
Dynamo: Amazon’s Highly
Available Key-value Store

Josh Blum | 6.S897 | 09/28/2015

Introduction

- Amazon’s e-commerce platform serves tens of millions
customers at peak times using tens of thousands of
servers located in many data centers around the world.

- Need for a scalable and highly available key-value store
- Choose to focus on an eventually consistent store

- Sacrifices consistency for availability

- Query Model
- Data is uniquely identified by a key, stored as binary blob
- No need for relational schema

- Efficiency
- Runs on commodity heterogenous hardware infrastructure
- Stringent latency requirements: SLA is 300ms for 99.9th percentile

requests
- Other Assumptions

- Security isn’t an issue

System Assumptions and Requirements

API

- get(key)
- Returns a single object or a list of objects with conflicting versions along

with a context
- Conflicts are handled on reads, never reject a write

- put(key, context, object)
- context refers to various kinds of system metadata

Data Partitioning

- Consistent hashing
- Output range of a hash is treated as a ‘ring’.
- Assign a key to each object (MD5 of 128-bit client supplied key)

- MD5(key) -> node (position on the Ring)
- Incrementally scalable: adding a single node does not affect the system

significantly
- “Virtual Nodes”

- Each node can be responsible for more than one virtual node.
- Work distribution proportional to the capabilities of the individual node

Data Partitioning

Example: N=3

- Node B replicates the key k at
nodes C and D in addition to
storing it locally.

- Node D will store the keys in
the ranges (A, B], (B, C], and
(C, D].

Replication

Data Versioning
- System is eventually consistent, thus a get()call may return stale data
- An object can have distinct version sub-histories, the system needs reconcile

in the future
- Uses vector clocks in order to capture causality between different versions of

the same object.

Vector Clocks

- A vector clock is a list of (node, counter) pairs.
- Every version of every object is associated with one vector clock.
- When a client wishes to update an object, it must specify which version it is

updating.
- This is done by passing the “context” it obtained from an earlier read

operation, which contains the vector clock information.

- R: minimum number of nodes that must participate in a successful read
operation

- W: the minimum number of nodes that must participate in a successful write
operation

- Setting R + W > N yields a quorum-like system.
- The latency of a get() (or put()) operation is dictated by the slowest of the

R (or W) replicas
- R and W are usually configured to be less than N, to provide better latency.

Sloppy Quorum

- get(): coordinator reads from N nodes; waits for R responses.
- If they agree, return value.
- If they disagree, but are causally related, return the most recent value
- If they are causally unrelated apply reconciliation techniques and write

back the corrected version

Sloppy Quorum: get()

- put(): the coordinator writes to the first N healthy nodes on the preference
list.

- Coordinator writes new version vector clock locally and forwards to N
highest ranked reachable nodes

- If W-1 more writes succeed, the write is considered to be successful

Sloppy Quorum: put()

- Typical: (3, 2, 2)
- Balances performance, durability, and availability

- W = 1
- Never reject a write as long as one node is alive

- Low values of W and R can increase the risk of inconsistency
- Requests are successful before being processed by a majority of the

replicas.
- Introduces vulnerability window for durability for writes

(N, R, W) Configurations

Failures

- Like Google, Amazon has a number of data centers, each with many
commodity machines.

- Individual machines fail regularly
- Sometimes entire data centers fail due to power outages, network

partitions, tornados, etc.
- To handle failure of entire centers, replicas are spread across multiple data

centers.
- Hinted handoff for transient failures
- Merkle trees for replica synchronization

Questions?

