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Motivation

•  Most of “big data” happens in a streaming 
context
– Network monitoring, real-time fraud detection, 

algorithmic trading, risk management 

•  Current Model: Continuous Operator Model
– Fault tolerance achieved via replication or 

upstream backup
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D-Streams

•  “Instead of managing long-lived operators, the idea 
…is to structure a streaming computation as a 
series of stateless, deterministic batch 
computations on small time intervals.” 

•  Use a data structure: Resilient Distributed 
Datasets (RDDs)
–  keeps data in memory

–  can recover it without replication (track the lineage 
graph of operations that were used to build it)



D-Streams

https://spark.apache.org/docs/1.2.0/streaming-programming-guide.html



D-Streams

•  The data received in each interval stored reliable across the 
cluster to form an input dataset for that interval 

•  Do batch operation to get another RDD, which acts as a 
state or output



D-Stream API

•  Users register one or more streams using a functional API 

•  Transformations create a new D-Stream from parent 
stream(s)
–  Stateless: map, reduce,  groupBy, join

–  Stateful: window operations 

•  Output operations let the program write data to external 
systems (e.g. save)



Transformations

map(func) Return a new DStream by passing each element of the 
source DStream through a function func.

flatMap(func) Similar to map, but each input item can be mapped to 0 or 
more output items.

filter(func) Return a new DStream by selecting only the records of the 
source DStream on which func returns true.

reduce(func) Return a new DStream of single-element RDDs by 
aggregating the elements in each RDD of the source 
DStream using a function func (which takes two arguments 
and returns one). The function should be associative so that it 
can be computed in parallel.

updateStateByKey(func) Return a new "state" DStream where the state for each key is 
updated by applying the given function on the previous state 
of the key and the new values for the key. 



Window Operations

https://spark.apache.org/docs/1.2.0/streaming-programming-guide.html



Window Operations

window(windowLength, 
slideInterval)

Return a new DStream which is computed based on 
windowed batches of the source DStream.

countByWindow(window
Length, slideInterval)

Return a sliding window count of elements in the stream.

reduceByWindow(func, 
windowLength, 
slideInterval)

Return a new single-element stream, created by aggregating 
elements in the stream over a sliding interval using func. The 
function should be associative so that it can be computed 
correctly in parallel.

reduceByKeyAndWindow
(func, windowLength, 
slideInterval, [numTasks])

When called on a DStream of (K, V) pairs, returns a new 
DStream of (K, V) pairs where the values for each key are 
aggregated using the given reduce function func over 
batches in a sliding window.

reduceByKeyAndWindow
(func, invFunc, 
windowLength, 
slideInterval, [numTasks])

A more efficient version of the above 
reduceByKeyAndWindow() where the reduce value of each 
window is calculated incrementally using the reduce values 
of the previous window.



Fault	Recovery	

•  Parallel recovery of a lost node’s state.
– When a node fails, each node in the cluster works to 

recompute part of the lost node’s RDDs, resulting in 
significantly faster recovery than upstream backup 
without the cost of replication.

•  In a similar way, D-Streams can recover from 
stragglers using speculative execution 

•  Checkpoint state RDDs periodically


