
Spanner
Stephanie New



Overview

Scalable, multi-version, globally distributed, and synchronously replicated 
database. 

Supports non-blocking reads in the past, lock-free read-only transactions, and 
atomic schema changes.

To support externally consistent distributed transactions at a global scale, it 
uses the TrueTime API that exposes clock uncertainty.



Motivation

Popularity of Megastore over Bigtable because of its semi-relational data 
model and synchronous replication, despite its poor write throughput.

Spanner evolved from a Bigtable-like versioned key-value store into a temporal 
multi-version database. 

Data is stored in semi-relational tables, and Spanner provides a SQL-based 
query language and supports general-purpose long-lived transactions.



Data Model

An application using Spanner creates one or more databases in a Spanner 
deployment. Each database can contain an unlimited number of schematized 
tables.

Not purely relational because every table is required to have an ordered set of 
one or more primary-key columns. 

Every Spanner database must be partitioned by clients into one or more 
hierarchies of tables.



As a Distributed Database

Data is versioned, and each version of data is automatically timestamped with 
its commit time by the TrueTime API.

External consistency: If a transaction T1 commits before another transaction 
T2 starts, then T1’s commit timestamp is smaller than T2’s. 

Using TrueTime, Spanner is able to assign globally-meaningful commit 
timestamps to transactions, which reflect serialization order. 



TrueTime API

TT.now() is guaranteed to include the absolute time within the interval.

There are two forms of time reference, GPS and atomic clocks, because they 
have different modes of failure. 

Implemented by a set of time master machines per datacenter and a time slave 
daemon per machine. Every daemon polls a number of masters to reduce 
vulnerability from any one master. 



How to Keep Uncertainty Small?

Define the instantaneous error bound as ᷧ, which is half of TTinterval’s width.

ᷧ is derived from conservatively applied worst case clock drift. ᷧ also depends 
on time-master uncertainty and communication delay to time masters. 

In Google’s production environment, ᷧ is typically a sawtooth function over 
time, varying from about 1 to 7 ms over each poll interval. Thus, the average is 
4ms most of the time. 



Spanner Deployment: Universe



Spanserver Stack

(key:string, 
timestamp:int64) -
> string



Concurrency Control

Spanner supports read-write transactions, read-only transactions, and snapshot 
reads. 

Standalone writes are implemented as read-write transactions.

Non-snapshot standalone reads are implemented as read-only transactions. 

A snapshot read is a read in the past that executes without locking. 



Read-Write Transactions



Read-Only Transactions

A read-only transaction executes in 2 phases: 

1) assign a timestamp sread . 

2) execute the transaction’s reads as snapshot reads at sread.

Snapshot reads can execute at any replica that is sufficiently up to date (i.e. 
sread is less than or equal to a tsafe).



Why TrueTime?

Lock-free reads can be implemented without TrueTime using only sequence 
numbers because read-only transactions are also serialized by coordinating 
leaders and Paxos groups.

TrueTime benefits snapshot reads, reads in the past, the most. By giving a time 
in the past, the snapshot read can get a consistent read of all variables 
requested at that given time. 


