
The Dataflow Model



Problem

• How can we process unbounded data? 

• Example: track user activity on a website



Key ideas
• Windowing

• Fixed windows 

• Sliding windows 

• Sessions 

• Time domains

• Event time 

• Processing time 

• Triggers



Contribution
• Dataflow API 

• Easily build pipelines with your choice of 
windowing, time domain, and trigger 

• Independent of execution engine 

• Choose batch, micro-batch, or streaming 
depending on tradeoffs



Windowing



Types of windows

• Fixed windows 

• Sliding windows 

• Sessions



Fixed windows



Sliding windows

Example: compute running average 
over past 5 minutes of data



Session windows

Example: YouTube viewing sessions



Time domains
• For many applications, windows should be based 

on “event time” (when the events actually occur) 

• Example: billing YouTube advertisers 

• Lag, partitions, etc, might cause an event to be 
processed later than its event time 

• Processing time



Challenge: time skew



Goal: Event-time windows

Fixed 
windows

Session
windows



Challenge: completion

• With event times, how does the system know if it 
has received all of the data in a window? 

• Example: phones might watch YouTube videos 
(and ads) offline



Watermarks
• Heuristics that tell the system when it is likely to 

have received most of the data in a window 

• Based on global progress metrics 

• Watermarks are insufficient: 

• Late data might arrive behind the watermark 

• Watermark might be too slow due to one late 
datum and increase latency for the whole system



Incremental processing

• Difficult to get the single best result from a window 

• Instead, let windows produce multiple results 
(improving incrementally over time)



Triggers
• Triggers specify when to output window results 

• at watermark 

• at percentile watermark 

• every minute, etc 

• Triggers specify how to output results 

• discard previous window 

• accumulate 

• accumulate and retract 

• Triggers are composable



Examples



streaming pipeline produces low-latency results, which
are then overwritten in the future by the results from
the batch pipeline. For video sessions, this might be
su�cient if we are simply calculating sessions and then
immediately writing them to some output source that
supports updates (e.g. a database or key/value store).

• Accumulating & Retracting: Upon triggering, in
addition to the Accumulating semantics, a copy of the
emitted value is also stored in persistent state. When
the window triggers again in the future, a retraction for
the previous value will be emitted first, followed by the
new value as a normal datum12. Retractions are neces-
sary in pipelines with multiple serial GroupByKeyAnd-
Window operations, since the multiple results gener-
ated by a single window over subsequent trigger fires
may end up on separate keys when grouped down-
stream. In that case, the second grouping operation
will generate incorrect results for those keys unless it is
informed via a retraction that the e↵ects of the original
output should be reversed. Dataflow Combiner opera-
tions that are also reversible can support retractions
e�ciently via an uncombine method. For video sessions,
this mode is the ideal. If we are performing aggrega-
tions downstream from session creation that depend on
properties of the sessions themselves, for example de-
tecting unpopular ads (such as those which are viewed
for less than five seconds in a majority of sessions),
initial results may be invalidated as inputs evolve over
time, e.g. as a significant number of o✏ine mobile
viewers come back online and upload session data. Re-
tractions provide a way for us to adapt to these types
of changes in complex pipelines with multiple serial
grouping stages.

2.4 Examples
We will now consider a series of examples that highlight

the plurality of useful output patterns supported by the
Dataflow Model. We will look at each example in the con-
text of the integer summation pipeline from Section 2.2.3:

PCollection<KV<String, Integer>> output = input
.apply(Sum.integersPerKey());

Let us assume we have an input source from which we are
observing ten data points, each themselves small integer val-
ues. We will consider them in the context of both bounded
and unbounded data sources. For diagrammatic simplicity,
we will assume all these data are for the same key; in a real
pipeline, the types of operations we describe here would be
happening in parallel for multiple keys. Figure 5 diagrams
how these data relate together along both axes of time we
care about. The X axis plots the data in event time (i.e.
when the events actually occurred), while the Y axis plots
the data in processing time (i.e. when the pipeline observes
them). All examples assume execution on our streaming
engine unless otherwise specified.

Many of the examples will also depend on watermarks,
in which cases we will include them in our diagrams. We
will graph both the ideal watermark and an example actual

12A simple implementation of retraction processing requires
deterministic operations, but non-determinism may be sup-
ported with additional complexity and cost; we have seen
use cases that require this, such as probabilistic modeling.

watermark. The straight dotted line with slope of one rep-
resents the ideal watermark, i.e. if there were no event-time
skew and all events were processed by the system as they
occurred. Given the vagaries of distributed systems, skew is
a common occurrence; this is exemplified by the meandering
path the actual watermark takes in Figure 5, represented by
the darker, dashed line. Note also that the heuristic nature
of this watermark is exemplified by the single “late” datum
with value 9 that appears behind the watermark.
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Figure 5: Example Inputs

If we were to process these data in a classic batch system
using the described summation pipeline, we would wait for
all the data to arrive, group them together into one bundle
(since these data are all for the same key), and sum their val-
ues to arrive at total result of 51. This result is represented
by the darkened rectangle in Figure 6, whose area covers
the ranges of event and processing time included in the sum
(with the top of the rectangle denoting when in processing
time the result was materialized). Since classic batch pro-
cessing is event-time agnostic, the result is contained within
a single global window covering all of event time. And since
outputs are only calculated once all inputs are received, the
result covers all of processing time for the execution.
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5151

Figure 6: Classic Batch Execution

Note the inclusion of watermarks in this diagram. Though
not typically used for classic batch processing, watermarks
would semantically be held at the beginning of time until all
data had been processed, then advanced to infinity. An im-
portant point to note is that one can get identical semantics
to classic batch by running the data through a streaming
system with watermarks progressed in this manner.
Now let us say we want to convert this pipeline to run over

an unbounded data source. In Dataflow, the default trig-
gering semantics are to emit windows when the watermark

1798



passes them. But when using the global window with an
unbounded input source, we are guaranteed that will never
happen, since the global window covers all of event time. As
such, we will need to either trigger by something other than
the default trigger, or window by something other than the
global window. Otherwise, we will never get any output.

Let us first look at changing the trigger, since this will
allow us to to generate conceptually identical output (a
global per-key sum over all time), but with periodic up-
dates. In this example, we apply a Window.trigger operation
that repeatedly fires on one-minute periodic processing-time
boundaries. We also specify Accumulating mode so that our
global sum will be refined over time (this assumes we have
an output sink into which we can simply overwrite previ-
ous results for the key with new results, e.g. a database or
key/value store). Thus, in Figure 7, we generate updated
global sums once per minute of processing time. Note how
the semi-transparent output rectangles overlap, since Accu-
mulating panes build upon prior results by incorporating
overlapping regions of processing time:

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtPeriod(1, MINUTE)))

.accumulating())
.apply(Sum.integersPerKey());
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Figure 7: GlobalWindows, AtPeriod, Accumulating

If we instead wanted to generate the delta in sums once
per minute, we could switch to Discarding mode, as in Fig-
ure 8. Note that this e↵ectively gives the processing-time
windowing semantics provided by many streaming systems.
The output panes no longer overlap, since their results in-
corporate data from independent regions of processing time.

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtPeriod(1, MINUTE)))

.discarding())
.apply(Sum.integersPerKey());
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Figure 8: GlobalWindows, AtPeriod, Discarding

Another, more robust way of providing processing-time
windowing semantics is to simply assign arrival time as event
times at data ingress, then use event time windowing. A nice
side e↵ect of using arrival time event times is that the system
has perfect knowledge of the event times in flight, and thus
can provide perfect (i.e. non-heuristic) watermarks, with
no late data. This is an e↵ective and cost-e�cient way of
processing unbounded data for use cases where true event
times are not necessary or available.
Before we look more closely at other windowing options,

let us consider one more change to the triggers for this
pipeline. The other common windowing mode we would like
to model is tuple-based windows. We can provide this sort
of functionality by simply changing the trigger to fire after a
certain number of data arrive, say two. In Figure 9, we get
five outputs, each containing the sum of two adjacent (by
processing time) data. More sophisticated tuple-based win-
dowing schemes (e.g. sliding tuple-based windows) require
custom windowing strategies, but are otherwise supported.

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtCount(2)))

.discarding())
.apply(Sum.integersPerKey());
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Figure 9: GlobalWindows, AtCount, Discarding

Let us now return to the other option for supporting un-
bounded sources: switching away from global windowing.
To start with, let us window the data into fixed, two-minute
Accumulating windows:

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES)

.accumulating())
.apply(Sum.integersPerKey());

With no trigger strategy specified, the system would use
the default trigger, which is e↵ectively:

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES))

.trigger(Repeat(AtWatermark())))

.accumulating())
.apply(Sum.integersPerKey());

The watermark trigger fires when the watermark passes
the end of the window in question. Both batch and stream-
ing engines implement watermarks, as detailed in Section
3.1. The Repeat call in the trigger is used to handle late
data; should any data arrive after the watermark, they will
instantiate the repeated watermark trigger, which will fire
immediately since the watermark has already passed.
Figures 10�12 each characterize this pipeline on a dif-

ferent type of runtime engine. We will first observe what
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passes them. But when using the global window with an
unbounded input source, we are guaranteed that will never
happen, since the global window covers all of event time. As
such, we will need to either trigger by something other than
the default trigger, or window by something other than the
global window. Otherwise, we will never get any output.

Let us first look at changing the trigger, since this will
allow us to to generate conceptually identical output (a
global per-key sum over all time), but with periodic up-
dates. In this example, we apply a Window.trigger operation
that repeatedly fires on one-minute periodic processing-time
boundaries. We also specify Accumulating mode so that our
global sum will be refined over time (this assumes we have
an output sink into which we can simply overwrite previ-
ous results for the key with new results, e.g. a database or
key/value store). Thus, in Figure 7, we generate updated
global sums once per minute of processing time. Note how
the semi-transparent output rectangles overlap, since Accu-
mulating panes build upon prior results by incorporating
overlapping regions of processing time:

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtPeriod(1, MINUTE)))

.accumulating())
.apply(Sum.integersPerKey());
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Figure 7: GlobalWindows, AtPeriod, Accumulating

If we instead wanted to generate the delta in sums once
per minute, we could switch to Discarding mode, as in Fig-
ure 8. Note that this e↵ectively gives the processing-time
windowing semantics provided by many streaming systems.
The output panes no longer overlap, since their results in-
corporate data from independent regions of processing time.

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtPeriod(1, MINUTE)))

.discarding())
.apply(Sum.integersPerKey());
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Figure 8: GlobalWindows, AtPeriod, Discarding

Another, more robust way of providing processing-time
windowing semantics is to simply assign arrival time as event
times at data ingress, then use event time windowing. A nice
side e↵ect of using arrival time event times is that the system
has perfect knowledge of the event times in flight, and thus
can provide perfect (i.e. non-heuristic) watermarks, with
no late data. This is an e↵ective and cost-e�cient way of
processing unbounded data for use cases where true event
times are not necessary or available.
Before we look more closely at other windowing options,

let us consider one more change to the triggers for this
pipeline. The other common windowing mode we would like
to model is tuple-based windows. We can provide this sort
of functionality by simply changing the trigger to fire after a
certain number of data arrive, say two. In Figure 9, we get
five outputs, each containing the sum of two adjacent (by
processing time) data. More sophisticated tuple-based win-
dowing schemes (e.g. sliding tuple-based windows) require
custom windowing strategies, but are otherwise supported.

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtCount(2)))

.discarding())
.apply(Sum.integersPerKey());
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Figure 9: GlobalWindows, AtCount, Discarding

Let us now return to the other option for supporting un-
bounded sources: switching away from global windowing.
To start with, let us window the data into fixed, two-minute
Accumulating windows:

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES)

.accumulating())
.apply(Sum.integersPerKey());

With no trigger strategy specified, the system would use
the default trigger, which is e↵ectively:

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES))

.trigger(Repeat(AtWatermark())))

.accumulating())
.apply(Sum.integersPerKey());

The watermark trigger fires when the watermark passes
the end of the window in question. Both batch and stream-
ing engines implement watermarks, as detailed in Section
3.1. The Repeat call in the trigger is used to handle late
data; should any data arrive after the watermark, they will
instantiate the repeated watermark trigger, which will fire
immediately since the watermark has already passed.
Figures 10�12 each characterize this pipeline on a dif-

ferent type of runtime engine. We will first observe what

1799



passes them. But when using the global window with an
unbounded input source, we are guaranteed that will never
happen, since the global window covers all of event time. As
such, we will need to either trigger by something other than
the default trigger, or window by something other than the
global window. Otherwise, we will never get any output.

Let us first look at changing the trigger, since this will
allow us to to generate conceptually identical output (a
global per-key sum over all time), but with periodic up-
dates. In this example, we apply a Window.trigger operation
that repeatedly fires on one-minute periodic processing-time
boundaries. We also specify Accumulating mode so that our
global sum will be refined over time (this assumes we have
an output sink into which we can simply overwrite previ-
ous results for the key with new results, e.g. a database or
key/value store). Thus, in Figure 7, we generate updated
global sums once per minute of processing time. Note how
the semi-transparent output rectangles overlap, since Accu-
mulating panes build upon prior results by incorporating
overlapping regions of processing time:

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtPeriod(1, MINUTE)))

.accumulating())
.apply(Sum.integersPerKey());
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Figure 7: GlobalWindows, AtPeriod, Accumulating

If we instead wanted to generate the delta in sums once
per minute, we could switch to Discarding mode, as in Fig-
ure 8. Note that this e↵ectively gives the processing-time
windowing semantics provided by many streaming systems.
The output panes no longer overlap, since their results in-
corporate data from independent regions of processing time.

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtPeriod(1, MINUTE)))

.discarding())
.apply(Sum.integersPerKey());
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Figure 8: GlobalWindows, AtPeriod, Discarding

Another, more robust way of providing processing-time
windowing semantics is to simply assign arrival time as event
times at data ingress, then use event time windowing. A nice
side e↵ect of using arrival time event times is that the system
has perfect knowledge of the event times in flight, and thus
can provide perfect (i.e. non-heuristic) watermarks, with
no late data. This is an e↵ective and cost-e�cient way of
processing unbounded data for use cases where true event
times are not necessary or available.
Before we look more closely at other windowing options,

let us consider one more change to the triggers for this
pipeline. The other common windowing mode we would like
to model is tuple-based windows. We can provide this sort
of functionality by simply changing the trigger to fire after a
certain number of data arrive, say two. In Figure 9, we get
five outputs, each containing the sum of two adjacent (by
processing time) data. More sophisticated tuple-based win-
dowing schemes (e.g. sliding tuple-based windows) require
custom windowing strategies, but are otherwise supported.

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtCount(2)))

.discarding())
.apply(Sum.integersPerKey());
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Figure 9: GlobalWindows, AtCount, Discarding

Let us now return to the other option for supporting un-
bounded sources: switching away from global windowing.
To start with, let us window the data into fixed, two-minute
Accumulating windows:

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES)

.accumulating())
.apply(Sum.integersPerKey());

With no trigger strategy specified, the system would use
the default trigger, which is e↵ectively:

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES))

.trigger(Repeat(AtWatermark())))

.accumulating())
.apply(Sum.integersPerKey());

The watermark trigger fires when the watermark passes
the end of the window in question. Both batch and stream-
ing engines implement watermarks, as detailed in Section
3.1. The Repeat call in the trigger is used to handle late
data; should any data arrive after the watermark, they will
instantiate the repeated watermark trigger, which will fire
immediately since the watermark has already passed.
Figures 10�12 each characterize this pipeline on a dif-

ferent type of runtime engine. We will first observe what
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Let’s run this pipeline under the three execution 
engines: batch, micro-batch, streaming



execution of this pipeline would look like on a batch engine.
Given our current implementation, the data source would
have to be a bounded one, so as with the classic batch ex-
ample above, we would wait for all data in the batch to
arrive. We would then process the data in event-time order,
with windows being emitted as the simulated watermark ad-
vances, as in Figure 10:
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Figure 10: FixedWindows, Batch

Now imagine executing a micro-batch engine over this
data source with one minute micro-batches. The system
would gather input data for one minute, process them, and
repeat. Each time, the watermark for the current batch
would start at the beginning of time and advance to the end
of time (technically jumping from the end time of the batch
to the end of time instantaneously, since no data would ex-
ist for that period). We would thus end up with a new
watermark for every micro-batch round, and corresponding
outputs for all windows whose contents had changed since
the last round. This provides a very nice mix of latency and
eventual correctness, as in Figure 11:
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Figure 11: FixedWindows, Micro-Batch

Next, consider this pipeline executed on a streaming en-
gine, as in Figure 12. Most windows are emitted when the
watermark passes them. Note however that the datum with
value 9 is actually late relative to the watermark. For what-
ever reason (mobile input source being o✏ine, network par-
tition, etc.), the system did not realize that datum had not
yet been injected, and thus, having observed the 5, allowed
the watermark to proceed past the point in event time that
would eventually be occupied by the 9. Hence, once the
9 finally arrives, it causes the first window (for event-time

range [12:00, 12:02)) to retrigger with an updated sum:
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Figure 12: FixedWindows, Streaming

This output pattern is nice in that we have roughly one
output per window, with a single refinement in the case of
the late datum. But the overall latency of results is no-
ticeably worse than the micro-batch system, on account of
having to wait for the watermark to advance; this is the case
of watermarks being too slow from Section 2.3.
If we want lower latency via multiple partial results for all

of our windows, we can add in some additional, processing-
time-based triggers to provide us with regular updates until
the watermark actually passes, as in Figure 13. This yields
somewhat better latency than the micro-batch pipeline, since
data are accumulated in windows as they arrive instead of
being processed in small batches. Given strongly-consistent
micro-batch and streaming engines, the choice between them
(as well as the choice of micro-batch size) really becomes just
a matter of latency versus cost, which is exactly one of the
goals we set out to achieve with this model.

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES))

.trigger(SequenceOf(
RepeatUntil(

AtPeriod(1, MINUTE),
AtWatermark()),

Repeat(AtWatermark())))
.accumulating())

.apply(Sum.integersPerKey());
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Figure 13: FixedWindows, Streaming, Partial

As one final exercise, let us update our example to satisfy
the video sessions requirements (modulo the use of summa-
tion as the aggregation operation, which we will maintain
for diagrammatic consistency; switching to another aggre-
gation would be trivial), by updating to session windowing
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execution of this pipeline would look like on a batch engine.
Given our current implementation, the data source would
have to be a bounded one, so as with the classic batch ex-
ample above, we would wait for all data in the batch to
arrive. We would then process the data in event-time order,
with windows being emitted as the simulated watermark ad-
vances, as in Figure 10:
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Figure 10: FixedWindows, Batch

Now imagine executing a micro-batch engine over this
data source with one minute micro-batches. The system
would gather input data for one minute, process them, and
repeat. Each time, the watermark for the current batch
would start at the beginning of time and advance to the end
of time (technically jumping from the end time of the batch
to the end of time instantaneously, since no data would ex-
ist for that period). We would thus end up with a new
watermark for every micro-batch round, and corresponding
outputs for all windows whose contents had changed since
the last round. This provides a very nice mix of latency and
eventual correctness, as in Figure 11:
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Figure 11: FixedWindows, Micro-Batch

Next, consider this pipeline executed on a streaming en-
gine, as in Figure 12. Most windows are emitted when the
watermark passes them. Note however that the datum with
value 9 is actually late relative to the watermark. For what-
ever reason (mobile input source being o✏ine, network par-
tition, etc.), the system did not realize that datum had not
yet been injected, and thus, having observed the 5, allowed
the watermark to proceed past the point in event time that
would eventually be occupied by the 9. Hence, once the
9 finally arrives, it causes the first window (for event-time

range [12:00, 12:02)) to retrigger with an updated sum:
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Figure 12: FixedWindows, Streaming

This output pattern is nice in that we have roughly one
output per window, with a single refinement in the case of
the late datum. But the overall latency of results is no-
ticeably worse than the micro-batch system, on account of
having to wait for the watermark to advance; this is the case
of watermarks being too slow from Section 2.3.
If we want lower latency via multiple partial results for all

of our windows, we can add in some additional, processing-
time-based triggers to provide us with regular updates until
the watermark actually passes, as in Figure 13. This yields
somewhat better latency than the micro-batch pipeline, since
data are accumulated in windows as they arrive instead of
being processed in small batches. Given strongly-consistent
micro-batch and streaming engines, the choice between them
(as well as the choice of micro-batch size) really becomes just
a matter of latency versus cost, which is exactly one of the
goals we set out to achieve with this model.

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES))

.trigger(SequenceOf(
RepeatUntil(

AtPeriod(1, MINUTE),
AtWatermark()),

Repeat(AtWatermark())))
.accumulating())

.apply(Sum.integersPerKey());
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Figure 13: FixedWindows, Streaming, Partial

As one final exercise, let us update our example to satisfy
the video sessions requirements (modulo the use of summa-
tion as the aggregation operation, which we will maintain
for diagrammatic consistency; switching to another aggre-
gation would be trivial), by updating to session windowing
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execution of this pipeline would look like on a batch engine.
Given our current implementation, the data source would
have to be a bounded one, so as with the classic batch ex-
ample above, we would wait for all data in the batch to
arrive. We would then process the data in event-time order,
with windows being emitted as the simulated watermark ad-
vances, as in Figure 10:
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Now imagine executing a micro-batch engine over this
data source with one minute micro-batches. The system
would gather input data for one minute, process them, and
repeat. Each time, the watermark for the current batch
would start at the beginning of time and advance to the end
of time (technically jumping from the end time of the batch
to the end of time instantaneously, since no data would ex-
ist for that period). We would thus end up with a new
watermark for every micro-batch round, and corresponding
outputs for all windows whose contents had changed since
the last round. This provides a very nice mix of latency and
eventual correctness, as in Figure 11:
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Next, consider this pipeline executed on a streaming en-
gine, as in Figure 12. Most windows are emitted when the
watermark passes them. Note however that the datum with
value 9 is actually late relative to the watermark. For what-
ever reason (mobile input source being o✏ine, network par-
tition, etc.), the system did not realize that datum had not
yet been injected, and thus, having observed the 5, allowed
the watermark to proceed past the point in event time that
would eventually be occupied by the 9. Hence, once the
9 finally arrives, it causes the first window (for event-time

range [12:00, 12:02)) to retrigger with an updated sum:
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Figure 12: FixedWindows, Streaming

This output pattern is nice in that we have roughly one
output per window, with a single refinement in the case of
the late datum. But the overall latency of results is no-
ticeably worse than the micro-batch system, on account of
having to wait for the watermark to advance; this is the case
of watermarks being too slow from Section 2.3.
If we want lower latency via multiple partial results for all

of our windows, we can add in some additional, processing-
time-based triggers to provide us with regular updates until
the watermark actually passes, as in Figure 13. This yields
somewhat better latency than the micro-batch pipeline, since
data are accumulated in windows as they arrive instead of
being processed in small batches. Given strongly-consistent
micro-batch and streaming engines, the choice between them
(as well as the choice of micro-batch size) really becomes just
a matter of latency versus cost, which is exactly one of the
goals we set out to achieve with this model.

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES))

.trigger(SequenceOf(
RepeatUntil(

AtPeriod(1, MINUTE),
AtWatermark()),

Repeat(AtWatermark())))
.accumulating())

.apply(Sum.integersPerKey());
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Figure 13: FixedWindows, Streaming, Partial

As one final exercise, let us update our example to satisfy
the video sessions requirements (modulo the use of summa-
tion as the aggregation operation, which we will maintain
for diagrammatic consistency; switching to another aggre-
gation would be trivial), by updating to session windowing
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execution of this pipeline would look like on a batch engine.
Given our current implementation, the data source would
have to be a bounded one, so as with the classic batch ex-
ample above, we would wait for all data in the batch to
arrive. We would then process the data in event-time order,
with windows being emitted as the simulated watermark ad-
vances, as in Figure 10:
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Now imagine executing a micro-batch engine over this
data source with one minute micro-batches. The system
would gather input data for one minute, process them, and
repeat. Each time, the watermark for the current batch
would start at the beginning of time and advance to the end
of time (technically jumping from the end time of the batch
to the end of time instantaneously, since no data would ex-
ist for that period). We would thus end up with a new
watermark for every micro-batch round, and corresponding
outputs for all windows whose contents had changed since
the last round. This provides a very nice mix of latency and
eventual correctness, as in Figure 11:

12:01 12:02 12:03 12:04 12:05 12:06 12:07 12:08

Event Time

1
2
:
0
6

1
2
:
0
7

1
2
:
0
8

1
2
:
0
9

P
r
o
c
e
s
s
i
n
g
T
i
m
e

Ideal watermark:

Actual watermark:

5
7

8

3
4

3

3

8
1

9

1414 1212

2222 33

1414 33

55 77

Figure 11: FixedWindows, Micro-Batch

Next, consider this pipeline executed on a streaming en-
gine, as in Figure 12. Most windows are emitted when the
watermark passes them. Note however that the datum with
value 9 is actually late relative to the watermark. For what-
ever reason (mobile input source being o✏ine, network par-
tition, etc.), the system did not realize that datum had not
yet been injected, and thus, having observed the 5, allowed
the watermark to proceed past the point in event time that
would eventually be occupied by the 9. Hence, once the
9 finally arrives, it causes the first window (for event-time

range [12:00, 12:02)) to retrigger with an updated sum:
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Figure 12: FixedWindows, Streaming

This output pattern is nice in that we have roughly one
output per window, with a single refinement in the case of
the late datum. But the overall latency of results is no-
ticeably worse than the micro-batch system, on account of
having to wait for the watermark to advance; this is the case
of watermarks being too slow from Section 2.3.
If we want lower latency via multiple partial results for all

of our windows, we can add in some additional, processing-
time-based triggers to provide us with regular updates until
the watermark actually passes, as in Figure 13. This yields
somewhat better latency than the micro-batch pipeline, since
data are accumulated in windows as they arrive instead of
being processed in small batches. Given strongly-consistent
micro-batch and streaming engines, the choice between them
(as well as the choice of micro-batch size) really becomes just
a matter of latency versus cost, which is exactly one of the
goals we set out to achieve with this model.

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES))

.trigger(SequenceOf(
RepeatUntil(

AtPeriod(1, MINUTE),
AtWatermark()),

Repeat(AtWatermark())))
.accumulating())

.apply(Sum.integersPerKey());
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As one final exercise, let us update our example to satisfy
the video sessions requirements (modulo the use of summa-
tion as the aggregation operation, which we will maintain
for diagrammatic consistency; switching to another aggre-
gation would be trivial), by updating to session windowing

1800



with a one minute timeout and enabling retractions. This
highlights the composability provided by breaking the model
into four pieces (what you are computing, where in event
time you are computing it, when in processing time you are
observing the answers, and how those answers relate to later
refinements), and also illustrates the power of reverting pre-
vious values which otherwise might be left uncorrelated to
the value o↵ered as replacement.

PCollection<KV<String, Integer>> output = input
.apply(Window.into(Sessions.withGapDuration(1, MINUTE))

.trigger(SequenceOf(
RepeatUntil(

AtPeriod(1, MINUTE),
AtWatermark()),

Repeat(AtWatermark())))
.accumulatingAndRetracting())

.apply(Sum.integersPerKey());
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Figure 14: Sessions, Retracting

In this example, we output initial singleton sessions for
values 5 and 7 at the first one-minute processing-time bound-
ary. At the second minute boundary, we output a third ses-
sion with value 10, built up from the values 3, 4, and 3.
When the value of 8 is finally observed, it joins the two ses-
sions with values 7 and 10. As the watermark passes the
end of this new combined session, retractions for the 7 and
10 sessions are emitted, as well as a normal datum for the
new session with value 25. Similarly, when the 9 arrives
(late), it joins the session with value 5 to the session with
value 25. The repeated watermark trigger then immediately
emits retractions for the 5 and the 25, followed by a com-
bined session of value 39. A similar dance occurs for the
values 3, 8, and 1, ultimately ending with a retraction for
an initial 3 session, followed by a combined session of 12.

3. IMPLEMENTATION & DESIGN

3.1 Implementation
We have implemented this model internally in FlumeJava,

with MillWheel used as the underlying execution engine for
streaming mode; additionally, an external reimplementation
for Cloud Dataflow is largely complete at the time of writing.
Due to prior characterization of those internal systems in the
literature, as well as Cloud Dataflow being publicly avail-
able, details of the implementations themselves are elided
here for the sake of brevity. One interesting note is that the
core windowing and triggering code is quite general, and a
significant portion of it is shared across batch and stream-
ing implementations; that system itself is worthy of a more
detailed analysis in future work.

3.2 Design Principles
Though much of our design was motivated by the real-

world experiences detailed in Section 3.3 below, it was also
guided by a core set of principles that we believed our model
should embody:

• Never rely on any notion of completeness.

• Be flexible, to accommodate the diversity of known use
cases, and those to come in the future.

• Not only make sense, but also add value, in the context
of each of the envisioned execution engines.

• Encourage clarity of implementation.

• Support robust analysis of data in the context in which
they occurred.

While the experiences below informed specific features of
the model, these principles informed the overall shape and
character of it, and we believe ultimately led to a more com-
prehensive and general result.

3.3 Motivating Experiences
As we designed the Dataflow Model, we took into consid-

eration our real-world experiences with FlumeJava and Mill-
Wheel over the years. Things which worked well, we made
sure to capture in the model; things which worked less well
motivated changes in approach. Here are brief summaries
of some of these experiences that influenced our design.

3.3.1 Large Scale Backfills & The Lambda

Architecture: Unified Model

A number of teams run log joining pipelines on MillWheel.
One particularly large log join pipeline runs in streaming
mode on MillWheel by default, but has a separate Flume-
Java batch implementation used for large scale backfills. A
much nicer setup would be to have a single implementation
written in a unified model that could run in both stream-
ing and batch mode without modification. This became
the initial motivating use case for unification across batch,
micro-batch, and streaming engines, and was highlighted in
Figures 10�12.
Another motivation for the unified model came from an

experience with the Lambda Architecture. Though most
data processing use cases at Google are handled exclusively
by a batch or streaming system, one MillWheel customer ran
their streaming pipeline in weak consistency mode, with a
nightly MapReduce to generate truth. They found that cus-
tomers stopped trusting the weakly consistent results over
time, and as a result reimplemented their system around
strong consistency so they could provide reliable, low la-
tency results. This experience further motivated the desire
to support fluid choice amongst execution engines.

3.3.2 Unaligned Windows: Sessions

From the outset, we knew we needed to support sessions;
this in fact is the main contribution of our windowing model
over existing models. Sessions are an extremely important
use case within Google (and were in fact one of the reasons
MillWheel was created), and are used across a number of
product areas, including search, ads, analytics, social, and
YouTube. Pretty much anyone that cares about correlating
bursts of otherwise disjoint user activity over a period of
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