
APriL 2009  |   voL.  52  |   no.  4  |   communicAtionS of the Acm     65

conVentional WiSdom in computer architecture 
produced similar designs. Nearly every desktop 
and server computer uses caches, pipelining, 
superscalar instruction issue, and out-of-order 
execution. Although the instruction sets varied, the 
microprocessors were all from the same school of 

design. The relatively recent switch 
to multicore means that micropro-
cessors will become more diverse, 
since no conventional wisdom has yet 
emerged concerning their design. For 
example, some offer many simple pro-
cessors vs. fewer complex processors, 
some depend on multithreading, and 
some even replace caches with explic-

itly addressed local stores. Manufac-
turers will likely offer multiple prod-
ucts with differing numbers of cores 
to cover multiple price-performance 
points, since Moore’s Law will permit 
the doubling of the number of cores 
per chip every two years.4 While di-
versity may be understandable in this 
time of uncertainty, it exacerbates the 
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think the model will work with kernels 
where the operations are not arithme-
tic, as discussed later, so we needed a 
more general term than “arithmetic.” 

The proposed Roofline model ties 
together floating-point performance, 
operational intensity, and memory 
performance in a 2D graph. Peak float-
ing-point performance can be found 
through hardware specifications or 
microbenchmarks. The working sets 
of the kernels we consider here do 
not fit fully in on-chip caches, so peak 
memory performance is defined by 
the memory system behind the cach-
es. Although one can find memory 
performance through the STREAM 
benchmark,22 for this work we wrote 
a series of progressively optimized 
microbenchmarks designed to deter-
mine sustainable DRAM bandwidth. 
They include all techniques to get the 
best memory performance, including 

tensity” to mean operations per byte 
of DRAM traffic, defining total bytes 
accessed as those bytes that go to the 
main memory after they have been fil-
tered by the cache hierarchy. That is, 
we measure traffic between the caches 
and memory rather than between the 
processor and the caches. Thus, op-
erational intensity predicts the DRAM 
bandwidth needed by a kernel on a 
particular computer. 

We say “operational intensity” in-
stead of, say, “arithmetic intensity”16 or 
“machine balance”8,9 for two reasons: 
First, arithmetic intensity and ma-
chine balance measure traffic between 
the processor and the cache, whereas 
efficiency-level programmers want to 
measure traffic between the caches 
and DRAM. This subtle change allows 
them to include memory optimiza-
tions of a computer into our bound-
and-bottleneck model. Second, we 

already difficult jobs of programmers, 
compiler writers, and even architects. 
Hence, an easy-to-understand model 
that offers performance guidelines 
would be especially valuable. 

Such a model need not be perfect, 
just insightful. The 3Cs (compulsory, 
capacity, and conflict misses) model 
for caches is an analogy.19 It is not per-
fect, as it ignores potentially important 
factors like block size, block-allocation 
policy, and block-replacement policy. 
It also has quirks; for example, a miss 
might be labeled “capacity” in one de-
sign and “conflict” in another cache 
of the same size. Yet the 3Cs model 
has been popular for nearly 20 years 
precisely because it offers insight into 
the behavior of programs, helping pro-
grammers, compiler writers, and archi-
tects improve their respective designs. 

Here, we propose one such model 
we call Roofline, demonstrating it on 
four diverse multicore computers us-
ing four key floating-point kernels. 

Performance models 
Stochastic analytical models4,24 and 
statistical performance models7,25 can 
accurately predict program perfor-
mance on multiprocessors but rarely 
provide insight into how to improve 
the performance of programs, compil-
ers, and computers1 and can be diffi-
cult to use by nonexperts.25 

An alternative, simpler approach 
is “bound and bottleneck analysis.” 
Rather than try to predict perfor-
mance, it provides “valuable insight 
into the primary factors affecting the 
performance of computer systems. In 
particular, the critical influence of the 
system bottleneck is highlighted and 
quantified.”20 

The best-known example of a per-
formance bound is surely Amdahl’s 
Law,3 which says the performance gain 
of a parallel computer is limited by the 
serial portion of a parallel program 
and was recently applied to heteroge-
neous multicore computers.4,18 

Roofline model 
For the foreseeable future, off-chip 
memory bandwidth will often be the 
constraining resource in system per-
formance.23 Hence, we want a model 
that relates processor performance to 
off-chip memory traffic. Toward this 
goal, we use the term “operational in-

figure 1: Roofline model for (a) AmD opteron X2 and (b) opteron X2 vs. opteron X4. 
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the Roofline sets  
an upper bound  
on performance of  
a kernel depending 
on the kernel’s 
operational 
intensity. if we 
think of operational 
intensity as a 
column that hits  
the roof, either  
it hits the flat part  
of the roof,  
meaning 
performance is 
compute-bound,  
or performance  
is ultimately 
memory-bound. 

prefetching and data alignment. (See 
Section A.1 in the online Appendixa for 
more detail of how to measure proces-
sor and memory performance and op-
erational intensity.) 

Figure 1a outlines the model for a 
2.2GHz AMD Opteron X2 model 2214 
in a dual-socket system. The graph is 
on a log-log scale. The y-axis is attain-
able floating-point performance. The 
x-axis is operational intensity, varying 
from 0.25 Flops/DRAM byte-accessed 
to 16 Flops/DRAM byte-accessed. 
The system being modeled has peak 
double precision floating-point per-
formance of 17.6 GFlops/sec and peak 
memory bandwidth of 15GB/sec from 
our benchmark. This latter measure is 
the steady-state bandwidth potential 
of the memory in a computer, not the 
pin bandwidth of the DRAM chips. 

One can plot a horizontal line show-
ing peak floating-point performance 
of the computer. The actual floating-
point performance of a floating-point 
kernel can be no higher than the hori-
zontal line, since this line is the hard-
ware limit. 

How might we plot peak memory 
performance? Since the x-axis is Flops 
per Byte and the y-axis is GFlops/sec, 
gigabytes per second (GB/sec)—or 
(GFlops/sec)/(Flops/Byte)—is just a 
line of unit slope in Figure 1. Hence, 
we can plot a second line that bounds 
the maximum floating-point perfor-
mance that the memory system of 
the computer can support for a given 
operational intensity. This formula 
drives the two performance limits in 
the graph in Figure 1a: 

Attainable  
GFlops/sec 

=min
    

Peak Floating-Point 
Performance

Peak Memory   Operational 
Bandwidth   

×
  Intensity

The two lines intersect at the point 
of peak computational performance 
and peak memory bandwidth. Note that 
these limits are created once per multi-
core computer, not once per kernel. 

For a given kernel, we can find a 
point on the x-axis based on its opera-
tional intensity. If we draw a vertical 
line (the pink dashed line in the fig-
ures) through that point, the perfor-
mance of the kernel on that computer 

a Please go to doi.acm.org/10.1145/1498765.149
8785#supp

must lie somewhere along that line. 
The horizontal and diagonal lines 

give this bound model its name. The 
Roofline sets an upper bound on per-
formance of a kernel depending on 
the kernel’s operational intensity. If 
we think of operational intensity as a 
column that hits the roof, either it hits 
the flat part of the roof, meaning per-
formance is compute-bound, or it hits 
the slanted part of the roof, meaning 
performance is ultimately memory-
bound. In Figure 1a, a kernel with 
operational intensity 2.0 Flops/Byte 
is compute-bound and a kernel with 
operational intensity 1.0 Flops/Byte is 
memory-bound. Given a Roofline, you 
can use it repeatedly on different ker-
nels, since the Roofline doesn’t vary. 

Note that the ridge point (where the 
diagonal and horizontal roofs meet) of-
fers insight into the computer’s overall 
performance. The x-coordinate of the 
ridge point is the minimum operation-
al intensity required to achieve maxi-
mum performance. If the ridge point is 
far to the right, then only kernels with 
very high operational intensity can 
achieve the maximum performance 
of that computer. If it is far to the left, 
then almost any kernel can potentially 
hit maximum performance. As we ex-
plain later, the ridge point suggests 
the level of difficulty for programmers 
and compiler writers to achieve peak 
performance. 

To illustrate, we compare the Opter-
on X2 with two cores in Figure 1a to its 
successor, the Opteron X4 with four 
cores. To simplify board design, they 
share the same socket. Hence, they 
have the same DRAM channels and 
can thus have the same peak memory 
bandwidth, although prefetching is 
better in the X4. In addition to dou-
bling the number of cores, the X4 
also has twice the peak floating-point 
performance per core; X4 cores can 
issue two floating-point SSE2 instruc-
tions per clock cycle, whereas X2 cores 
can issue two instructions every other 
clock. As the clock rate is slightly fast-
er—2.2GHz for X2 vs. 2.3GHz for X4—
the X4 is able to achieve slightly more 
than four times the peak floating-point 
performance of the X2 with the same 
memory bandwidth. 

Figure 1b compares the Roofline 
models for these two systems. As ex-
pected, the ridge point shifts right 
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from 1.0 Flops/Byte in the Opteron X2 
to 4.4 in the Opteron X4. Hence, to re-
alize a performance gain using the X4, 
kernels need an operational intensity 
greater than 1.0 Flops/Byte. 

 Adding ceilings to the model 
The Roofline model provides an upper 
bound to performance. Suppose a pro-
gram performs far below its Roofline. 
What optimizations should one im-
plement and in what order? Another 
advantage of bound-and-bottleneck 
analysis is that “a number of alterna-
tives can be treated together, with a 
single bounding analysis providing 
useful information about them all.”20

We leverage this insight to add mul-
tiple ceilings to the Roofline model to 
guide which optimizations to imple-
ment. It is similar to the guidelines 
loop balance gives the compiler. We 
can think of each optimization as a 
“performance ceiling” below the ap-
propriate Roofline, meaning you can-
not break through a ceiling without 
first performing the associated opti-
mization. 

For example, to reduce computa-
tional bottlenecks on the Opteron X2, 
almost any kernel can be helped with 
two optimizations: 

Improve instruction-level parallelism 
(ILP) and apply SIMD. For superscalar 
architectures, the highest performance 
comes when fetching, executing, and 
committing the maximum number 
of instructions per clock cycle. The 
goal is to improve the code from the 
compiler to increase ILP. The highest 
performance comes from completely 
covering the functional unit latency. 
One way to hide instruction latency is 
by unrolling loops. For x86-based ar-
chitectures, another way is using float-
ing-point SIMD instructions whenever 
possible, since a SIMD instruction op-
erates on pairs of adjacent operands; 
and 

Balance floating-point operation mix. 
The best performance requires that 
a significant fraction of the instruc-
tion mix be floating-point operations 
(discussed later). Peak floating-point 
performance typically also requires 
an equal number of simultaneous 
floating-point additions and multipli-
cations, since many computers have 
multiply-add instructions or an equal 
number of adders and multipliers. 

Memory bottlenecks can be reduced 
with the help of three optimizations: 

Restructure loops for unit stride ac-
cesses. Optimizing for unit-stride 
memory accesses engages hardware 

prefetching, significantly increasing 
memory bandwidth; 

Ensure memory affinity. Most micro-
processors today include a memory 
controller on the same chip with the 

figure 2: Roofline model with ceilings for opteron X2.
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optimizations to try. The middle of 
Figure 2c shows that computational 
optimizations and memory bandwidth 
optimizations overlap; we picked the 
colors to highlight this overlap. For 
example, Kernel 2 falls in the blue 
trapezoid on the right, suggesting the 
programmer should work only on the 
computational optimizations. If a ker-
nel fell in the yellow triangle on the 
lower left, the model would suggest 
trying just memory optimizations. Ker-
nel 1 falls in the green (= yellow + blue) 
parallelogram in the middle, suggest-
ing the programmer try both types of 
optimization. Note that the Kernel 1 
vertical line falls below the floating-
point imbalance optimization, so opti-
mization 2 may be skipped. 

The ceilings of the Roofline model 
suggest which optimizations the pro-
grammer should perform. The height 
of the gap between a ceiling and the 
next higher ceiling is the potential 
reward for trying this optimization. 
Thus, Figure 2 suggests that optimiza-
tion 1, which improves ILP/SIMD, has 
a large potential benefit for optimizing 
computation on that computer, and 
optimization 4, which improves mem-
ory affinity, has a large potential ben-
efit for improving memory bandwidth 
on that computer. 

The order of the ceilings suggests 
the optimization order, so we rank 
the ceilings from bottom to top; those 
most likely to be realized by a compiler 
or with little effort by a programmer 
are at the bottom and those that are 
difficult for a programmer to imple-
ment or inherently lacking in a kernel 
are at the top. The one quirky ceiling is 
floating-point balance, since the actu-
al mix depends on the kernel. For most 
kernels, achieving parity between mul-
tiplies and additions is difficult, but 
for a few kernels, parity is natural. One 
example is sparse matrix-vector mul-
tiplication; for this domain, we would 
place floating-point mix as the lowest 
ceiling, since it is inherent. Like the 
3Cs model, as long as the Roofline 
model delivers on insight, it need not 
be perfect. 

tying the 3cs to 
operational intensity 
Operational intensity tells program-
mers which ceilings need the most 
attention. Thus far, we have assumed 

processors. If the system has two mul-
ticore chips, then some addresses go 
to the DRAM local to one multicore 
chip, and the rest go over a chip inter-
connect to access the DRAM local to 
another chip. The latter lowers per-
formance. This optimization allocates 
data and the threads tasked to that 
data to the same memory-processor 
pair, so the processors rarely have to 
access the memory attached to other 
chips; and 

Use software prefetching. The high-
est performance usually requires keep-
ing many memory operations in flight, 
which is easier to do via prefetching 
than by waiting until the data is actual-
ly requested by the program. On some 
computers, software prefetching de-
livers more bandwidth than hardware 
prefetching alone. 

Like the computational Roofline, 
computational ceilings can come from 
an optimization manual,2 though it’s 
easy to imagine collecting the nec-
essary parameters from simple mi-
crobenchmarks. The memory ceilings 
require running experiments on each 
computer to determine the gap be-

tween them (see online Appendix A.1). 
The good news is that like the Roof-
line, the ceilings must be measured 
only once per multicore computer. 

Figure 2 adds ceilings to the Roof-
line model in Figure 1a; Figure 2a 
shows the computational ceilings and 
Figure 2b the memory bandwidth ceil-
ings. Although the higher ceilings are 
not labeled with lower optimizations, 
these lower optimizations are implied; 
to break through a ceiling, the pro-
grammer must have already broken 
through all the ones below. Figure 2a 
shows the computational “ceilings” 
of 8.8 GFlops/sec if the floating-point 
operation mix is imbalanced and 2.2 
GFlops/sec if the optimizations to in-
crease ILP or SIMD are also missing. 
Figure 2b shows the memory band-
width ceilings of 11 GB/sec without 
software prefetching, 4.8 GB/sec with-
out memory affinity optimizations, 
and 2.7 GB/sec with only unit stride 
optimizations. 

Figure 2c combines Figures 2a and 
2b into a single graph. The operational 
intensity of a kernel determines the 
optimization region, and thus which 

table 1: characteristics of four recent multicore computers.

mPu type

intel Xeon 

(clovertown, 

e5345)

AmD opteron 

X4 (Barcelona, 

2356)

Sun ultraS-

PARc t2+  

(niagara 2, 5120) iBm cell (QS20) 

iSA

x86/64 x86/64 sParc cell sPes

total threads

8 8 128 16

total cores

8 8 16 16

total  

Sockets

2 2 2 2

Ghz

2.33 2.30 1.17 3.20

Peak Gflops/sec

75 74 19 29

Peak DRAm  

GB/sec

21.3r,  

10.6w

2 × 10.6 2 × 21.3r,  

2 × 10.6w

2 × 25.6

Stream  

GB/sec

5.9 16.6 26.0 47.0

DRAm type

fbDimm DDr2 fbDimm xDr
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that the operational intensity is fixed, 
though this is not always the case; for 
example, for some kernels, the opera-
tional intensity increases with prob-
lem size (such as for Dense Matrix and 
FFT problems). 

Caches filter the number of access-
es that go to memory, so optimizations 
that improve cache performance in-
crease operational intensity. Thus, we 
may couple the 3Cs model to the Roof-
line model. Compulsory misses set the 
minimum memory traffic and hence 
the highest possible operational in-
tensity. Memory traffic from conflict 
and capacity misses can considerably 
lower the operational intensity of a 
kernel, so we should try to eliminate 
such misses. 

For example, we can reduce traffic 
from conflict misses by padding arrays 
to change cache line addressing. A sec-
ond example is that some computers 
have a non-allocating store instruction, 
so stores go directly to memory and do 
not affect caches. This approach pre-
vents loading a cache block with data 
to be overwritten, thereby reducing 
memory traffic. It also prevents dis-
placing useful items in the cache with 
data that will not be read, thereby sav-
ing conflict misses. 

This shift of operational intensity to 
the right could put a kernel in a differ-
ent optimization region. Generally, we 
advise improving operational inten-
sity of the kernel before implementing 
other optimizations. 

Demonstrating the model 
To demonstrate the Roofline model’s 
utility, we now construct Roofline 
models for four recent multicore com-
puters and then optimize four floating-
point kernels. We’ll then show that the 
ceilings and rooflines bound the ob-
served performance for all computers 
and kernels. 

Four diverse multicore computers. 
Given the lack of conventional wisdom 
concerning multicore architecture, it’s 
not surprising that there are as many 
different designs as there are chips. 
Table 1 lists the key characteristics of 
the four multicore computers, all dual-
socket systems, that we discuss here. 

The Intel Xeon uses relatively so-
phisticated processors, capable of 
executing two SIMD instructions per 
clock cycle that can each perform two 

double-precision floating-point opera-
tions. It is the only one of the four ma-
chines with a front-side bus connect-
ing to a common north bridge chip and 
memory controller. The other three 
have the memory controller on chip. 

The Opteron X4 also uses sophis-
ticated cores with high peak floating-
point performance but is the only 
computer of the four with on-chip L3 
caches. The two sockets communicate 
over separate, dedicated hypertrans-
port links, making it possible to build 
a “glueless” multi-chip system. 

The Sun UltraSPARC T2+ uses rela-
tively simple processors at a modest 
clock rate compared to the other three, 
allowing it to have twice as many cores 
per chip. It is also highly multithread-
ed, with eight hardware-supported 
threads per core. It has the highest 
memory bandwidth of the four, as 
each chip has two dual-channel mem-
ory controllers that can drive four sets 
of DDR2/FBDIMMs. 

The clock rate of the IBM Cell QS20 
is the highest of the four multicores at 
3.2GHz. It is also the most unusual of 
the four, with a heterogeneous design, 
a relatively simple PowerPC core, and 
eight synergistic processing elements 
(SPEs) with their own unique SIMD-style 
instruction set. Each SPE also has its 
own local memory, instead of a cache. 
An SPE must transfer data from main 

memory into the local memory to oper-
ate on it and then back to main memory 
when the computation is completed. It 
uses Direct Memory Access, which has 
some similarity to software prefetching. 
The lack of caches means porting pro-
grams to Cell is more challenging. 

Four diverse floating-point ker-
nels. Rather than pick programs from 
a standard parallel benchmark suite 
(such as Parsec5 and Splash-230), we 
were inspired by the work of Phil 
Colella,11 an expert in scientific com-
puting at Lawrence Berkeley National 
Laboratory, who identified seven nu-
merical methods he believes will be 
important for computational science 
and engineering for at least the next 
decade. Because he identified seven, 
they are called the Seven Dwarfs and 
are specified at a high level of ab-
straction to allow reasoning about 
their behavior across a broad range 
of implementations. The widely read 
“Berkeley View” report4 found that 
if the data types were changed from 
floating point to integer, the same 
Seven Dwarfs would also be found in 
many other programs. Note that the 
claim is not that the Dwarfs are easy to 
parallelize but that they will be impor-
tant to computing in most current and 
future applications; designers are thus 
advised to make sure they run well on 
the systems they create, whether or 

table 2: characteristics of four floating-point kernels.

name operational intensity Description

SpmV29 0.17 to 0.25 sparse matrix-Vector  

multiply: y = a*x where a is  

a sparse matrix and x, y are dense 

vectors; multiplies and adds equal.

LBmhD28 0.70 to 1.07 lattice-boltzmann  

magnetohydro-dynamics is  

a structured grid code with  

a series of time steps. 

Stencil12 0.33 to 0.50 a multigrid kernel that  

updates seven nearby points in a 3D 

stencil for a 2563 problem. 

3D fft 1.09 to 1.64 3D fast fourier transform  

(2 sizes: 1283 and 5123).
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not those systems are parallel. 
One advantage of using these high-

er-level descriptions of programs is 
that we are not tied to code that might 
have been originally written to opti-
mize an old computer to evaluate fu-
ture systems. Another advantage of the 
restricted number is that efficiency-lev-
el programmers can create autotuners 

for each kernel that would search the 
alternatives to produce the best code 
for that multicore computer, includ-
ing extensive cache optimizations.13 

Table 2 lists the four kernels from 
among the Seven Dwarfs we use to dem-
onstrate the Roofline model on the four 
multicore computers listed in Table 1; 
the autotuners discussed in this sec-

tion are from three sources:12, 28, 29  

For these kernels, there is sufficient 
parallelism to utilize all the cores and 
threads and keep them load balanced; 
see online Appendix A.2 for how to han-
dle cases when load is not balanced. 

Roofline models and results. Figure 
3 shows the Roofline models for Xeon, 
X4, and Cell. The pink vertical dashed 
lines indicate the operational inten-
sity and the red X marks performance 
achieved for that particular kernel. 
However, achieving balance is difficult 
for the others. Hence, each computer 
in Figure 3 has two graphs: the left one 
has multiply-add balance as the top 
ceiling and is used for Lattice-Boltz-
mann Magnetohydrodynamics (LB-
MHD), Stencil, and 3D FFT; the right 
one has multiply-add as the bottom 
ceiling and is used for SpMV. Since the 
T2+ lacks a fused multiply-add instruc-
tion nor can it simultaneously issue 
multiplies and adds, Figure 4 shows a 
single roofline for the four kernels on 
the T2+ without the multiply-add bal-
ance ceiling. 

The Intel Xeon has the highest peak 
double-precision performance of the 
four multicores. However, the Roofline 
model in Figure 3a shows this level of 
performance can be achieved only with 
operational intensities of at least 6.7 
Flops/Byte; in other words Clovertown 
requires 55 floating-point operations 
for every double-precision operand 
(8B) going to DRAM to achieve peak 
performance. This high ratio is due in 
part to the limitation of the front-side 
bus, which also carries the coherency 
traffic that can consume up to half the 
bus bandwidth. Intel includes a snoop 
filter to prevent unnecessary coheren-
cy traffic on the bus. If the working set 
is small enough for the hardware to fil-
ter, the snoop filter nearly doubles the 
delivered memory bandwidth. 

The Opteron X4 has a memory 
controller on chip, its own path to 
667MHz DDR2 DRAM, and separate 
paths for coherency. Figure 3 shows 
that the ridge point in the Roofline 
model is to the left of the Xeon, at an 
operational intensity of 4.4 Flops/Byte. 
The Sun T2+ has the highest memory 
bandwidth so the ridge point is an ex-
ceptionally low operational intensity 
of just 0.33 Flops/Byte. It keeps mul-
tiple memory transfers in flight by us-
ing many threads. The IBM Cell ridge 

figure 3a–3c: Roofline model for intel Xeon, AmD opteron X4, and iBm cell. 
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point of operational intensity is 0.65 
Flops/Byte. 

Here, we demonstrate the Roofline 
model on four diverse mutlicore archi-
tectures running four kernels repre-
sentative of some of the Seven Dwarfs: 

Sparse matrix-vector multiplication. 
The first example kernel of the sparse 
matrix computational dwarf is Sparse 
Matrix-Vector multiply (SpMV); the 
computation is y = A*x, where A is a 
sparse matrix and x and y are dense 
vectors. SpMV is popular in scientific 
computing, economic modeling, and 
information retrieval. Alas, conven-
tional implementations often run at 
less than 10% of peak floating-point 
performance in uniprocessors. One 
reason is the irregular accesses to 
memory, which might be expected 
from sparse matrices. The operational 
intensity varies from 0.17 Flops/Byte 
before a register blocking optimiza-
tion to 0.25 Flops/Byte afterward26 (see 
online Appendix A.1). 

Given that the operational intensity 
of SpMV was below the ridge point of 
all four multicores in Figure 3, most 
optimizations involve the memory sys-
tem. Table 3 summarizes the optimi-
zations used by SpMV and the rest of 
the kernels. Many are associated with 
the ceilings in Figure 3, and the height 
of the ceilings suggests the potential 
benefit of these optimizations. 

Lattice-Boltzmann Magnetohydrody-
namics. Like SpMV, LBMHD tends to 
achieve a small fraction of peak per-
formance on uniprocessors due to the 
complexity of the data structures and 
the irregularity of memory access pat-
terns. The Flop-to-Byte ratio is 0.70 
vs. 0.25 or less in SpMV. By using the 
no-allocate store optimization, a pro-
grammer can improve the operational 
intensity of LBMHD to 1.07 Flops/
Byte. Both x86 multicores offer this 
cache optimization, but Cell does not 
have this problem since it uses DMA. 
Hence, T2+ is the only one of the four 
computers with the lower intensity of 
0.70 Flops/Byte. 

Figures 3 and 4 show that the op-
erational intensity of LBMHD is high 
enough that both computational and 
memory bandwidth optimizations 
make sense on all multicores, except 
the T2+ where the Roofline ridge point 
is below that of LBMHD. The T2+ 
reaches its performance ceiling using 

only the computational optimizations. 
Stencil. In general, a stencil on a 

structured grid is defined as a function 
that updates a point based on the val-
ues of its neighbors. The stencil struc-
ture remains constant as it moves from 
one point in space to the next. For this 
work, we use the stencil derived from 

the explicit heat equation, a partial dif-
ferential equation on a uniform 2563 
3D grid.12 The stencil’s neighbors are 
the nearest six points along each axis, 
as well as the center point itself. This 
stencil performs eight floating-point 
operations for every 24B of compul-
sory memory traffic on write-allocate 

figure 3d–3f: Roofline model for intel Xeon, AmD opteron X4, and iBm cell. 
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architectures, yielding an operational 
intensity of 0.33 Flops/Byte. 

3D FFT. This fast Fourier transform 
is the classic divide-and-conquer algo-
rithm that recursively breaks down a 
discrete Fourier transform into many 
smaller ones. The FFT is ubiquitous 
in many domains, including image 
processing and data compression. An 
efficient approach for 3D FFT is to per-
form 1D transforms along each dimen-
sion to maintain unit-stride accesses. 
We computed the 1D FFTs on Xeon, 
X4, and T2+ using an autotuned library 
(FFTW).15 For Cell, we implemented a 
radix-2 FFT. 

FFT differs from SpMV, LBMHD, 
and Stencil in that its operational in-
tensity is a function of problem size. 
For the 1283- and 5123-point trans-
forms we examine, the operational in-
tensities are 1.09 and 1.41 Flops/Byte, 
respectively; Cell’s 1GB main memory 
is too small to hold 5123 points, so we 
estimate this result. On Xeon and X4, 
an entire 128×128 plane fits in cache, 

increasing temporal locality and im-
proving the intensity to 1.64 for the 
1283-point transform. 

Productivity vs. performance. In ad-
dition to performance, productivity (or 
the programming difficulty of achiev-
ing good performance) is another 
important issue for the parallel com-
puting revolution.4 One question is 
whether a low ridge point gives insight 
into productivity. 

The Sun T2+ (with the lowest ridge 
point of the four computers) was the 
easiest to program due to its large 
memory bandwidth and easy-to-un-
derstand cores. The advice for these 
kernels on T2+ is simply to try to get 
good-performing code from the com-
piler, then use as many threads as 
possible. The downside is that the L2 
cache is only 16-way set associative, 
which can lead to conflict misses when 
64 threads access the cache, as it did 
for the Stencil kernel. 

In contrast, the computer with the 
highest ridge point had the lowest 

unoptimized performance. The Intel 
Xeon was difficult to program because 
it was difficult to understand the mem-
ory behavior of the dual front-side bus-
es, how hardware prefetching worked, 
and the difficulty of getting good SIMD 
code from the compiler. The C code for 
both it and the Opteron X4 are liberally 
sprinkled with intrinsic statements in-
volving SIMD instructions to get good 
performance. 

With a ridge point close to the 
Xeon, the Opteron X4 required about 
as much effort, since it benefited from 
the most types of optimization. How-
ever, its memory behavior was easier to 
understand than the memory behavior 
of the Xeon. 

The IBM Cell (with a ridge point al-
most as low as the Sun T2+) involved 
two types of challenges. First, it was 
difficult for the compiler to exploit the 
SIMD instructions of Cell’s SPE, so at 
times we needed to help the compiler 
by inserting intrinsic statements with 
assembly language instructions into 
the C code. This comment reflects the 
immaturity of the IBM compiler, as 
well as the difficulty of compiling for 
these SIMD instructions. Second, the 
memory system is more challenging. 
Since each SPE has local memory in a 
separate address space, we could not 
simply port the code and start running 
on the SPE. We needed to change the 
program to issue DMA commands to 
transfer data back and forth between 
local store and memory. The good 
news is that DMA played the role of 
software prefetch in caches. DMA for a 
local store is easier to program, achieve 
good memory performance, and over-
lap with computation than scheduling 
prefetches for caches. 

To demonstrate the utility of the 
Roofline Model, Table 4 lists the up-
per and lower bounding ceilings and 
the GFlops/sec and GB/sec per kernel-
computer pair; recall that operational 
intensity is the ratio between the two 
rates. The ceilings listed are the ceil-
ings sandwiching actual performance. 
All 16 combinations of kernel and 
computer validate this bound-and-bot-
tleneck model since Roofline’s upper 
and lower ceilings bound performance 
and the kernels were optimized, as the 
lower ceilings suggest. The metric that 
limits performance is in bold; 15 of 16 
ceilings are memory-bound for Xeon 

figure 4: Roofline model for Sun ultraSPARc t2+. 

operational intensity (flops/Byte)

peak DP

≥ 50% issued = = fP

25% issued == fP

12.5% issued == fP

s
pm

V

s
te

nc
il

lb
m

h
D

ff
t

(1
28

3 )

ff
t

(5
12

3 )

peak stream bandwidth

without m
emory affinity

G
f

lo
p

s/
se

c

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

figure 5: Roofline for transpose phase of 3D fft for the cell. 

peak exchange rate

peak stream bandwidth

transpose

G
e

xc
h

an
g

es
/s

ec

operational intensity (exchanges/Byte)

32

16

8

4

2

1

1/64 1/32 1/16 1/8 1/4 1/2 1



74    communicAtionS of the Acm    |   APriL 2009  |   voL.  52  |   no.  4

contributed articles

and X4, while the bottleneck is almost 
evenly split for T2+ and Cell. For FFT, 
the surrounding ceilings are memory-
bound for Xeon and X4, but compute-
bound for T2+ and Cell. 

fallacies About Roofline 
We have presented this material in sev-
eral venues, prompting a number of 
misconceptions we address here: 

Fallacy: The model does not account 
for all features of modern processors 
(such as caches and prefetching). The 
definition of operational intensity we 
use here does indeed factor-in caches; 
memory accesses are measured be-
tween the caches and memory, not be-
tween the processor and caches. In our 
discussion of performance models, we 
showed that the memory bandwidth 
measures of the computer include 
prefetching and any other optimiza-
tion (such as blocking) that can im-

prove memory performance. Similarly, 
some of the optimizations in Table 3 
explicitly involve memory. Moreover, 
in our discussion on tying the 3Cs to 
operational intensity, we demonstrat-
ed the optimizations’ effect on increas-
ing operational intensity by reducing 
capacity and conflict misses. 

Fallacy: Doubling cache size increases 
operational intensity. Autotuning three 
of the four kernels gets very close to 
the compulsory memory traffic; the re-
sultant working set is sometimes only 
a small fraction of the cache. Increas-
ing cache size helps only with capacity 
misses and possibly conflict misses, 
so a larger cache has no effect on the 
operational intensity for the three ker-
nels. However, for 1283 3D FFT, a larger 
cache could capture a whole plane of a 
3D cube, improving operational inten-
sity by reducing capacity and conflict 
misses. 

Fallacy: The model doesn’t account 
for the long memory latency. The ceil-
ings for no software prefetching in 
Figures 3 and 4 are at lower memory 
bandwidth precisely because they can-
not hide the long memory latency.

Fallacy: The model ignores integer 
units in floating-point programs, pos-
sibly limiting performance. For the ex-
ample kernels we’ve outlined here, the 
amount of integer code and integer 
performance can affect performance. 
For example, the Sun UltraSPARC T2+ 
fetches two instructions per core per 
clock cycle and doesn’t implement the 
SIMD instructions of the x86 that can 
operate on two double-precision float-
ing-point operands at a time. Relative 
to other processors, the T2+ expends a 
larger fraction of its instruction issue 
bandwidth on integer instructions and 
executes them at a lower rate, hurting 
overall performance. 

Fallacy: The model has nothing to do 
with multicore. Little’s Law17, 20, 21 dic-
tates that considerable concurrency is 
necessary to really push the limits of 
the memory system. This concurrency 
is more easily satisfied in a multicore 
than in a uniprocessor. While the band-
width orientation of the Roofline mod-
el certainly works for uniprocessors, it 
is even more helpful for multicores. 

Fallacy: You need to recalculate the 
Roofline model for every kernel. The 
Roofline needs to be calculated for giv-
en performance metrics and comput-

ers just once; it then guides the imple-
mentation for any program for which 
that metric is the critical performance 
metric. The kernels we’ve explored 
here use floating-point operations and 
main memory traffic. The ceilings are 
measured once but can be reordered 
depending on whether or not multi-
plies and adds are naturally balanced 
in the kernel (see the earlier discus-
sion on adding ceilings to the model). 

Note that the heights of the ceilings 
we discuss here document the maxi-
mum potential gain of a code perform-
ing this optimization. An interesting 
future direction is to use performance 
counters to adjust the height of the 
ceilings and the order of the ceilings 
for a particular kernel to show the ac-
tual benefits of each optimization and 
the recommended order to try them 
(see online Appendix A.3). 

Fallacy: The model is limited to eas-
ily optimized kernels that never hit in the 
cache. These kernels do indeed hit in 
the cache; for example, the cache-hit 
rates of our three multicores with on-
chip caches are at least 94% for Sten-
cil and 98% for FFT. Moreover, if the 
Seven Dwarfs were easy to optimize, it 
would bode well for the future of multi-
cores. However, our experience is that 
it is not easy to create the fastest ver-
sion of these numerical methods on 
the divergent multicore architectures 
discussed here. Indeed, three of the re-
sults were judged significant enough 
to be accepted for publication at major 
conferences.12, 28, 29 

Fallacy: The model is limited to float-
ing-point programs. Our focus here has 
been on floating-point programs, so 
the two axes of the model are floating-
point operations per second and the 
floating-point operational intensity of 
accesses to main memory. However, 
the Roofline model can work for other 
kernels where performance is a func-
tion of different performance metrics. 
A concrete example is the transpose 
phase of 3D FFT, which performs no 
floating-point operations at all. Figure 
5 shows a Roofline model for just this 
phase on Cell, with exchanges replac-
ing Flops in the model. One exchange 
involves reading and writing 16B, so 
its operational intensity is 1/32 pair-
wise Exchanges/Byte. Despite the com-
putational metric being memory ex-
changes, there is still a computational 

table 3: Kernel optimizations.12, 28, 29

Memory affinity. reduce accesses to Dram 

memory attached to the other socket. 

Long unit-stride accesses. change loop  

structures to generate long unit-stride ac-

cesses to engage the prefetchers; 

also reduces tlb misses. 

Software prefetching. software and hardware 

prefetching both used to get the most  

from memory systems. 

Reduce conflict misses. Pad arrays to improve 

cache-hit rates. 

Unroll and reorder loops.  to expose sufficient 

parallelism and improve cache utilization, 

unroll and reorder loops to group  

statements with similar addresses;  

improves code quality, reduces register  

pressure, facilitates simD. 

“SIMD-ize” code. the x86 compilers didn’t 

generate good sse code, so we made a code 

generator to produce sse intrinsics. 

Compress data structures (SpMV only). since 

bandwidth limits performance, we used 

smaller data structures: 16b vs. 32b  

index and smaller representations of  

non-zero subblocks.27 
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horizontal Roofline, since local stores 
and caches could affect the number of 
exchanges that go to DRAM. 

Fallacy: The Roofline model must 
use DRAM bandwidth. If the working 
set fits in the L2 cache, the diagonal 
Roofline could be L2 cache bandwidth 
instead of DRAM bandwidth, and the 
operational intensity on the x-axis 
would be based on Flops per L2 cache 
Byte accessed. The diagonal memory 
performance line would move up, and 
the ridge point would surely move to 
the left. For example, Jike Chong of 
the University of California, Berkeley, 
ported two financial partial differ-
ential equation (PDE) solvers to four 
other multicore computers: the Intel 
Penryn and Larrabee and NVIDIA G80 

and GTX280.10 He used the Roofline 
model to keep track of all four of their 
peak arithmetic throughput and L1, 
L2, and DRAM bandwidths. By analyz-
ing an algorithm’s working set and op-
erational intensity, he was able to use 
the Roofline model to quickly estimate 
the needs for algorithmic improve-
ment. Specifically, for the option-
pricing problem with an implicit PDE 
solver, the working set is small enough 
to fit into L1, and the L1 bandwidth is 
sufficient to support peak arithmetic 
throughput; the Roofline model thus 
indicates that no optimization is nec-
essary. For option pricing with an ex-
plicit PDE formulation, the working 
set is too large to fit into cache, and the 
Roofline model helps indicate the ex-

tent cache blocking is necessary to pro-
duce peak arithmetic performance. 

conclusion 
The sea change from sequential com-
puting to parallel computing is in-
creasing the diversity of computers 
that programmers must confront 
when building correct, efficient, scal-
able, portable software.4 Here, we’ve 
described a simple, visual computa-
tional model we call the Roofline Mod-
el to help identify which systems would 
be a good match for important kernels 
or conversely to determine how to 
change kernel code or hardware to run 
desired kernels well. For floating-point 
kernels that do not fit completely in 
caches, we’ve shown how operational 

table 4: Achieved performance and nearest Roofline ceilings, with metric limiting performance in bold (3D fft is 1283)

 

Kernel

upper ceiling Achieved Performance Lower ceiling

 Type Name Value Compute Memory O.I. Type Name Value

intel 

Xeon

spmV memory stream bW 11.2gb/sec  2.8gflops/sec  11.1GB/sec 0.25 memory snoop filter 5.9gbyte/sec

lbmhD memory snoop filter 5.9gb/sec  5.6gflops/sec  5.3GB/sec 1.07 memory (none) 0.0gbyte/sec

stencil memory snoop filter 5.9gb/sec  2.5gflops/sec  5.1GB/sec 0.50 memory (none) 0.0gbyte/sec

3D fft memory snoop filter 5.9gb/sec  9.7gflops/sec  5.9GB/sec 1.64 compute tlP only 6.2gflops/sec

AmD 

X4

spmV memory stream bW 17.6gb/sec  4.2gflops/sec  16.8GB/sec 0.25 memory copy bW 13.9gbyte/sec

lbmhD memory copy bW 13.9gb/sec  11.4gflops/sec  10.7GB/sec 1.07 memory no affinity 7.0gbyte/sec

stencil memory stream bW 17.6gb/sec  8.0gflops/sec  16.0GB/sec 0.50 memory copy bW 13.9gbyte/sec

3D fft memory copy bW 13.9gb/sec  14.0gflops/sec  8.6GB/sec 1.64 memory no affinity 7.0gbyte/sec

Sun 

t2+

spmV memory stream bW 36.7gb/sec  7.3gflops/sec  29.1GB/sec 0.25 memory no affinity 19.8gbyte/sec

lbmhD memory no affinity 19.8gb/sec  10.5gflops/sec  15.0GB/sec 0.70 compute 25% issued fP 9.3gflops/sec

stencil compute 25% issued fP 9.3gflopss/sec  6.8GFlops/sec  20.3gb/sec 0.33 memory no affinity 19.8gbyte/sec

3D fft compute Peak DP 19.8gflops/sec  9.2GFlops/sec 10.0gb/sec 1.09 compute 25% issued fP 9.3gflops/sec

iBm 

cell

spmV memory stream bW 47.6gb/sec  11.8gflops/sec  47.1GB/sec 0.25 memory fma 7.3gflops/sec

lbmhD memory no affinity 23.8gb/sec  16.7gflops/sec  15.6GB/sec 1.07 memory Without fma 14.6gflops/sec

stencil compute Without fma 14.6gflopss/sec  14.2GFlops/sec  30.2gb/sec 0.47 memory no affinity 23.8gbyte/sec

3D fft compute Peak DP 29.3gflops/sec 15.7GFlops/sec 14.4gb/sec 1.09 compute simD 14.6gflops/sec
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intensity—the number of floating-
point operations per byte transferred 
from DRAM—is an important param-
eter for both the kernels and the multi-
core computers. 

We applied Roofline to four kernels 
from among the Seven Dwarfs4,11 to 
four recent multicore designs: AMD 
Opteron X4, Intel Xeon, IBM Cell, and 
Sun T2+. The ridge point—the mini-
mum operational intensity to achieve 
maximum performance—proved to 
be a better predictor of performance 
than clock rate or peak performance. 
Cell offered the highest attained per-
formance (GFlops/sec) on these ker-
nels, but T2+ was the easiest computer 
on which to achieve its highest per-
formance. One reason is because the 
ridge point of the Roofline Model for 
T2+ was the lowest. 

Just as the graphical Roofline Mod-
el offers insights into the difficulty of 
achieving the peak performance of a 
computer, it also makes obvious when 
a computer is imbalanced. The opera-
tional ridge points for the two x86 com-
puters were 4.4 and 6.7—meaning a 35 
to 55 Flops/Byte operand that accesses 
DRAM—yet the operational intensi-
ties for the 16 combinations of kernels 
and computers in Table 4 ranged from 
0.25 to just 1.64, with a median of 0.60 
Flops/Byte. Architects should keep the 
ridge point in mind if they want pro-
grams to reach peak performance on 
their new designs. 

We measured the roofline and ceil-
ings using microbenchmarks but 
could have used performance coun-
ters (see online Appendix A.1 and 
A.3). There may indeed be a synergis-
tic relationship between performance 
counters and the Roofline Model. The 
requirements for automatic creation 
of a Roofline model could guide the 
designer as to which metrics should 
be collected when faced with literally 
hundreds of candidates but only a lim-
ited hardware budget.6 

Roofline offers insights into other 
types of multicore systems (such as vec-
tor processors and graphical process-
ing units); other kernels (such as sort 
and ray tracing); other computational 
metrics (such as pair-wise sorts per 
second and frames per second); and 
other traffic metrics (such as L3 cache 
bandwidth and I/O bandwidth). Alas, 
there are many more opportunities 

for Roofline-oriented research than we 
can pursue. We thus invite others to 
join us in the exploration of the effec-
tiveness of the Roofline Model. 
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