Naiad

James Thomas

Goals

High-throughput batch processing

Low-latency processing

lterative computation with streaming updates (novel contribution)
For 100% in-memory workloads

Low-latency query
. responses are delivered

| User gueries
are received

4 . .
Queries are

| joined with

. processed data

b

£ Complex processing 3

incrementally re-
----------- executes to reflect
. changed data

Updates to

data arrive I

Novel Application, CIDR 2013 paper

e Maintaining connected components of graph formed by @username mentions
on Twitter

e Connected components is iterative algorithm

e Batches of updates with new @username mentions coming in from Twitter,
need to maintain connected components in real time

e First system that can do this

Solution: Lower-Level API, Vertex Model

e Philosophy: hack at lower level if performance needed, otherwise
use higher-level library

v.ONRECV(e : Edge, m : Message, 1 : Timestamp)
v.ONNOTIFY(? : Timestamp).

this. SENDBY(e : Edge, m : Message, t : Timestamp)
this. NOTIFYAT(! : Timestamp).

Low-level API

Example

class DistinctCount<S,T> : Vertex<T>
{
Dictionary<T, Dictionary<$§, int>> counts;
void OnRecv (Edge e, S msg, T time)
{
if (!counts.ContainsKey (time)) {
counts([time] = new Dictionary<S,int>();
this.NotifyAt (time);
}

if (!counts|[time].ContainsKey (msg)) {
counts([time] [msg] = 0;
this.SendBy (outputl, msg, time);

}

counts[time] [msg]++;
}

void OnNotify (T time)
{
foreach (var pair in counts[time])
this.SendBy (output2, pair, time);
counts.Remove (time) ;

High-level Library Example

// la. Define input stages for the dataflow.
var input = controller.NewlInput<string>();

// 1lb. Define the timely dataflow graph.
// Here, we use LINQ to implement MapReduce.
var result = input.SelectMany(y => mapl(y))
.GroupBy (y => key(y),
(k, vs) => reducel(k, wvs));

// lc. Define output callbacks for each epoch
result.Subscribe(result => { ... }1);

// 2. Supply input data to the gquery.
input.OnNext (/* 1lst epoch data */);
input .OnNext {/* 2nd epoch data */);
input .OnNext {(/* 3rd epoch data =*/);
input .OnCompleted () ;

Distributed Implementation

Logical graph

Worker
[]

Progress tracking
protocol

%

Process

;

Distributed Progress Tracking -- Timestamps

epoch loop counters
/"'"/\""\ ”~ e Y
Timestamp : (e €N, {(cy,...,cx) € NF)

! |
/-[Streaming context) \

Loop context

Distributed Progress Tracking -- Pointstamps

location

-

Pointstamp : (¢ € Timestamp, | € Edge U Vertex)

Operation Update

v.SENDBY(e,m,t) OC]|(t,e)| + OC|(t,e)] + 1
v.ONRECV(e,m,t) OC]|(t,e)| +— OC|(t,e)] — 1
v.NOTIFYAT(t) OC|[(z,v)] + OC|[(z,v)] + 1
v.ONNOTIFY (?) OC|(t,v)] « OC|(z,v)] — 1

Distributed Progress Tracking -- Putting it Together

e Can deliver OnNotify at a vertex if OC for all lower or equal timestamps at

predecessor vertices or edges is 0
o This OnNotify is in the “frontier”

e In distributed setting node’s local frontier is conservative and assumes that
other nodes haven’t made progress until it explicitly hears from them

Fault Tolerance

e System calls user-defined Checkpoint() on vertices during a system-wide
checkpoint, can Restore() them on failure

e \ertices can continuously log for better fault recovery at the expense of some
throughput

e Higher burden on developer

Fault Tolerance -- Comparison with Spark/MR

Since Spark/MR work with stateless tasks, on the failure of a node only the
failed tasks need to be re-executed, reading from persisted barrier output
Since vertices are continuously sending data to one another and updating
mutable state and there is no system-imposed barrier like in Spark/MR, on the
failure of ANY node Naiad must stop all nodes and restore them from the last
system-wide checkpoint

But scheduler needs to be on the path of every job to achieve this property
(store lineage of ops), making Spark/MR less suitable for low-latency work

Optimizations -- Prevent Micro-Stragglers

Tune TCP for this workload (e.g. reduce retransmission timeouts)
Tune GC so there are fewer stop-the-worlds

Shared memory contention

Keep message queues small

Can'’t solve stragglers if they still happen!

