
Spark Streaming

Summary by Lucy Yu

Motivation

•  Most of “big data” happens in a streaming
context
– Network monitoring, real-time fraud detection,

algorithmic trading, risk management

•  Current Model: Continuous Operator Model
– Fault tolerance achieved via replication or

upstream backup

Motivation

source	

Replication

source	

source	

Upstream
Backup

D-Streams

•  “Instead of managing long-lived operators, the idea
…is to structure a streaming computation as a
series of stateless, deterministic batch
computations on small time intervals.”

•  Use a data structure: Resilient Distributed
Datasets (RDDs)
–  keeps data in memory

–  can recover it without replication (track the lineage
graph of operations that were used to build it)

D-Streams

https://spark.apache.org/docs/1.2.0/streaming-programming-guide.html

D-Streams

•  The data received in each interval stored reliable across the
cluster to form an input dataset for that interval

•  Do batch operation to get another RDD, which acts as a
state or output

D-Stream API

•  Users register one or more streams using a functional API

•  Transformations create a new D-Stream from parent
stream(s)
–  Stateless: map, reduce, groupBy, join

–  Stateful: window operations

•  Output operations let the program write data to external
systems (e.g. save)

Transformations

map(func) Return a new DStream by passing each element of the
source DStream through a function func.

flatMap(func) Similar to map, but each input item can be mapped to 0 or
more output items.

filter(func) Return a new DStream by selecting only the records of the
source DStream on which func returns true.

reduce(func) Return a new DStream of single-element RDDs by
aggregating the elements in each RDD of the source
DStream using a function func (which takes two arguments
and returns one). The function should be associative so that it
can be computed in parallel.

updateStateByKey(func) Return a new "state" DStream where the state for each key is
updated by applying the given function on the previous state
of the key and the new values for the key.

Window Operations

https://spark.apache.org/docs/1.2.0/streaming-programming-guide.html

Window Operations

window(windowLength,
slideInterval)

Return a new DStream which is computed based on
windowed batches of the source DStream.

countByWindow(window
Length, slideInterval)

Return a sliding window count of elements in the stream.

reduceByWindow(func,
windowLength,
slideInterval)

Return a new single-element stream, created by aggregating
elements in the stream over a sliding interval using func. The
function should be associative so that it can be computed
correctly in parallel.

reduceByKeyAndWindow
(func, windowLength,
slideInterval, [numTasks])

When called on a DStream of (K, V) pairs, returns a new
DStream of (K, V) pairs where the values for each key are
aggregated using the given reduce function func over
batches in a sliding window.

reduceByKeyAndWindow
(func, invFunc,
windowLength,
slideInterval, [numTasks])

A more efficient version of the above
reduceByKeyAndWindow() where the reduce value of each
window is calculated incrementally using the reduce values
of the previous window.

Fault	Recovery	

•  Parallel recovery of a lost node’s state.
– When a node fails, each node in the cluster works to

recompute part of the lost node’s RDDs, resulting in
significantly faster recovery than upstream backup
without the cost of replication.

•  In a similar way, D-Streams can recover from
stragglers using speculative execution

•  Checkpoint state RDDs periodically

