Paxos Made Moderately
Complex



Simple State Machine

kv = {}
while(1){
m, from = read_message()
switch (m.type){
PUT:
kv[k] = v;
from.reply(PUT_OK);
GET:
from.reply(kv[k);

}
J



Replicated State Machine

* Run Two Copies
What if one sees:

Put(1, “A”),Put(1, “B”),Get(1)
And the other

Put(1, “B”),Put(1, “A”),Get(1)



We want a way to agree on arguments



What is Paxos

e Fault Tolerant Consensus

* Need a majority

— 2F+1 nodes to tolerate F failures and make
progress

— F+1 nodes to just tolerate and not make progress



How Does Paxos Work



Paxos Roles

Client

— Simply communicates that it would like some action done
to the cluster

— Makes sure action goes through
— Processes State Machine

Proposer

— Tries to get a value from a client accepted
Acceptor

— Persistent storage

Learner

— Gets results from the majority



Proposer

proposer(v):
vV =v
while not decided:
choose n, unique and higher than any n seen so far
(eg, i*n_peers+my id +1)
send prepare(n) to all servers including self
if prepare_ok(n, na, va) from majority:
v' = va with highest na; choose own v otherwise
send accept(n, v') to all
if accept_ok(n) from majority:
send decided(v') to all



Acceptor

Persistent state on each node:
np --- highest prepare seen
na, va --- highest accept seen

acceptor's prepare(n)
handler:

if n>np

np=n

reply prepare_ok(n, na, va)
else

reply prepare_reject

acceptor's accept(n, v)
handler:

if n>=np
np=n
na=n
va =V

reply accept_ok(n)
else
reply accept_reject




Why Paxos Doesn’t Work

* This is an Academic protocol, not a battle-
ready implementation

* How can we get it ‘hardy’.



Single Instance v.s. Slots

* |n the presented algorithm, it only works for a
single argument, instead we can run many
instances with an integer slot id



State Reduction

e What do we need to store?

* |f we're running a state machine, once all

machines have applied some argument we
can forget it



Leader Election

e Rather than force Paxos consensus on every
argument, we can elect a leader to have
control for a certain duration

 |f leader times out, we can run Paxos again to
elect a new one and fill in the old slots with

NOP

* Tradeoffs: letting leaders get work done v.s.
quick detection after fault



Failure Recovery

* |n standard Paxos, static cluster is assumed
 We may want to swap out faulty nodes

e Suppose node A fails, we can use Cluster-A to
agree on a replacement for A, and then send
them a snapshot of the state machine to catch

up



Read Only Optimization

 We have to put read operations in log
otherwise you could run into

— Node[a].get(k) != Node[b].get(k)

* But what if we make a read operation leader
and redirect all reads to them? They will be
consistent. What if we shard reads based on
key, etc.



Resources

e http://nil.csail.mit.edu/6.824/2015/notes/
paxos-code.html

e http://people.csail.mit.edu/matei/courses/
2015/6.S897/readings/paxos-moderately-

complex.pdf




