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MapReduce

Parallel computing platform built at Google


Still runs millions of jobs / day


“Functional” API with deterministic 
recomputation for fault tolerance




Key Ideas in MapReduce

Recomputation for fault tolerance


Parallel recovery: lost work is spread out


Straggler mitigation through backup tasks


Dynamic scheduling




Key Design Elements

Centralized master


“Pull” based communication model

– Reduce tasks fetch files from mappers

– Provides cheaper fault recovery and room for 

dynamic scheduling of tasks







Real-World MR Use Cases

Extract, Transform and Load (ETL)


SQL-like queries (Tenzing, Hive)


Complex analytics with non-SQL code




Spark

Generalizes MapReduce while retaining its 
scheduling and fault tolerance benefits


Main addition: efficient data sharing


Enables more applications

–  Iterative algorithms

–  Interactive queries

– Stream processing




Resilient Distributed Datasets (RDDs)


Restricted form of shared memory

–  Immutable, partitioned sets of records

– Can only be built through coarse-grained, 

deterministic operations (map, filter, join, …)


Fault recovery using lineage

– Log one operation to apply to many elements

– Recompute lost partitions on failure


[NSDI 2012]
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RDDs vs Distributed Shared Mem.


Aspect
 RDDs
 Dist. Shared Mem."
(including key-value stores, etc)


Writes
 Coarse-grained
 Fine-grained

Reads
 Fine-grained
 Fine-grained

Consistency
 Trivial (immutable)
 Expensive


Fault"
recovery


Fine-grained & low-
cost using lineage


Replication or 
checkpoint/rollback


Straggler 
recovery


Possible using 
speculation
 Difficult




Other Differences from MR

1.  Explicit partitioning, partitioning-aware ops

–  E.g. a 3x speedup in PageRank


2.  More complex DAGs of tasks

–  Better performance even if data is not reused




RDD API

Operation
 Meaning


partitions()
 Return a list of Partition objects


preferredLocations(p)
 List nodes where partition p can be 
accessed faster due to data locality


dependencies()
 Return a list of dependencies


iterator(p, parentIters)
 Compute the elements of partition p 
given iterators for its parent partitions


partitioner()
 Return metadata specifying how RDD 
records are partitioned across nodes




Supported Applications

Iterative MapReduce (e.g. machine learning)


Pregel-like graph processing


Interactive ad-hoc queries


More were built later (e.g. SQL, streaming)




How General is Spark?


Local computation


All-to-all communication
 One MR step


…


How big is this

latency?


How to share data"
quickly across steps?

Spark: RDDs


Spark: ~100 ms


MapReduce + data sharing can emulate any 
distributed system!




Push vs Pull-Based Systems

“Push” = senders write to receivers (e.g. parallel DB)"
“Pull” = senders write locally, receivers fetch (e.g. MR)"


Aspect
 Push
 Pull

Latency
 Lower
 Higher

Throughput
 Similar
 Similar

Fault 
recovery


Expensive (rerun all 
senders)
 Cheap


Straggler 
recovery
 Difficult
 Easy (backup tasks)


Elasticity / 
multitenancy
 Difficult
 Easy



