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Motivation
● Imagine a world with “flat” data storage

○ Simple, Centralized, and easy to program

● Unfortunately, datacenter networks were once oversubscribed

○  Shortage of bandwidth ⇒ “Move Computation to Data”

■ Programming models like MapReduce, Dryad, etc.

● These locality constraints hindered efficient resource utilization!



Motivation 

Data Center Networks are getting faster!

New topologies mean networks can support Full Bisection Bandwidth.



Motivation
Idea: Design with full bisection bandwidth in mind.

All compute nodes can access all storage with equal throughput!

Consequence: No need to worry about data locality.

FDS read/write performance exceeds 2 GB/s, can recover 92GB of lost data in 
6.2 seconds, and broke a world record in sorting in 2012.



FDS Design



Design: Blobs and Tracts
Data is stored in logical blobs

● Byte sequences with a 128-bit Global Unique Identifiers (GUID)
● Divided into constant sized units called tracts

Tracts are sized so random and sequential accesses have same throughput

Both tracts and blobs are mutable

Disk is managed by a tractserver process

● Read/write to disk directly without filesystem; tract data cached in 
memory



Design: System API
● Reads and writes not guaranteed to appear in the order they are issued

● Read and writes are atomic

● API is non-blocking
○ Responds to application using a callback

Non-blocking API helps performance: many requests can be issued in parallel, 

and FDS can pipeline disk reads with network transfers. 



Design: Locating a Tract
Tractservers can be found deterministically using a Tract Locator Table (TLT).

TLT is distributed to clients using a centralized metadata server.

To read or write tract i in blob with GUID g:

Tract_Locator = (Hash(g) + i) mod TLT_Length

Deterministic, and produces uniform disk utilization

Don’t hash i so a blob uses entries in TLT uniformly.



TLT Example
Row Version 

Number Replica 1 Replica 2 Replica 3

1 234 A F B

2 235 B C L

3 567 E D G

4 13 T A H

5 67 F B G

6 123 G E B

7 86 D V C

8 23 H E F



Replication

Each TLT entry is k-way

Writes go to all k replicas; reads pick a random entry.

Metadata updates are serialized by a primary replica and shared with 
secondaries using a two-phase commit protocol



Replicated Data Layout
● O(n2) TLT entries for two replicas mean fast recovery for single failure

○ ~1/n data on each of the remaining disks, so highly parallel recovery.

○ Problem: two failures = guaranteed data loss!

■ Since each pair of disks appears in the TLT, two losses means all 

disks failed for one TLT entry.

● Simple solution: O(n2) entries (every possible pair), and k-way replication 

with k > 2. k - 2 replicas chosen at random. 



Design: Metadata
Stored on a special tract for each blob, accessed using the TLT

Blobs are extended using API calls, which access the metadata tract

Appends to metadata are equivalent to “record append” on GFS



Design: Dynamic Work Allocation
Since data and compute no longer need to be co-located, work can be 
assigned dynamically and with finer granularity.

With FDS, a cluster can centrally schedule work for each worker as it nears 
completion of it’s previous unit.

Note: Unlike MapReduce, etc., which must take into account where data 
resides when assigning work!

Significant impact on performance.



Replication and Failure Recovery



Failure Recovery
TLT carries a version number for each row.

On failure:

1. Metadata server detects failure after HeartBeat message times out
2. Current TLT is invalidated by incrementing version
3. Random tractservers are picked to fill gaps in TLT after failure
4. tractservers ACK new assignment, replicate data

Clients with stale TLTs request new ones from metadata server

No need to wait for replication to finish; just TLT update.



Failure Recovery



Fault Recovery Guarantees
Weak Consistency

Similar to GFS; trackservers may inconsistent during failure, or if client fails 
after a write to a subset of replicas

Availability

Clients only need to wait for an updated trackserver list

Partition Tolerance? 

One active master at a time to prevent corrupted states, but a partitioned 
network may mean that clients can’t write to all replicas



Results: Read + Write Performance



Comparison with GFS
Simple metadata server

Only stores TLTs, not information about the tracts themselves. So tracts can 
be arbitrarily small! (Google says 64MB is too big for their chunksize)

Master in GFS also a potential bottleneck as scale increases?

Single file reads can be issued with very high throughput

Since tracts are stored across many disks, reads can be issued in parallel

Anything Else?



Takeaways
● A storage system that takes advantage of new data center properties

Namely: Full Network Bisection Bandwidth 

● Each compute node has equal throughput to each storage node, so don’t 
need to design for locality

● No need to worry about locality ⇒ simple design and failure recovery, 
ability to schedule jobs at fine granularity and without wasting resources

Results show that the system is fast at recovery, and provides efficient I/O



Bonus Slides



Cluster Growth
tractservers can be added at runtime.

1. Increment version number of TLT, begin copying data to new tractserver
a. “pending” phase

2. When finished, TLT entry version incremented again, “committing” the 
new disk

While in pending state, new writes are added to the new tractserver as well. 
Failure of new server ⇒ expunge it and increment version. Failure of existing 
tractserver ⇒ run recovery protocol.



Network
Uses a full bisection bandwidth network, with ECMP to load balance flows 
(stochastically guarantees bisection bandwidth). 

Storage nodes given bandwidth equal to the disk bandwidth

Compute nodes given bandwidth equal to the I/O bandwidth

● RSS, zero-copy used to saturate 10, 20 Gbps links respectively
● TCP alone not enough!



Experiments and Results



Testbed Setup
14 Racks, Full bisection bandwidth network with 5.5 Tbps.

● BGP for route selection, IP subnets for each TOR

Operating cost: $250,000

Heterogeneous environment with up to 256 Servers, 2 to 24 cores, 12 to 96 
GB RAM, 300GB 10,000RPM SAS Drives, and 500GB, 1TB 7200 RPM SATA 
Drives



Results: Recovery


