Finding Content in File-Sharing Networks When You Can’t Even Spell

Matei A. Zaharia®, Amit Chandel*, Stefan Saroiuf, and Srinivasan Keshay
fUniversity of Waterloo and *University of Toronto

Abstract: The query success rate in current filenally, a misspelled word may match a correctly spelled
sharing systems is low, for example, only 7-10% lﬁbut different) word — a misspelling of “eluded” is the
Gnutella. An often-overlooked cause for this low recaliare word “elided”. In this case, deciphering the user’s
is simply that keywords in queries and document dentention is challenging, if not impossible.
scriptions are misspelled. Although many sophisticated \we propose two approaches to dealing with mis-
approximate matching techniques have been developgehjings suitable for unstructured and structured P2P
by the Information Retrieval community, to our knowlyetyorks, respectively. The first approach, for unstruc-
edge, they have not been used in popular P2P systefig 4 pop_hased file-sharing systems, is based on ap-

We propose two approaches to improving query res, - ; : :
call in file-sharing systems. For unstructured P2 roximate string matching algorithms developed for

networks, we show that “g-gram’-based approache?formaﬂon retrieval and computational biology (for
nearly double recall with little Toss in precision. Unfor- & Survey, see [3].) These algorithms can match two

tunately, such techniques cannot be used in structur§§ings while allowing for a number of “errors, in-
P2P networks. Instead, we propose a simple altern&luding misspellings. These techniques operate on “g-
tive: encoding keywords using Soundex, a century-ofifams” of a keyword where a g-gram of a word is a
phonetic algorithm for indexing names by their soundsubstring of length g. For a given query, these tech-
We evaluate both approaches on a trace of aliques typically compute a relevance score for each of
gueries and files in Gnutella over a period of a montithe document in the system. The document with the
We find that misspellings are common in this trace, withighest score is returned as the answer to the query.
20% of file descriptions and 25% of queries containin@ince these techniques rely on accessing a large frac-
at least one spelling error. We find that our approachegion of the corpus of documents in the system, such as

improve recall by 20-88% with |Itt|e loss in precisiong]| files sharing g-grams with the query, they are very
when compared to a standard prefix-match approaclostly for DHTSs.

Given the endemic nature of misspellings, our findings InStead, we propose a different and much simpler
suggest that techniques such as those described hgig oach ‘for DHTS: using a coding algorithm that
ought to be part of any file-sharing system. suppresses spelling variations of keywords, such as
. Soundex [4]. Soundex maps different spellings of the
1 Introduction same word to a single code. In this approach, in-
rted indices are maintained on Soundexed keywords.
ch node uses the coding algorithm to convert its own
ontent metadata to codes before inserting them into
e index and convert its own queries before sending
em to other nodes in the system. While less ef-
ctive than sophisticated approximate matching tech-
fques and prone to a high false-positive rate, this ap-
roach is simple, fast, and can be easily and incremen-
lly deployed over any DHT. Moreover, we find that

The query success rate in file-sharing P2P networ
is low. For example, only 7-10% of queries in Gnutell
are successful. Although many factors contribute
this low recall rate, we believe that an often overlooke
cause is simply that keywords in queries and docume,
metadata are misspelled. Our findings show that 20
of file descriptions and 25% of queries in Gnutella ar
spelled incorrectly. The focus of our work is to improv

the query success (i.e. recall) rate in such networks Ise-positives are easily eliminated by post-processing

sp[}% :rr;d(;rrnelcnrqn ;i;pfgg]s%sﬁ s why people spell inc ofuery results with a simple edit-distance-based filter.

rectly, such as errors in typing, and the inconsistendyOntributions We measure the prevalence of
between spelling and pronunciation in the English la pelling errors in traces of several file-sharing systems:
guage. Given these deep-seated root causes of nfi§f own recent Gnutella and YouTube traces, an older
spelling, we are likely to see misspelled keywords i,ﬁlapster trace, and one downloaded from IMDB. We
both queries and metadata for a long time to come. Ind that between 10% and 47% of user-entered queries

Handling incorrect spelling is challenging. First2nd file metadata are misspelled in these traces.
there are many ways in which words can be misspelled, e present a Gnutella trace that captures all queries
Over the course of three months, Google users hag8d all filenames of 22,457 peers over the course of
misspelled “Britney Spears” in 592 different ways [1]°n€ month. This gives us a baseline for a typical, real-
Second, given an incorrect spelling, it is sometime$tc, file-sharing workload. Using this trace, we mea-
hard to infer the intended word. For example, it is unsure the recall rates of several matching algorithrirs
clear whether “remeinder” is a misspelled version dparticular, we study Soundex and two state-of-the-art
the word ‘reminder” or the word “rem_ainder”. Third, tour analysis assumes that all queries are conjunctive. énhil
therg‘ COE'.F be ﬁltemat_e _correct spelllngﬁ ‘TOI‘ the,,sfa%ay’s file-sharing networks support disjunctive queries be-
word. While inthe U.S. itis correct to spell “center”, iNjieve that a conjunctive query model leads to more meaningfu
Canada and the UK the correct spelling is “centre”. Figuery recall estimates.

1.Retain the first letter of the string. databases [2]. The g-grams of a word are all its

Z.Eggwrg\;egllhocicgrrﬁn‘cl:veilof the following letters, unless it is the first substrings of Iengtfq. For examp|e’ the 3-grams cor-
3.Assign numbers to remaining letters (after the first) as follows: responding to the word 'hello’ are ’hel’, ’ell’, and 'llo’.
> b fpv=1 If two words share most of their g-grams, it is likely
>eghkasxz=2 that one of them is a misspelled version of the other.
> =4 For example, the word ’helllo’ has 3-grams 'hel’, 'ell’,
> " 2-,:5 i, and ’llo’, suggesting a misspelling of 'hello’. We

4.1f two or more letters with the same number were adjacent in the Comp.ared Soundex with two approximate matChl.ng
original name, or adjacent except for any intervening h and w, then algorlthms over g-grams, TF-IDF and Jaccard, which
5 ORthiLli:lf:'itt ng:f;cters right-padding with 0’s when fewer than 4 are described next.
‘ ' ' TF-IDF (term frequency - inverse document fre-
Figure 1. The Soundex Algorithm. Soundex is a pho- quency) [8] measures the importance of a word in a
netic algorithm for indexing names by their sound when pradocument relative to a corpus. In a given document, a
nounced in English. It maps words to four-byte codes. Favord’s importance increases proportional to the num-
example, both words “Britney” and “Britny” are mapped to ber of times it appears in the document and inversely
“B635", whereas “Brian” is mapped to “B650". proportional to its frequency in the corpus. In this way,
TF-IDF distinguishes between more important and less
_ _ _ important words. A word occurring frequently in a par-
approximate-matching algorithms: one based on Thkicular document but rarely elsewhere in the corpus is
IDF weights [8] and one based on using the Jaccagfought to be “important” for that document. In our
Slmllarlty Coeﬁl_Clent [7] We find that these matCh-Context, the TE-IDF We|ght ofa 3_gram appearing ina
ing algorithms increase today’s query success rates i metadata (or in a query) is proportional to how fre-
20%, 51%, 88% for Soundex, Jaccard's coefficient, angliently the 3-gram appears in the file’s metadata (i.e.,
TF-IDF weights, respectively. Overall, we find thatterm-frequency”) and inversely proportional to how
both approximate matching techniques greatly improvigequently the 3-gram appears in the entire corpus of all
recall and are ideal for use in unstructured P2P negtes’ metadata (i.e., “document-frequency”). The TF-
works. Similarly, we find that Soundex is simple, fast|pF score of a query relative to a file is the dot product
and fairly effective, and leads to significant increases igf a|| TE-IDF weights of all 3-grams shared between
DHT’s recall rate. All three techniques achieve highejhe query and the file's metadata.
recall with little loss in precision (i.e. the number of The Jaccard similarity coefficient [7] compares the
relevant results to a query). similarity of two sets and is defined as the size of the
Roadmap The rest of the paper is organized as folintersection divided by the size of the union of the sets:
lows. In Section 2, we present a brief background (A, B) = |AN B|/|AU B|. Two identical sets have a
of matching algorithms and we summarize the relatethccard’s coefficient of 1, and two completely dissimi-
work. In Section 3, we discuss our approach folar sets have a coefficient of 0. In our context, we use
handling incorrectly spelled words in file-sharing systhe Jaccard index to measure the similarity between the
tems. Section 4 presents the methodology of our expef-gram set of a query and the g-gram sets for the meta-
iments, and Section 5 evaluates several algorithms hatata corresponding to each file.
dling misspellings. Finally, we conclude in Section 6. Our experiments use 3-grams to compute the TF-
IDF weights and the Jaccard’s coefficients between
2 Background and Related Work queries and file metadata. The most relevant answer

to a query is the document whose tags had the highest

This section presents a brief description of Soundey.qre according to TF-IDF or to Jaccard’s coefficient.
followed by an outline of two approximate matching

algorithms from the information retrieval literature.

Soundex is nearly a century-old algorithm [4], With3 Our Approach
many variants in wide use. The most common variant We propose using an approximate matching algo-
of the algorithm uses four-byte codes — one letter fokHthm, such as the ones based gigrams to handle
lowed by three digits. The letter is the first letter of thespelling errors in unstructured P2P systems. Although
keyword or tag, and the numbers correspond roughtirtey can be computationally expensive and some re-
to the remaining consonants. By assigning the sanggire access to the entire corpus of data, our results
number to similar sounding consonants, errors are sughow that they greatly improve recall for today’s file-
pressed. For example, 'd’ and 't" are both encoded aharing workloads.
'3’, so the tag “rate” would match the keyword “rade” Unfortunately, approximate matching is not suitable
when they are both encoded with Soundex. Extendirfigr DHTs as such techniques typically require access-
the Soundex algorithm to use codes longer than fourg all files whose metadata share at least one g-gram
bytes is common in practice [4]. Figure 1 describes the&ith the query. Such operations are very costly for
most-commonly used version of Soundex. DHTs.

Q-grams are widely used to build approximate- Therefore, in the case of DHTS, we advocate using
string join capabilities on top of commercialSoundex coding to suppress spelling variations both

when inserting file metadata into the inverted index Both these cases lead to false positives and there-
of a file-sharing system and when querying it. Thigore lower query precision. The query answers contain
automatically allows for approximate matching andesults that are not relevant to the original query. Un-
spelling error suppression. If there is a need for irfortunately, Soundex suffers from both types of errors,
cremental deployment of our algorithm (as may bkeading to a significant false positive rate.
necessary in P2P systems where peer software verdn our experiments, we find that Soundex does in-
sions are updated over a period of months to yearded suffer from a high rate of false positives. How-
the system can temporarily store both Soundexed amder, sorting query results by their edit distance from
non-Soundexed versions of a keyword. In this wayyords in the original query greatly increases the qual-
legacy clients could use unmodified keywords foity of the results. We find a very low false positive
search, and new clients would search initially on bothate when a query result returned by Soundex has all its
Soundexed and non-Soundexed keywords, switchitgrms within an edit distance of one from the original
over to Soundex when the transition is complete. Thiguery. These results are all presented in our evaluation.
approach supports legacy clients, albeit with lower rdn the following section, we present the methodology
call. However, this lower recall rate creates an incersf our experiments.
tive to upgrade.

4 Methodology

_ _ We do not need to simulate a file-sharing system’s

Soundex has an inherent problem of creating falssntire functionality to evaluate the effectiveness of ap-
positives, returning results that users do not really wargroximate matching algorithms. Instead, we merely
Such a problem is general to any approach that sugeed to evaluate the algorithms on traces of file sharing
presses spelling variations. To see this, suppose theeries and replies. In the remainder of this section,

user issued a query of the form “Here Sun” wanting tove present the file-sharing datasets and the coding al-
retrieve metadata for the song “Here Comes the Sur[jorithms used in our experiments.

Now, the Soundexed query is “H600 S500”, which also
matches “Her Son”. The original query would not havet.1 File-Sharing Datasets
retrieved “Her Son”, so coding has resulted in a false
positive.

In general, any code that maps several keywords
a single codeword can create false positives. Mo
precisely, consider a coding/ : {Keyword} —

3.1 The Problem of False Positives

The ideal dataset for studying query success rates
in a file-sharing system should includé queries and

[content stored in the system. Obviously, this is im-
possible for a large-scale file-sharing system with node

{Codeworg. Denote the set of misspellings of a key_c_hurn. We found that we could not even reuse any pre-
word K by S(K), and the cardinality of this set by Viously collected datasets. Many datasets anonymize
IS(K)|. Let K1 and K2 be distinct correctly spelled their queries and file metadata, making it impossible

keywords, and lef/ (K1) = X1, and M(K2) = X2. Ejo experiment with misspellings. In the remaining
Then, ideally, atasets, the set of peers whose queries are captured

e X1 # X2, that is, two keywords do not map toand the set of peers whose file metadata is recorded
the same codeword: differ. This makes it impossible to accurately measure

o Vk € S(K),M(k) = M(K), that is, every mis- qUElY SUcCcess rates.

. In our work, to avoid underestimation of query
Egswgg d ?:Szl?keyword maps fo the same value as ths%ccess rates, we measured the query and the result

streams for the same set of peers. While this approach

Such an ideal mapping can correct all misspellingganly approximates the entire system’s query success
However, real-world mappings are non-ideal and sufate, it does capture the “true” query success rate for
fer from two types of errors corresponding to the twahis subset of participants.

conditions for)/ above: _ » Our Gnutella Trace To measure query success rate,
o two keywordsK'1 and K2 (in addition toS(K1) e instrumented several Limewire (Gnutella) ultra-
and S(K2)) may themselves map to the same valugeers to record all queries and query results, as well as
le. M(K1) = M(K2) = M(S(K1)) = M(S(K2)). gl file metadata stored at their (peer) leaves. Our trace
For example, both "Here” and “Her” map to "H600". captures 22,457 peers over the course of one month,
e an elementt € S(K) may map toM(K’) in- starting on May 18th, 2006 and ending on June 16th,

stead ofM (K). This will result in searches for ac- 2006, Our dataset includes a total of 66,128 files and
tually searching on\/ (K’) thus finding titles withK” 1 830,079 queries.

instead ofi. For example, a search on "Sur” (insﬁea(bther Traces Besides our Gnutella trace, we ana-

of “Sun”) would result in a search on “S600”, which
would find keywords like “Sir” instead of “Sun’”. lyzed three other datasets. Although these datasets

were inadequate for studying query success rates, they

’Note that if S(K1) N S(K2) # 0, then we have an inher- do a”O\.N us to gauge the p.revalenc_e of misspelled key-
ent ambiguity in a misspelled Keyword that is independerthef WOrds in different information-sharing systems. These
choice of M. datasets were:

o file names from Napster collected in 2002 [5]; Guutella | Gnutella | Napster | IMDB | YouTube
e all movie titles in the IMDB database whose main queries | files | [files | files | [files
Ianguage iS EngllSh produced Since 1950 (We dOWﬂ # unique titles 1,830,079 | 66,128 | 444,467 | 119,857 | 150,512
Ioaded thlS dataset from the IMDB WebSite [6])) # of unique keywords 299,004 34,397 | 208,700 | 54,927 | 132,478
° a” CIipS found by an exhaustive Cra1W| Of avg. # keywords per title 3.91 8.47 4.84 345 12.26
YOUTUbe'S WebSite in JUly 2006 # 4-byte soundex codes 14,115 5,732 9,698 4,375 9,731
; ; avg. # keywords per 21.18 600 | 2048 | 12.82 | 13.62
We convert metadata in these datasets into keyword 4-byte soundex : : : : >

using a code snippet from the Limewire software. This _ o _

code uses 13 different characters to separate metable 1. High-level statistics of the datasetsSection 4.1
data into keywords. It also handles accents and urfiescribes the methodology for collecting these datasets.
code characters adequately. In this way, our experi

ments match the behavior of a DHT client using th . N

same guery and metadata handling code as a Gnutgl'?’ High-Level Trace Characterization

Limewire client. In this section, we present a high-level characteriza-
tion of our trace. Table 1 shows summary statistics.
4.2 Matching Algorithms Not surprisingly, queries are shorter than file meta-

)))) data. A query in Gnutella has an average of 3.91 key-

We evaluate five different matching algorithms oveyords, whereas files in Gnutella, MP3s in Napster, and
our Gnutella trace: exact-match, prefix-match, Jagideo titles from IMDB have over 8, 4, and 3 keywords
card’s coefficient, TF-IDF, and Soundex. Today's fileper title, respectively. Since YouTube’s titles are de-
sharing systems (whether using an unstructured ovegriptions of content entered by users, they are signifi-
lay or a DHT) use either a prefix-match or an exactcantly longer: the average content title on YouTube has
match algorithm to answer queries. In our experimentsyer 12 keywords (the longest YouTube title has 105
these matching algorithms serve as a baseline to mgaywords). This suggests an interesting trend — people
sure how effective the more sophisticated, approximaggter increasingly longer content descriptors to label
matching algorithms work. Next, we briefly describeheir content. Thus the need for better search tools that
each of our matching algorithms: can find relevant content is growing in these content-

Exact-Match: A file is included in a query’s re- sharing systems.
sult only if every keyword in a quergxactly matches The number of unique entries in a file-sharing DHT
one keyword in the file’s metadata. This matching alserving this data is captured by the number of unique
gorithm corresponds to the search behavior of genetkeywords in the file datasets in Table 1. While the num-
file-sharing systems. ber of keywords stored by each DHT participant de-

Prefix-Match: A file is included in a query’s result creases with the use of Soundex, the number of values
only if every keyword in a querynatches the prefiaf stored for each keyword increases proportionally. This
one keyword in the file’s metadata. This matching alean potentially create a load imbalance if the number of
gorithm corresponds to the search behavior in many Réywords is not much higher than the number of DHT
today’s unstructured file-sharing systems. participants.

Jaccard’s Coefficient This algorithm assigns a
similarity score to each file by computing Jaccard’s cdd Evaluation
efficient [7] between the 3-grams of the query and the

3-grams of the file's metadata. A file is included in g !N this section, we present our evaluation of al-
query’s result only if its score is at ledst.. Section 5.2 90rthms used to suppress spelling variations in file-

will present our rationale for choosing this threshold. Isehnag(iangfvggreﬁ:%agd(sa'rrcyyseiﬁtzﬁcayv?c?ri%ggsg trll\leeﬁre\\//vae_
TF-IDF : Similar to Jaccard’s coefficient algorithm, o '

except we use TF-IDF weights to measure gimilari valuate query recall rates based on using Soundex and

We use a threshold score 016 to include a file in a Wo approximate maiching algorithms: one based on

qguery’s result. Section 5.2 will present our rational(—li-he Jaccard coefficient and one based on TF-IDF.

for choosing this threshold. ; s
Soundex We use the Soundex algorithm presenteg'1 How Common Are Spelling E_rrors. _ _
in Figure 1 to map keywords to 4-byte codewords. A We evaluated the frequency of misspellings by using
file is included in a query’s result only if every code-the “aspell” spell checker version 0.50.5. Since many
word in a queryexactly matchesne codeword in the Of our entries contain proper names, we have enhanced
file's metadata. As discussed earlier, Soundex suffelie aspell’'s dictionary with a list of all words found in
from false positives. To alleviate this problem, we add tne titles of all Wikipedia articles We also configured
simple heuristic to Soundex — we drop results returned ; _
by Soundex oter than those here every keyword in 01 ouse e e oty e polence o s
the queryis W'th'n an edit distance of 0 or 1 from a keygﬁ'ficul'?V\}hen proper namgs are allowed. OEII’ ch%ice (Asp)éll +
word in the file’s metadata. We use the teBoundeXx \yikipedia) may not be perfect, but it gives a reasonable adehe
+ edit distanceto refer to this algorithm. prevalence of alternate spellings.

o
(4]
H
N
N

o
>

ure 3 shows that these threshold settings are reason-
able: many successful queries based on exact-match
have scores higher than our threshold, while most un-

25.0% ' successful queries have lower scores. Also, in all our

- empirical observations, we have found these threshold

10.5% settings to be adequate.

o
kS

34.0%

o
w

19.8%

o
Y]

°
=
|

% of Misspelled Titles

o

5.3 What is the Recall Rate of Our Algorithms?

Gnutella Gnutella Napster IMDB Movie YouTube
Files Queries Files Titles Clip Titles

_ _ _ _ L _ We now turn our attention to the main thesis of our
Figure 2. Fraction of misspelled titles in file-sharing \york — the improvement in the recall rate by use of
workloads. A title is misspelled if at least one of its Wordscoding algorithms. Figure 4 shows improvement in the
is incorrectly spelled. recall rate of our matching algorithms. For Gnutella

queries with no coding, the measured query success

aspell to ignore accents when checking words. rate is only 7'30/00' Using prefix-match, the query suc-
Figure 2 shows how frequently misspellings occufEss rate is 8.5%. Using approximate maiching algo-

- - - ithms, we find a recall of 12.9% for Jaccard’s coef-
in file-sharing datasets. We find that 25% of Gnutellg™.” "> ;
queries and 20% of Gnutella file metadata contain d¢i€Nt and 16% for TF-IDF. With Soundex, the recall

least one keyword that is misspelled. In Napster, 344t increases significantly, to over 23.5%. Adding the

of all MP3 file metadata are incorrectly spelled. Th(gdlt distance heuristic to handle false positives leads to

S e ; .2%. This experiment illustrates that
rate of movie titles containing at least one incorrectl recall rate of 10.2 ; :
spelled keyword is very low in IMDB: 10.5%. The)z‘mh approximate matching algorithms and Soundex

lower rate of misspellings in IMDB is consistent with'€/P improve recall despite spelling errors in today’s

the fact that there is editorial oversight on the contentl€-Sharing workloads.

Finally, it appears that almost half (47.2%) of all clips’ . While these results demonstrate that our matching
titles posted on YouTube are incorrectly spelled. Urglgorithms are effective at increasing query success
like Napster and Gnutella, YouTube’s tities are true filEates, Itis unclear whether their query answers are rele-
posting their clips. Since these descriptions are longE#turns the same answer to every query would exhibit a
than P2P’s filenames (by a factor of three on averagéjy/€ry success rate of 100% while producing irrelevant

the chance of having an incorrectly spelled word j&sults. Therefore, we have to look beyond the query
much higher. success rate to evaluate the true effectiveness of differ-

ent coding algorithms.
5.2 Can Unsuccessful Queries Become Successful
by Handling Spelling Errors? 5.4 Are the Query Answers Relevant?

In this subsection, we investigate whether unsuc-) .
cessful queries in today’s file-sharing P2P systems Measuring whether query answers are relevant is
could become successful by fixing spelling errors. V\@wallenglng. There are no known ways to judge
start by separating queries with answers using an exa0€ther an answer is relevant in an algorithmic and
match algorithm from those with no answers. For eaciyStématic manner. Instead, we need to rely on human
query, we compute the Jaccard’s coefficient and the TERUbjects to determl_ne whether answers are relevant.
IDF between the query and every file metadata in our For each experiment, we take a sample of 100
dataset. Figure 3 shows the distribution of the highegtieries and query answers and we manually determine
Jaccard’s coefficients (on the left) and the highest TRvhether an answer is relevant or not. Each of these
IDF weights (on the right) for all queries. paper’s authors (four in total) performed this experi-

This figure shows that successful queries hav@entin |solat|pn, and we report our results combined.
higher scores than unsuccessful ones. Neverthele¥é only examined successful queries that would be left
9.8% of unsuccessful queries have very high Jaccardi®answered by an exact-match algorithm, such as the
coefficients (0.4 or higher). Similarly, 12.5% of un-one used in a generic DHT.
successful queries have high TF-IDF weights (0.6 or Figure 5 shows that at least two thirds of the answers
higher). This demonstrates that many unsuccessféturned by the approximate matching algorithms con-
queries could become successful using sophisticat&in relevant entries. As we have anticipated, we find
approximate matching algorithms. This suggests thdtat Soundex has a high rate of false positives: only
fixing spelling errors could help increase the succeds8% of answers are relevant. However, using a simple
rate of queries in today’s file-sharing workloads. heuristic, such as to filter out all Soundex results unless

In our next experiments, we include a file in aheir edit distance is at most one, is very effective. The
query’s result only if its Jaccard’'s coefficient is atquery answers are as relevant as the ones returned by
least 0.4 or its TF-IDF weight is at least 0.6. Figsophisticated approximate matching algorithms.

100 - 100
Unsuccessful queries
using Exact-Matching
80 80
Successful queries Unsuccessful queries
using Exact-Matching using Exact-Matching —,
60 60
Successful queries
using Exact-Matching
40 H_[“ IHJ;‘JJ 40 JJJ_.; JI,f‘_,_r
i .vfrHj/rf, i /"J
T T T o f T

T
o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
Highest TF-IDF Score

Fraction of Queries
Fraction of Queries

Highest Jaccard's Coefficient

Figure 3. CDF of Approximate Matching Algorithms’ Scores. We separate successful queries using exact-matching
from unsuccessful queries using exact-matching and we ai@ntipeir highest Jaccard’s coefficient (on the left) andIDi~
weight (on the right). This figure shows that while succésgfaries have high scores, there are many unsuccessfuleguer
with high scores as well.

3 25% 235% | £ 100%
@ > 82.5%
[}
g 20% 2 o 75.2% |
a 16.0% 5 " 66.0%
3 15% 12.9% ‘;’ g 60% 1— —
5 10.2% @ E
3 10% 53¢ 8.5% 22 40% -
] 0,
S 5% ,{ g‘ 20% | 13.0% L
£ L3
] °
£ 0% . : , 8 0% .
E Exact Prefix Jaccard TF-IDF Soundex Soundex Jaccard TF-IDF Soundex Soundex + edit

Match Match + edit . . . 3 dist.
dist. Figure 5. Fraction of queries with relevant answers.For

Figure 4. Fraction of successful queries. This fig- each matching algorithm, we selected 100 queries with no
ure shows that a simple coding algorithm like Sound:@nswers based on an exact-match algorithm and we manu-

handles spelling errors in a file-sharing workload a: ally determine whether an answer is relevant. Each bar rep-

effectively as sophisticated, approximate matching ¢ "€Sents the average of four experiments, performed by each
gorithms. of this paper’s authors.

. grams, these techniques are too costly for DHTs. In-
6 Conclusions stead, we find that Soundex, a simple, fast, and effi-

The focus of our work has been to improve que,c_ient algorithm, together with an edit distance heuris-
recall without loss of precision in file-sharing sys tic, works surprisingly well —the query recall rate im-
tems with endemic misspellings. We have show Proves with no loss of query precision. Soundex can be
that spelling errors are common in content workload €asily deployed over most DHTSs today. Our work pro-
We present several datasets collected over four ye Vides effective solutions for dealing with misspellings
(from the Napster dataset collected in 2002 [5] to tt N both structured and unstructured P2P systems.
YouTube dataset collected in 2006) and in all the: Acknowledgments

datasets, we find a significant fraction of content d . . .
scriptors containing spelling errors. These finding Kn\i/g\;/ﬁthllgg I\I/I\</gl:r?atr?agﬁthr;]Sgr;\erl]oGnL;/mrgl?sdIr'e\z/?é\?vrgys
suggest that dealing with spelling errors cannot lfor their comments and feedback
overlooked in today’s Internet content sharing systern :

We have evaluated the performance of sevel
matching algorithms over these datasets. We found tl References _ , _ .
these matching algorithms increase today’s query st §003% . oo o7 hears sbefing, correction. ht tp: /7 wiw
cess rates by 51%, 88%, and 20% for Jaccard’s coe [2] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas\M8thukrish-

cient. TE-IDF Weights and Soundex + edit distance. nhan, andD. Srivastava. Approximate string joins in a datal§almost)
! ! ’ for free. InProc. of VLDB 2001.

respectlve[y. At the same .tlme' the qua“ty of thes%] G. Navarro. A guided tour to approximate string matchiAGM Com-
algorithms’ query answers is high: 75.2%, 66%, and” puting Surveys33(1):31-88, 2001.

82.5% of the previously unsuccessful queries have ré# R. Parsons. Soundex — the true story, October 2008.t p: //
west - penw t h. or g. uk/ m sc/ soundex. ht m

evant a_nswers based on the Jacqard S coeff|C|enf[, T@_ S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurerstmy of
IDF weights, anc_i Soundex + edIF distance, re_spectlvel . peer-to-peer file sharing systems.Rroc. of MMCN January 2002.
Overall, we find that approximate matching algof6] The Internet Movies Databasht t p: / / www. i ndb. com

rithms based on g-grams can deal with spelling errof8 \J/\glggg?ig-ﬁgggird Indexht t p: // en. wi ki pedi a. or g/ wi ki /

effectively and are well-suited to unstructured P2P nef, Wikipedia. THdl. http://en. i Ki pedia. or g/ wi ki /
works. Unfortunately, because of their reliance on d-" Tf-i df .

