
Naiad
James Thomas



Goals
● High-throughput batch processing
● Low-latency processing
● Iterative computation with streaming updates (novel contribution)
● For 100% in-memory workloads



Novel Application, CIDR 2013 paper
● Maintaining connected components of graph formed by @username mentions 

on Twitter
● Connected components is iterative algorithm
● Batches of updates with new @username mentions coming in from Twitter, 

need to maintain connected components in real time
● First system that can do this



Solution: Lower-Level API, Vertex Model

● Philosophy: hack at lower level if performance needed, otherwise 
use higher-level library



Low-level API Example



High-level Library Example



Distributed Implementation



Distributed Progress Tracking -- Timestamps



Distributed Progress Tracking -- Pointstamps



Distributed Progress Tracking -- Putting it Together
● Can deliver OnNotify at a vertex if OC for all lower or equal timestamps at 

predecessor vertices or edges is 0
○ This OnNotify is in the “frontier”

● In distributed setting node’s local frontier is conservative and assumes that 
other nodes haven’t made progress until it explicitly hears from them



Fault Tolerance
● System calls user-defined Checkpoint() on vertices during a system-wide 

checkpoint, can Restore() them on failure
● Vertices can continuously log for better fault recovery at the expense of some 

throughput
● Higher burden on developer



Fault Tolerance -- Comparison with Spark/MR
● Since Spark/MR work with stateless tasks, on the failure of a node only the 

failed tasks need to be re-executed, reading from persisted barrier output
● Since vertices are continuously sending data to one another and updating 

mutable state and there is no system-imposed barrier like in Spark/MR, on the 
failure of ANY node Naiad must stop all nodes and restore them from the last 
system-wide checkpoint

● But scheduler needs to be on the path of every job to achieve this property 
(store lineage of ops), making Spark/MR less suitable for low-latency work



Optimizations -- Prevent Micro-Stragglers
● Tune TCP for this workload (e.g. reduce retransmission timeouts)
● Tune GC so there are fewer stop-the-worlds
● Shared memory contention
● Keep message queues small
● Can’t solve stragglers if they still happen!


