Roofline
model delivers on insight, it need not
be perfect.

tying the 3cs to
operational intensity
Operational intensity tells program-
mers which ceilings need the most
attention. Thus far, we have assumed

processors. If the system has two mul-
ticore chips, then some addresses go
to the DRAM local to one multicore
chip, and the rest go over a chip inter-
connect to access the DRAM local to
another chip. The latter lowers per-
formance. This optimization allocates
data and the threads tasked to that
data to the same memory-processor
pair, so the processors rarely have to
access the memory attached to other
chips; and

Use software prefetching. The high-
est performance usually requires keep-
ing many memory operations in flight,
which is easier to do via prefetching
than by waiting until the data is actual-
ly requested by the program. On some
computers, software prefetching de-
livers more bandwidth than hardware
prefetching alone.

Like the computational Roofline,
computational ceilings can come from
an optimization manual,2 though it’s
easy to imagine collecting the nec-
essary parameters from simple mi-
crobenchmarks. The memory ceilings
require running experiments on each
computer to determine the gap be-

tween them (see online Appendix A.1).
The good news is that like the Roof-
line, the ceilings must be measured
only once per multicore computer.

Figure 2 adds ceilings to the Roof-
line model in Figure 1a; Figure 2a
shows the computational ceilings and
Figure 2b the memory bandwidth ceil-
ings. Although the higher ceilings are
not labeled with lower optimizations,
these lower optimizations are implied;
to break through a ceiling, the pro-
grammer must have already broken
through all the ones below. Figure 2a
shows the computational “ceilings”
of 8.8 GFlops/sec if the floating-point
operation mix is imbalanced and 2.2
GFlops/sec if the optimizations to in-
crease ILP or SIMD are also missing.
Figure 2b shows the memory band-
width ceilings of 11 GB/sec without
software prefetching, 4.8 GB/sec with-
out memory affinity optimizations,
and 2.7 GB/sec with only unit stride
optimizations.

Figure 2c combines Figures 2a and
2b into a single graph. The operational
intensity of a kernel determines the
optimization region, and thus which

table 1: characteristics of four recent multicore computers.

mPu type

intel Xeon

(clovertown,

e5345)

AmD opteron

X4 (Barcelona,

2356)

Sun ultraS-

PARc t2+

(niagara 2, 5120) iBm cell (QS20)

iSA

x86/64 x86/64 sParc cell sPes

total threads

8 8 128 16

total cores

8 8 16 16

total

Sockets

2 2 2 2

Ghz

2.33 2.30 1.17 3.20

Peak Gflops/sec

75 74 19 29

Peak DRAm

GB/sec

21.3r,

10.6w

2 × 10.6 2 × 21.3r,

2 × 10.6w

2 × 25.6

Stream

GB/sec

5.9 16.6 26.0 47.0

DRAm type

fbDimm DDr2 fbDimm xDr

70 communicAtionS of the Acm | APriL 2009 | voL. 52 | no. 4

contributed articles

that the operational intensity is fixed,
though this is not always the case; for
example, for some kernels, the opera-
tional intensity increases with prob-
lem size (such as for Dense Matrix and
FFT problems).

Caches filter the number of access-
es that go to memory, so optimizations
that improve cache performance in-
crease operational intensity. Thus, we
may couple the 3Cs model to the Roof-
line model. Compulsory misses set the
minimum memory traffic and hence
the highest possible operational in-
tensity. Memory traffic from conflict
and capacity misses can considerably
lower the operational intensity of a
kernel, so we should try to eliminate
such misses.

For example, we can reduce traffic
from conflict misses by padding arrays
to change cache line addressing. A sec-
ond example is that some computers
have a non-allocating store instruction,
so stores go directly to memory and do
not affect caches. This approach pre-
vents loading a cache block with data
to be overwritten, thereby reducing
memory traffic. It also prevents dis-
placing useful items in the cache with
data that will not be read, thereby sav-
ing conflict misses.

This shift of operational intensity to
the right could put a kernel in a differ-
ent optimization region. Generally, we
advise improving operational inten-
sity of the kernel before implementing
other optimizations.

Demonstrating the model
To demonstrate the Roofline model’s
utility, we now construct Roofline
models for four recent multicore com-
puters and then optimize four floating-
point kernels. We’ll then show that the
ceilings and rooflines bound the ob-
served performance for all computers
and kernels.

Four diverse multicore computers.
Given the lack of conventional wisdom
concerning multicore architecture, it’s
not surprising that there are as many
different designs as there are chips.
Table 1 lists the key characteristics of
the four multicore computers, all dual-
socket systems, that we discuss here.

The Intel Xeon uses relatively so-
phisticated processors, capable of
executing two SIMD instructions per
clock cycle that can each perform two

double-precision floating-point opera-
tions. It is the only one of the four ma-
chines with a front-side bus connect-
ing to a common north bridge chip and
memory controller. The other three
have the memory controller on chip.

The Opteron X4 also uses sophis-
ticated cores with high peak floating-
point performance but is the only
computer of the four with on-chip L3
caches. The two sockets communicate
over separate, dedicated hypertrans-
port links, making it possible to build
a “glueless” multi-chip system.

The Sun UltraSPARC T2+ uses rela-
tively simple processors at a modest
clock rate compared to the other three,
allowing it to have twice as many cores
per chip. It is also highly multithread-
ed, with eight hardware-supported
threads per core. It has the highest
memory bandwidth of the four, as
each chip has two dual-channel mem-
ory controllers that can drive four sets
of DDR2/FBDIMMs.

The clock rate of the IBM Cell QS20
is the highest of the four multicores at
3.2GHz. It is also the most unusual of
the four, with a heterogeneous design,
a relatively simple PowerPC core, and
eight synergistic processing elements
(SPEs) with their own unique SIMD-style
instruction set. Each SPE also has its
own local memory, instead of a cache.
An SPE must transfer data from main

memory into the local memory to oper-
ate on it and then back to main memory
when the computation is completed. It
uses Direct Memory Access, which has
some similarity to software prefetching.
The lack of caches means porting pro-
grams to Cell is more challenging.

Four diverse floating-point ker-
nels. Rather than pick programs from
a standard parallel benchmark suite
(such as Parsec5 and Splash-230), we
were inspired by the work of Phil
Colella,11 an expert in scientific com-
puting at Lawrence Berkeley National
Laboratory, who identified seven nu-
merical methods he believes will be
important for computational science
and engineering for at least the next
decade. Because he identified seven,
they are called the Seven Dwarfs and
are specified at a high level of ab-
straction to allow reasoning about
their behavior across a broad range
of implementations. The widely read
“Berkeley View” report4 found that
if the data types were changed from
floating point to integer, the same
Seven Dwarfs would also be found in
many other programs. Note that the
claim is not that the Dwarfs are easy to
parallelize but that they will be impor-
tant to computing in most current and
future applications; designers are thus
advised to make sure they run well on
the systems they create, whether or

table 2: characteristics of four floating-point kernels.

name operational intensity Description

SpmV29 0.17 to 0.25 sparse matrix-Vector

multiply: y = a*x where a is

a sparse matrix and x, y are dense

vectors; multiplies and adds equal.

LBmhD28 0.70 to 1.07 lattice-boltzmann

magnetohydro-dynamics is

a structured grid code with

a series of time steps.

Stencil12 0.33 to 0.50 a multigrid kernel that

updates seven nearby points in a 3D

stencil for a 2563 problem.

3D fft 1.09 to 1.64 3D fast fourier transform

(2 sizes: 1283 and 5123).

contributed articles

APriL 2009 | voL. 52 | no. 4 | communicAtionS of the Acm 71

not those systems are parallel.
One advantage of using these high-

er-level descriptions of programs is
that we are not tied to code that might
have been originally written to opti-
mize an old computer to evaluate fu-
ture systems. Another advantage of the
restricted number is that efficiency-lev-
el programmers can create autotuners

for each kernel that would search the
alternatives to produce the best code
for that multicore computer, includ-
ing extensive cache optimizations.13

Table 2 lists the four kernels from
among the Seven Dwarfs we use to dem-
onstrate the Roofline model on the four
multicore computers listed in Table 1;
the autotuners discussed in this sec-

tion are from three sources:12, 28, 29

For these kernels, there is sufficient
parallelism to utilize all the cores and
threads and keep them load balanced;
see online Appendix A.2 for how to han-
dle cases when load is not balanced.

Roofline models and results. Figure
3 shows the Roofline models for Xeon,
X4, and Cell. The pink vertical dashed
lines indicate the operational inten-
sity and the red X marks performance
achieved for that particular kernel.
However, achieving balance is difficult
for the others. Hence, each computer
in Figure 3 has two graphs: the left one
has multiply-add balance as the top
ceiling and is used for Lattice-Boltz-
mann Magnetohydrodynamics (LB-
MHD), Stencil, and 3D FFT; the right
one has multiply-add as the bottom
ceiling and is used for SpMV. Since the
T2+ lacks a fused multiply-add instruc-
tion nor can it simultaneously issue
multiplies and adds, Figure 4 shows a
single roofline for the four kernels on
the T2+ without the multiply-add bal-
ance ceiling.

The Intel Xeon has the highest peak
double-precision performance of the
four multicores. However, the Roofline
model in Figure 3a shows this level of
performance can be achieved only with
operational intensities of at least 6.7
Flops/Byte; in other words Clovertown
requires 55 floating-point operations
for every double-precision operand
(8B) going to DRAM to achieve peak
performance. This high ratio is due in
part to the limitation of the front-side
bus, which also carries the coherency
traffic that can consume up to half the
bus bandwidth. Intel includes a snoop
filter to prevent unnecessary coheren-
cy traffic on the bus. If the working set
is small enough for the hardware to fil-
ter, the snoop filter nearly doubles the
delivered memory bandwidth.

The Opteron X4 has a memory
controller on chip, its own path to
667MHz DDR2 DRAM, and separate
paths for coherency. Figure 3 shows
that the ridge point in the Roofline
model is to the left of the Xeon, at an
operational intensity of 4.4 Flops/Byte.
The Sun T2+ has the highest memory
bandwidth so the ridge point is an ex-
ceptionally low operational intensity
of just 0.33 Flops/Byte. It keeps mul-
tiple memory transfers in flight by us-
ing many threads. The IBM Cell ridge

figure 3a–3c: Roofline model for intel Xeon, AmD opteron X4, and iBm cell.

operational intensity (flops/Byte)

(a) Intel Xeon (Clovertown)

peak DP

+balanced
mul/add

+simD

+ilP

tlP only

peak stream bandwidth

+snoop filter effective

lb
m

h
D

ff
t

 (5
12

3)

ff
t

 (1
28

3)

snoop filter in
effective

s
te

nc
il

G
f

lo
p

s/
s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

operational intensity (flops/Byte)

(c) AMD Opteron X4 (Barcelona)

peak DP

+balanced
mul/add

+simD

+ilP

tlP only

peak stream bandwidth

peak copy bandwidth

without m
emory affinity

s
te

nc
il

lb
m

h
D

ff
t

 (5
12

3)

ff
t

 (1
28

3)

G
f

lo
p

s/
s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

operational intensity (flops/Byte)

(b) Intel Xeon (Clovertown)

peak DP

+simD

+ilP

tlP only

peak stream bandwidth

snoop filter in
effective

spmV+snoop filter effective

+balanced
mul/add

G
f

lo
p

s/
s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

72 communicAtionS of the Acm | APriL 2009 | voL. 52 | no. 4

contributed articles

point of operational intensity is 0.65
Flops/Byte.

Here, we demonstrate the Roofline
model on four diverse mutlicore archi-
tectures running four kernels repre-
sentative of some of the Seven Dwarfs:

Sparse matrix-vector multiplication.
The first example kernel of the sparse
matrix computational dwarf is Sparse
Matrix-Vector multiply (SpMV); the
computation is y = A*x, where A is a
sparse matrix and x and y are dense
vectors. SpMV is popular in scientific
computing, economic modeling, and
information retrieval. Alas, conven-
tional implementations often run at
less than 10% of peak floating-point
performance in uniprocessors. One
reason is the irregular accesses to
memory, which might be expected
from sparse matrices. The operational
intensity varies from 0.17 Flops/Byte
before a register blocking optimiza-
tion to 0.25 Flops/Byte afterward26 (see
online Appendix A.1).

Given that the operational intensity
of SpMV was below the ridge point of
all four multicores in Figure 3, most
optimizations involve the memory sys-
tem. Table 3 summarizes the optimi-
zations used by SpMV and the rest of
the kernels. Many are associated with
the ceilings in Figure 3, and the height
of the ceilings suggests the potential
benefit of these optimizations.

Lattice-Boltzmann Magnetohydrody-
namics. Like SpMV, LBMHD tends to
achieve a small fraction of peak per-
formance on uniprocessors due to the
complexity of the data structures and
the irregularity of memory access pat-
terns. The Flop-to-Byte ratio is 0.70
vs. 0.25 or less in SpMV. By using the
no-allocate store optimization, a pro-
grammer can improve the operational
intensity of LBMHD to 1.07 Flops/
Byte. Both x86 multicores offer this
cache optimization, but Cell does not
have this problem since it uses DMA.
Hence, T2+ is the only one of the four
computers with the lower intensity of
0.70 Flops/Byte.

Figures 3 and 4 show that the op-
erational intensity of LBMHD is high
enough that both computational and
memory bandwidth optimizations
make sense on all multicores, except
the T2+ where the Roofline ridge point
is below that of LBMHD. The T2+
reaches its performance ceiling using

only the computational optimizations.
Stencil. In general, a stencil on a

structured grid is defined as a function
that updates a point based on the val-
ues of its neighbors. The stencil struc-
ture remains constant as it moves from
one point in space to the next. For this
work, we use the stencil derived from

the explicit heat equation, a partial dif-
ferential equation on a uniform 2563
3D grid.12 The stencil’s neighbors are
the nearest six points along each axis,
as well as the center point itself. This
stencil performs eight floating-point
operations for every 24B of compul-
sory memory traffic on write-allocate

figure 3d–3f: Roofline model for intel Xeon, AmD opteron X4, and iBm cell.

operational intensity (flops/Byte)

operational intensity (flops/Byte)

operational intensity (flops/Byte)

(d) AMD Opteron X4 (Barcelona)

(e) IBM Cell (QS20)

(f) IBM Cell (QS20)

peak DP

peak DP

peak DP

+fma

+simD

+simD

+ilP

+ilP

+fma

tlP only

tlP only

+smD

+ilP

+balanced mul/add

tlP only

peak stream bandwidth

peak copy bandwidth

without m
emory affinity

spmV

s
te

nc
il

spmV

lb
m

h
D

ff
t

(1
28

3)

ff
t

(5
12

3)

peak stream bandwidth

peak stream bandwidth

without m
emory affinity

without numa

G
f

lo
p

s/
s

G
f

lo
p

s/
s

G
f

lo
p

s/
s

128

64

32

16

8

4

2

1

128

64

32

16

8

4

2

1

128

64

32

16

8

4

2

1

1/16

1/16

1/16

1/8

1/8

1/8

1/4

1/4

1/4

1/2

1/2

1/2

1

1

1

2

2

2

4

4

4

8

8

8

16

16

16

contributed articles

APriL 2009 | voL. 52 | no. 4 | communicAtionS of the Acm 73

architectures, yielding an operational
intensity of 0.33 Flops/Byte.

3D FFT. This fast Fourier transform
is the classic divide-and-conquer algo-
rithm that recursively breaks down a
discrete Fourier transform into many
smaller ones. The FFT is ubiquitous
in many domains, including image
processing and data compression. An
efficient approach for 3D FFT is to per-
form 1D transforms along each dimen-
sion to maintain unit-stride accesses.
We computed the 1D FFTs on Xeon,
X4, and T2+ using an autotuned library
(FFTW).15 For Cell, we implemented a
radix-2 FFT.

FFT differs from SpMV, LBMHD,
and Stencil in that its operational in-
tensity is a function of problem size.
For the 1283- and 5123-point trans-
forms we examine, the operational in-
tensities are 1.09 and 1.41 Flops/Byte,
respectively; Cell’s 1GB main memory
is too small to hold 5123 points, so we
estimate this result. On Xeon and X4,
an entire 128×128 plane fits in cache,

increasing temporal locality and im-
proving the intensity to 1.64 for the
1283-point transform.

Productivity vs. performance. In ad-
dition to performance, productivity (or
the programming difficulty of achiev-
ing good performance) is another
important issue for the parallel com-
puting revolution.4 One question is
whether a low ridge point gives insight
into productivity.

The Sun T2+ (with the lowest ridge
point of the four computers) was the
easiest to program due to its large
memory bandwidth and easy-to-un-
derstand cores. The advice for these
kernels on T2+ is simply to try to get
good-performing code from the com-
piler, then use as many threads as
possible. The downside is that the L2
cache is only 16-way set associative,
which can lead to conflict misses when
64 threads access the cache, as it did
for the Stencil kernel.

In contrast, the computer with the
highest ridge point had the lowest

unoptimized performance. The Intel
Xeon was difficult to program because
it was difficult to understand the mem-
ory behavior of the dual front-side bus-
es, how hardware prefetching worked,
and the difficulty of getting good SIMD
code from the compiler. The C code for
both it and the Opteron X4 are liberally
sprinkled with intrinsic statements in-
volving SIMD instructions to get good
performance.

With a ridge point close to the
Xeon, the Opteron X4 required about
as much effort, since it benefited from
the most types of optimization. How-
ever, its memory behavior was easier to
understand than the memory behavior
of the Xeon.

The IBM Cell (with a ridge point al-
most as low as the Sun T2+) involved
two types of challenges. First, it was
difficult for the compiler to exploit the
SIMD instructions of Cell’s SPE, so at
times we needed to help the compiler
by inserting intrinsic statements with
assembly language instructions into
the C code. This comment reflects the
immaturity of the IBM compiler, as
well as the difficulty of compiling for
these SIMD instructions. Second, the
memory system is more challenging.
Since each SPE has local memory in a
separate address space, we could not
simply port the code and start running
on the SPE. We needed to change the
program to issue DMA commands to
transfer data back and forth between
local store and memory. The good
news is that DMA played the role of
software prefetch in caches. DMA for a
local store is easier to program, achieve
good memory performance, and over-
lap with computation than scheduling
prefetches for caches.

To demonstrate the utility of the
Roofline Model, Table 4 lists the up-
per and lower bounding ceilings and
the GFlops/sec and GB/sec per kernel-
computer pair; recall that operational
intensity is the ratio between the two
rates. The ceilings listed are the ceil-
ings sandwiching actual performance.
All 16 combinations of kernel and
computer validate this bound-and-bot-
tleneck model since Roofline’s upper
and lower ceilings bound performance
and the kernels were optimized, as the
lower ceilings suggest. The metric that
limits performance is in bold; 15 of 16
ceilings are memory-bound for Xeon

figure 4: Roofline model for Sun ultraSPARc t2+.

operational intensity (flops/Byte)

peak DP

≥ 50% issued = = fP

25% issued == fP

12.5% issued == fP

s
pm

V

s
te

nc
il

lb
m

h
D

ff
t

(1
28

3)

ff
t

(5
12

3)

peak stream bandwidth

without m
emory affinity

G
f

lo
p

s/
se

c

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

figure 5: Roofline for transpose phase of 3D fft for the cell.

peak exchange rate

peak stream bandwidth

transpose

G
e

xc
h

an
g

es
/s

ec

operational intensity (exchanges/Byte)

32

16

8

4

2

1

1/64 1/32 1/16 1/8 1/4 1/2 1

74 communicAtionS of the Acm | APriL 2009 | voL. 52 | no. 4

contributed articles

and X4, while the bottleneck is almost
evenly split for T2+ and Cell. For FFT,
the surrounding ceilings are memory-
bound for Xeon and X4, but compute-
bound for T2+ and Cell.

fallacies About Roofline
We have presented this material in sev-
eral venues, prompting a number of
misconceptions we address here:

Fallacy: The model does not account
for all features of modern processors
(such as caches and prefetching). The
definition of operational intensity we
use here does indeed factor-in caches;
memory accesses are measured be-
tween the caches and memory, not be-
tween the processor and caches. In our
discussion of performance models, we
showed that the memory bandwidth
measures of the computer include
prefetching and any other optimiza-
tion (such as blocking) that can im-

prove memory performance. Similarly,
some of the optimizations in Table 3
explicitly involve memory. Moreover,
in our discussion on tying the 3Cs to
operational intensity, we demonstrat-
ed the optimizations’ effect on increas-
ing operational intensity by reducing
capacity and conflict misses.

Fallacy: Doubling cache size increases
operational intensity. Autotuning three
of the four kernels gets very close to
the compulsory memory traffic; the re-
sultant working set is sometimes only
a small fraction of the cache. Increas-
ing cache size helps only with capacity
misses and possibly conflict misses,
so a larger cache has no effect on the
operational intensity for the three ker-
nels. However, for 1283 3D FFT, a larger
cache could capture a whole plane of a
3D cube, improving operational inten-
sity by reducing capacity and conflict
misses.

Fallacy: The model doesn’t account
for the long memory latency. The ceil-
ings for no software prefetching in
Figures 3 and 4 are at lower memory
bandwidth precisely because they can-
not hide the long memory latency.

Fallacy: The model ignores integer
units in floating-point programs, pos-
sibly limiting performance. For the ex-
ample kernels we’ve outlined here, the
amount of integer code and integer
performance can affect performance.
For example, the Sun UltraSPARC T2+
fetches two instructions per core per
clock cycle and doesn’t implement the
SIMD instructions of the x86 that can
operate on two double-precision float-
ing-point operands at a time. Relative
to other processors, the T2+ expends a
larger fraction of its instruction issue
bandwidth on integer instructions and
executes them at a lower rate, hurting
overall performance.

Fallacy: The model has nothing to do
with multicore. Little’s Law17, 20, 21 dic-
tates that considerable concurrency is
necessary to really push the limits of
the memory system. This concurrency
is more easily satisfied in a multicore
than in a uniprocessor. While the band-
width orientation of the Roofline mod-
el certainly works for uniprocessors, it
is even more helpful for multicores.

Fallacy: You need to recalculate the
Roofline model for every kernel. The
Roofline needs to be calculated for giv-
en performance metrics and comput-

ers just once; it then guides the imple-
mentation for any program for which
that metric is the critical performance
metric. The kernels we’ve explored
here use floating-point operations and
main memory traffic. The ceilings are
measured once but can be reordered
depending on whether or not multi-
plies and adds are naturally balanced
in the kernel (see the earlier discus-
sion on adding ceilings to the model).

Note that the heights of the ceilings
we discuss here document the maxi-
mum potential gain of a code perform-
ing this optimization. An interesting
future direction is to use performance
counters to adjust the height of the
ceilings and the order of the ceilings
for a particular kernel to show the ac-
tual benefits of each optimization and
the recommended order to try them
(see online Appendix A.3).

Fallacy: The model is limited to eas-
ily optimized kernels that never hit in the
cache. These kernels do indeed hit in
the cache; for example, the cache-hit
rates of our three multicores with on-
chip caches are at least 94% for Sten-
cil and 98% for FFT. Moreover, if the
Seven Dwarfs were easy to optimize, it
would bode well for the future of multi-
cores. However, our experience is that
it is not easy to create the fastest ver-
sion of these numerical methods on
the divergent multicore architectures
discussed here. Indeed, three of the re-
sults were judged significant enough
to be accepted for publication at major
conferences.12, 28, 29

Fallacy: The model is limited to float-
ing-point programs. Our focus here has
been on floating-point programs, so
the two axes of the model are floating-
point operations per second and the
floating-point operational intensity of
accesses to main memory. However,
the Roofline model can work for other
kernels where performance is a func-
tion of different performance metrics.
A concrete example is the transpose
phase of 3D FFT, which performs no
floating-point operations at all. Figure
5 shows a Roofline model for just this
phase on Cell, with exchanges replac-
ing Flops in the model. One exchange
involves reading and writing 16B, so
its operational intensity is 1/32 pair-
wise Exchanges/Byte. Despite the com-
putational metric being memory ex-
changes, there is still a computational

table 3: Kernel optimizations.12, 28, 29

Memory affinity. reduce accesses to Dram

memory attached to the other socket.

Long unit-stride accesses. change loop

structures to generate long unit-stride ac-

cesses to engage the prefetchers;

also reduces tlb misses.

Software prefetching. software and hardware

prefetching both used to get the most

from memory systems.

Reduce conflict misses. Pad arrays to improve

cache-hit rates.

Unroll and reorder loops. to expose sufficient

parallelism and improve cache utilization,

unroll and reorder loops to group

statements with similar addresses;

improves code quality, reduces register

pressure, facilitates simD.

“SIMD-ize” code. the x86 compilers didn’t

generate good sse code, so we made a code

generator to produce sse intrinsics.

Compress data structures (SpMV only). since

bandwidth limits performance, we used

smaller data structures: 16b vs. 32b

index and smaller representations of

non-zero subblocks.27

contributed articles

APriL 2009 | voL. 52 | no. 4 | communicAtionS of the Acm 75

horizontal Roofline, since local stores
and caches could affect the number of
exchanges that go to DRAM.

Fallacy: The Roofline model must
use DRAM bandwidth. If the working
set fits in the L2 cache, the diagonal
Roofline could be L2 cache bandwidth
instead of DRAM bandwidth, and the
operational intensity on the x-axis
would be based on Flops per L2 cache
Byte accessed. The diagonal memory
performance line would move up, and
the ridge point would surely move to
the left. For example, Jike Chong of
the University of California, Berkeley,
ported two financial partial differ-
ential equation (PDE) solvers to four
other multicore computers: the Intel
Penryn and Larrabee and NVIDIA G80

and GTX280.10 He used the Roofline
model to keep track of all four of their
peak arithmetic throughput and L1,
L2, and DRAM bandwidths. By analyz-
ing an algorithm’s working set and op-
erational intensity, he was able to use
the Roofline model to quickly estimate
the needs for algorithmic improve-
ment. Specifically, for the option-
pricing problem with an implicit PDE
solver, the working set is small enough
to fit into L1, and the L1 bandwidth is
sufficient to support peak arithmetic
throughput; the Roofline model thus
indicates that no optimization is nec-
essary. For option pricing with an ex-
plicit PDE formulation, the working
set is too large to fit into cache, and the
Roofline model helps indicate the ex-

tent cache blocking is necessary to pro-
duce peak arithmetic performance.

conclusion
The sea change from sequential com-
puting to parallel computing is in-
creasing the diversity of computers
that programmers must confront
when building correct, efficient, scal-
able, portable software.4 Here, we’ve
described a simple, visual computa-
tional model we call the Roofline Mod-
el to help identify which systems would
be a good match for important kernels
or conversely to determine how to
change kernel code or hardware to run
desired kernels well. For floating-point
kernels that do not fit completely in
caches, we’ve shown how operational

table 4: Achieved performance and nearest Roofline ceilings, with metric limiting performance in bold (3D fft is 1283)

Kernel

upper ceiling Achieved Performance Lower ceiling

 Type Name Value Compute Memory O.I. Type Name Value

intel

Xeon

spmV memory stream bW 11.2gb/sec 2.8gflops/sec 11.1GB/sec 0.25 memory snoop filter 5.9gbyte/sec

lbmhD memory snoop filter 5.9gb/sec 5.6gflops/sec 5.3GB/sec 1.07 memory (none) 0.0gbyte/sec

stencil memory snoop filter 5.9gb/sec 2.5gflops/sec 5.1GB/sec 0.50 memory (none) 0.0gbyte/sec

3D fft memory snoop filter 5.9gb/sec 9.7gflops/sec 5.9GB/sec 1.64 compute tlP only 6.2gflops/sec

AmD

X4

spmV memory stream bW 17.6gb/sec 4.2gflops/sec 16.8GB/sec 0.25 memory copy bW 13.9gbyte/sec

lbmhD memory copy bW 13.9gb/sec 11.4gflops/sec 10.7GB/sec 1.07 memory no affinity 7.0gbyte/sec

stencil memory stream bW 17.6gb/sec 8.0gflops/sec 16.0GB/sec 0.50 memory copy bW 13.9gbyte/sec

3D fft memory copy bW 13.9gb/sec 14.0gflops/sec 8.6GB/sec 1.64 memory no affinity 7.0gbyte/sec

Sun

t2+

spmV memory stream bW 36.7gb/sec 7.3gflops/sec 29.1GB/sec 0.25 memory no affinity 19.8gbyte/sec

lbmhD memory no affinity 19.8gb/sec 10.5gflops/sec 15.0GB/sec 0.70 compute 25% issued fP 9.3gflops/sec

stencil compute 25% issued fP 9.3gflopss/sec 6.8GFlops/sec 20.3gb/sec 0.33 memory no affinity 19.8gbyte/sec

3D fft compute Peak DP 19.8gflops/sec 9.2GFlops/sec 10.0gb/sec 1.09 compute 25% issued fP 9.3gflops/sec

iBm

cell

spmV memory stream bW 47.6gb/sec 11.8gflops/sec 47.1GB/sec 0.25 memory fma 7.3gflops/sec

lbmhD memory no affinity 23.8gb/sec 16.7gflops/sec 15.6GB/sec 1.07 memory Without fma 14.6gflops/sec

stencil compute Without fma 14.6gflopss/sec 14.2GFlops/sec 30.2gb/sec 0.47 memory no affinity 23.8gbyte/sec

3D fft compute Peak DP 29.3gflops/sec 15.7GFlops/sec 14.4gb/sec 1.09 compute simD 14.6gflops/sec

76 communicAtionS of the Acm | APriL 2009 | voL. 52 | no. 4

contributed articles

intensity—the number of floating-
point operations per byte transferred
from DRAM—is an important param-
eter for both the kernels and the multi-
core computers.

We applied Roofline to four kernels
from among the Seven Dwarfs4,11 to
four recent multicore designs: AMD
Opteron X4, Intel Xeon, IBM Cell, and
Sun T2+. The ridge point—the mini-
mum operational intensity to achieve
maximum performance—proved to
be a better predictor of performance
than clock rate or peak performance.
Cell offered the highest attained per-
formance (GFlops/sec) on these ker-
nels, but T2+ was the easiest computer
on which to achieve its highest per-
formance. One reason is because the
ridge point of the Roofline Model for
T2+ was the lowest.

Just as the graphical Roofline Mod-
el offers insights into the difficulty of
achieving the peak performance of a
computer, it also makes obvious when
a computer is imbalanced. The opera-
tional ridge points for the two x86 com-
puters were 4.4 and 6.7—meaning a 35
to 55 Flops/Byte operand that accesses
DRAM—yet the operational intensi-
ties for the 16 combinations of kernels
and computers in Table 4 ranged from
0.25 to just 1.64, with a median of 0.60
Flops/Byte. Architects should keep the
ridge point in mind if they want pro-
grams to reach peak performance on
their new designs.

We measured the roofline and ceil-
ings using microbenchmarks but
could have used performance coun-
ters (see online Appendix A.1 and
A.3). There may indeed be a synergis-
tic relationship between performance
counters and the Roofline Model. The
requirements for automatic creation
of a Roofline model could guide the
designer as to which metrics should
be collected when faced with literally
hundreds of candidates but only a lim-
ited hardware budget.6

Roofline offers insights into other
types of multicore systems (such as vec-
tor processors and graphical process-
ing units); other kernels (such as sort
and ray tracing); other computational
metrics (such as pair-wise sorts per
second and frames per second); and
other traffic metrics (such as L3 cache
bandwidth and I/O bandwidth). Alas,
there are many more opportunities

for Roofline-oriented research than we
can pursue. We thus invite others to
join us in the exploration of the effec-
tiveness of the Roofline Model.

Acknowledgments
This research was sponsored in part by
the Universal Parallel Computing Re-
search Center funded by Intel and Mi-
crosoft and in part by the Office of Ad-
vanced Scientific Computing Research
in the U.S. Department of Energy Office
of Science under contract number DE-
AC02-05CH11231. We’d like to thank
FZ-Jülich and Georgia Tech for access
to Cell blades and Joseph Gebis, Leonid
Oliker, John Shalf, Katherine Yelick,
and the rest of the Par Lab for feed-
back on Roofline, and to Jike Chong,
Kaushik Datta, Mark Hoemmen, Matt
Johnson, Jae Lee, Rajesh Nishtala, Hei-
di Pan, David Wessel, Mark Hill, and
the anonymous reviewers for insightful
feedback on early drafts.

References
1. adve, V. Analyzing the Behavior and Performance

of Parallel Programs. Ph.D. thesis, university
of Wisconsin, 1993; www.cs.wisc.edu/
techreports/1993/tr1201.pdf.

2. amD. Software Optimization Guide for AMD Family
10h Processors, Publication 40546, apr. 2008; www.
amd.com/us-en/assets/content_type/white_papers_
and_tech_docs/40546.pdf.

3. amdahl, g. Validity of the single processor approach
to achieving large-scale computing capabilities.
in Proceedings of the AFIPS Conference, 1967,
483–485.

4. asanovic, k., bodik, r., catanzaro, b., gebis, j.,
keutzer, k., Patterson, D., Plishker, W., shalf, j.,
Williams, s., and yelick, k. The Landscape of
Parallel Computing Research: A View from Berkeley.
technical report ucb/eecs-2006-183. eecs,
university of california, berkeley, Dec. 2006.

5. bienia, c., kumar, s., singh, j., and li, k. The PARSEC
Benchmark Suite: Characterization and Architectural
Implications. technical report tr-81 1-008.
Princeton university, jan. 2008.

6. bird, s., Waterman, a., klues, k., Datta, k., liu, r.,
nishtala, r., Williams, s., asanovi, k., Demmel, j.,
Patterson, D., and yelick, k. a case for sensible
performance counters. submitted to the first
usenix Workshop on hot topics in Parallelism
(berkeley ca, mar. 30–31, 2009); www.usenix.org/
events/hotpar09/.

7. boyd, e., azeem, W., lee, h., shih, t., hung, s., and
Davidson, e. a hierarchical approach to modeling
and improving the performance of scientific
applications on the ksr1. in Proceedings of the 1994
International Conference on Parallel Processing,
1994, 188–192.

8. callahan, D., cocke, j., and kennedy, k. estimating
interlock and improving balance for pipelined
machines. Journal of Parallel Distributed Computing
5 (1988), 334–358.

9. carr, s. and kennedy, k. improving the ratio of
memory operations to floating-point operations
in loops. ACM Transactions on Programming
Languages and Systems 16, 4 (nov. 1994).

10. chong, j. Private communication on financial PDe
solvers, 2008.

11. colella, P. Defining Software Requirements for
Scientific Computing. Presentation, 2004.

12. Datta, k., murphy, m., Volkov, V., Williams, s., carter,
j., oliker, l., Patterson, D., shalf, j., and yelick, k.
stencil computation optimization and autotuning
on state-of-the-art multicore architectures.
in Proceedings of the 2008 ACM/IEEE SC08

Conference (austin, tx, nov. 15–21). ieee Press,
Piscataway, nj, 2008, 1-12.

13. Demmel, j., Dongarra, j., eijkhout, V., fuentes, e.,
Petitet, a., Vuduc, r., Whaley, r., and yelick, k. self-
adapting linear algebra algorithms and software.
Proceedings of the IEEE: Special Issue on Program
Generation, Optimization, and Adaptation 93, 2
(2005).

14. Dubois, m. and briggs, f.a. Performance of
synchronized iterative processes in multiprocessor
systems. IEEE Transactions on Software Engineering
SE-8, 4 (july 1982), 419–431.

15. frigo, m. and johnson, s. the design and
implementation of fftW3. Proceedings of the IEEE:
Special Issue on Program Generation, Optimization,
and Platform Adaptation 93, 2 (2005).

16. harris, m. mapping computational concepts to
gPus. in ACM SIGGRAPH Courses, chapter 31 (los
angeles, july 31-aug. 4). acm Press, new york,
2005.

17. hennessy, j. and Patterson, D. Computer
Architecture: A Quantitative Approach, Fourth
Edition. morgan kaufmann Publishers, boston, ma,
2007.

18. hill, m. and marty, m. amdahl’s law in the multicore
era. IEEE Computer (july 2008), 33–38.

19. hill, m. and smith, a. evaluating associativity in cPu
caches. IEEE Transactions on Computers 38, 12
(Dec. 1989), 1612–1630.

20. lazowska, e., Zahorjan, j., graham, s., and sevcik, k.
Quantitative System Performance: Computer System
Analysis Using Queueing Network Models. Prentice
hall, upper saddle river, nj, 1984.

21. little, j.D.c. a proof of the queueing formula l = λ
W. Operations Research 9, 3 (1961), 383–387.

22. mccalpin, j. STREAM: Sustainable Memory
Bandwidth in High-Performance Computers, 1995;
www.cs.virginia.edu/stream.

23. Patterson, D. latency lags bandwidth. Commun.
ACM 47, 10 (oct. 2004).

24. thomasian, a. and bay, P. analytic queueing network
models for parallel processing of task systems. IEEE
Transactions on Computers C-35, 12 (Dec. 1986),
1045–1054.

25. tikir, m., carrington, l., strohmaier, e., and snavely,
a. a genetic algorithms approach to modeling the
performance of memory-bound computations. in
Proceedings of the SC07 Conference (reno, nV, nov.
10–16). acm Press, new york, 2007.

26. Vuduc, r., Demmel, j., yelick, k., kamil, s., nishtala,
r., and lee, b. Performance optimizations and
bounds for sparse matrix-vector multiply. in
Proceedings of the ACM/IEEE SC02 Conference
(baltimore, mD, nov. 16–22). ieee computer society
Press, los alamitos, ca, 2002.

27. Williams, s. Autotuning Performance on Multicore
Computers. Ph.D. thesis. university of california,
berkeley, Dec. 2008; www.eecs.berkeley.edu/Pubs/
techrpts/2008/eecs-2008-164.html.

28. Williams, s., carter, j., oliker, l., shalf, j., and yelick,
k. lattice boltzmann simulation optimization on
leading multicore platforms. in Proceedings of the
IEEE International Symposium on Parallel and
Distributed Processing Symposium (miami, fl, apr.
14–18, 2008), 1–14.

29. Williams, s., oliker, l., Vuduc, f., shalf, j., yelick, k.,
and Demmel, j. optimization of sparse matrix-vector
multiplication on emerging multicore platforms.
in Proceedings of the ACM/IEEE SC07 Conference
(reno, nV, nov. 10–16). acm Press, new york, 2007.

30. Woo, s., ohara, m., torrie, e., singh, j.-P., and gupta,
a.the sPlash-2 programs: characterization and
methodological considerations. in Proceedings of the
22nd Annual International Symposium on Computer
Architecture. acm Press, new york, 1995, 24–37.

Samuel Williams (sWWilliams@lbl.gov) is a research
scientist at lawrence berkeley national laboratory,
berkeley, ca.

Andrew Waterman (waterman@eecs.berkeley.edu) is a
graduate student researcher in the Parallel computing
laboratory of the university of california, berkeley.

David Patterson (pattrsn@eecs.berkeley.edu) is Director
of the Parallel computing laboratory of the university of
california, berkeley, and a past president of acm.

© 2009 acm 0001-0782/09/0400 $5.00

