
MapReduce and Spark

Oct 8, 2015

MapReduce

Parallel computing platform built at Google

Still runs millions of jobs / day

“Functional” API with deterministic
recomputation for fault tolerance

Key Ideas in MapReduce

Recomputation for fault tolerance

Parallel recovery: lost work is spread out

Straggler mitigation through backup tasks

Dynamic scheduling

Key Design Elements

Centralized master

“Pull” based communication model

– Reduce tasks fetch files from mappers

– Provides cheaper fault recovery and room for

dynamic scheduling of tasks

Real-World MR Use Cases

Extract, Transform and Load (ETL)

SQL-like queries (Tenzing, Hive)

Complex analytics with non-SQL code

Spark

Generalizes MapReduce while retaining its
scheduling and fault tolerance benefits

Main addition: efficient data sharing

Enables more applications

–  Iterative algorithms

–  Interactive queries

– Stream processing

Resilient Distributed Datasets (RDDs)

Restricted form of shared memory

–  Immutable, partitioned sets of records

– Can only be built through coarse-grained,

deterministic operations (map, filter, join, …)

Fault recovery using lineage

– Log one operation to apply to many elements

– Recompute lost partitions on failure

[NSDI 2012]

filter(h)
group-by(g)
map(f)

RDD Recovery

Input file

filter(h)
group-by(g)
map(f)

RDD Recovery

Input file

filter(h)
group-by(g)
map(f)

RDD Recovery

Input file

Memory

bandwidth

Network

bandwidth

Tradeoff Space

Granularity

of Updates

Write Throughput

Fine

Coarse

Low
 High

K-V stores,

databases

GFS
 RDDs

RDDs vs Distributed Shared Mem.

Aspect
 RDDs
 Dist. Shared Mem."
(including key-value stores, etc)

Writes
 Coarse-grained
 Fine-grained

Reads
 Fine-grained
 Fine-grained

Consistency
 Trivial (immutable)
 Expensive

Fault"
recovery

Fine-grained & low-
cost using lineage

Replication or
checkpoint/rollback

Straggler
recovery

Possible using
speculation
 Difficult

Other Differences from MR

1.  Explicit partitioning, partitioning-aware ops

–  E.g. a 3x speedup in PageRank

2.  More complex DAGs of tasks

–  Better performance even if data is not reused

RDD API

Operation
 Meaning

partitions()
 Return a list of Partition objects

preferredLocations(p)
 List nodes where partition p can be
accessed faster due to data locality

dependencies()
 Return a list of dependencies

iterator(p, parentIters)
 Compute the elements of partition p
given iterators for its parent partitions

partitioner()
 Return metadata specifying how RDD
records are partitioned across nodes

Supported Applications

Iterative MapReduce (e.g. machine learning)

Pregel-like graph processing

Interactive ad-hoc queries

More were built later (e.g. SQL, streaming)

How General is Spark?

Local computation

All-to-all communication
 One MR step

…

How big is this

latency?

How to share data"
quickly across steps?

Spark: RDDs

Spark: ~100 ms

MapReduce + data sharing can emulate any
distributed system!

Push vs Pull-Based Systems

“Push” = senders write to receivers (e.g. parallel DB)"
“Pull” = senders write locally, receivers fetch (e.g. MR)"

Aspect
 Push
 Pull

Latency
 Lower
 Higher

Throughput
 Similar
 Similar

Fault
recovery

Expensive (rerun all
senders)
 Cheap

Straggler
recovery
 Difficult
 Easy (backup tasks)

Elasticity /
multitenancy
 Difficult
 Easy

