
Finding Content in File-Sharing Networks When You Can’t Even Spell
Matei A. Zaharia †, Amit Chandel?, Stefan Saroiu?, and Srinivasan Keshav†

†University of Waterloo and ?University of Toronto

Abstract: The query success rate in current file-
sharing systems is low, for example, only 7-10% in
Gnutella. An often-overlooked cause for this low recall
is simply that keywords in queries and document de-
scriptions are misspelled. Although many sophisticated
approximate matching techniques have been developed
by the Information Retrieval community, to our knowl-
edge, they have not been used in popular P2P systems.

We propose two approaches to improving query re-
call in file-sharing systems. For unstructured P2P
networks, we show that “q-gram”-based approaches
nearly double recall with little loss in precision. Unfor-
tunately, such techniques cannot be used in structured
P2P networks. Instead, we propose a simple alterna-
tive: encoding keywords using Soundex, a century-old
phonetic algorithm for indexing names by their sound.

We evaluate both approaches on a trace of all
queries and files in Gnutella over a period of a month.
We find that misspellings are common in this trace, with
20% of file descriptions and 25% of queries containing
at least one spelling error. We find that our approaches
improve recall by 20-88% with little loss in precision
when compared to a standard prefix-match approach.
Given the endemic nature of misspellings, our findings
suggest that techniques such as those described here
ought to be part of any file-sharing system.

1 Introduction

The query success rate in file-sharing P2P networks
is low. For example, only 7-10% of queries in Gnutella
are successful. Although many factors contribute to
this low recall rate, we believe that an often overlooked
cause is simply that keywords in queries and document
metadata are misspelled. Our findings show that 20%
of file descriptions and 25% of queries in Gnutella are
spelled incorrectly. The focus of our work is to improve
the query success (i.e. recall) rate in such networks de-
spite endemic misspellings.

There are many reasons why people spell incor-
rectly, such as errors in typing, and the inconsistency
between spelling and pronunciation in the English lan-
guage. Given these deep-seated root causes of mis-
spelling, we are likely to see misspelled keywords in
both queries and metadata for a long time to come.

Handling incorrect spelling is challenging. First,
there are many ways in which words can be misspelled.
Over the course of three months, Google users have
misspelled “Britney Spears” in 592 different ways [1].
Second, given an incorrect spelling, it is sometimes
hard to infer the intended word. For example, it is un-
clear whether “remeinder” is a misspelled version of
the word “reminder” or the word “remainder”. Third,
there could be alternate correct spellings for the same
word. While in the U.S. it is correct to spell “center”, in
Canada and the UK the correct spelling is “centre”. Fi-

nally, a misspelled word may match a correctly spelled
(but different) word – a misspelling of “eluded” is the
rare word “elided”. In this case, deciphering the user’s
intention is challenging, if not impossible.

We propose two approaches to dealing with mis-
spellings suitable for unstructured and structured P2P
networks, respectively. The first approach, for unstruc-
tured P2P-based file-sharing systems, is based on ap-
proximate string matching algorithms developed for
information retrieval and computational biology (for
a survey, see [3].) These algorithms can match two
strings while allowing for a number of “errors”, in-
cluding misspellings. These techniques operate on “q-
grams” of a keyword where a q-gram of a word is a
substring of length q. For a given query, these tech-
niques typically compute a relevance score for each of
the document in the system. The document with the
highest score is returned as the answer to the query.
Since these techniques rely on accessing a large frac-
tion of the corpus of documents in the system, such as
all files sharing q-grams with the query, they are very
costly for DHTs.

Instead, we propose a different and much simpler
approach for DHTs: using a coding algorithm that
suppresses spelling variations of keywords, such as
Soundex [4]. Soundex maps different spellings of the
same word to a single code. In this approach, in-
verted indices are maintained on Soundexed keywords.
Each node uses the coding algorithm to convert its own
content metadata to codes before inserting them into
the index and convert its own queries before sending
them to other nodes in the system. While less ef-
fective than sophisticated approximate matching tech-
niques and prone to a high false-positive rate, this ap-
proach is simple, fast, and can be easily and incremen-
tally deployed over any DHT. Moreover, we find that
false-positives are easily eliminated by post-processing
query results with a simple edit-distance-based filter.
Contributions We measure the prevalence of
spelling errors in traces of several file-sharing systems:
our own recent Gnutella and YouTube traces, an older
Napster trace, and one downloaded from IMDB. We
find that between 10% and 47% of user-entered queries
and file metadata are misspelled in these traces.

We present a Gnutella trace that captures all queries
and all filenames of 22,457 peers over the course of
one month. This gives us a baseline for a typical, real-
istic, file-sharing workload. Using this trace, we mea-
sure the recall rates of several matching algorithms1. In
particular, we study Soundex and two state-of-the-art

1Our analysis assumes that all queries are conjunctive. While
today’s file-sharing networks support disjunctive queries, we be-
lieve that a conjunctive query model leads to more meaningful
query recall estimates.

1.Retain the first letter of the string.
2.Remove all occurrences of the following letters, unless it is the first

letter: a, e, h, i, o, u, w, y.
3.Assign numbers to remaining letters (after the first) as follows:

! b, f, p, v = 1
! c, g, j, k, q, s, x, z = 2
! d, t = 3
! l = 4
! m, n = 5
! r = 6

4.If two or more letters with the same number were adjacent in the
original name, or adjacent except for any intervening h and w, then
omit all but the first.

5.Return first 4 characters, right-padding with 0!s when fewer than 4.

Figure 1. The Soundex Algorithm. Soundex is a pho-
netic algorithm for indexing names by their sound when pro-
nounced in English. It maps words to four-byte codes. For
example, both words “Britney” and “Britny” are mapped to
“B635”, whereas “Brian” is mapped to “B650”.

approximate-matching algorithms: one based on TF-
IDF weights [8] and one based on using the Jaccard
similarity coefficient [7]. We find that these match-
ing algorithms increase today’s query success rates by
20%, 51%, 88% for Soundex, Jaccard’s coefficient, and
TF-IDF weights, respectively. Overall, we find that
both approximate matching techniques greatly improve
recall and are ideal for use in unstructured P2P net-
works. Similarly, we find that Soundex is simple, fast,
and fairly effective, and leads to significant increases in
DHT’s recall rate. All three techniques achieve higher
recall with little loss in precision (i.e. the number of
relevant results to a query).
Roadmap The rest of the paper is organized as fol-
lows. In Section 2, we present a brief background
of matching algorithms and we summarize the related
work. In Section 3, we discuss our approach for
handling incorrectly spelled words in file-sharing sys-
tems. Section 4 presents the methodology of our exper-
iments, and Section 5 evaluates several algorithms han-
dling misspellings. Finally, we conclude in Section 6.

2 Background and Related Work

This section presents a brief description of Soundex
followed by an outline of two approximate matching
algorithms from the information retrieval literature.

Soundex is nearly a century-old algorithm [4], with
many variants in wide use. The most common variant
of the algorithm uses four-byte codes – one letter fol-
lowed by three digits. The letter is the first letter of the
keyword or tag, and the numbers correspond roughly
to the remaining consonants. By assigning the same
number to similar sounding consonants, errors are sup-
pressed. For example, ’d’ and ’t’ are both encoded as
’3’, so the tag “rate” would match the keyword “rade”
when they are both encoded with Soundex. Extending
the Soundex algorithm to use codes longer than four
bytes is common in practice [4]. Figure 1 describes the
most-commonly used version of Soundex.

Q-grams are widely used to build approximate-
string join capabilities on top of commercial

databases [2]. The q-grams of a word are all its
substrings of lengthq. For example, the 3-grams cor-
responding to the word ’hello’ are ’hel’, ’ell’, and ’llo’.
If two words share most of their q-grams, it is likely
that one of them is a misspelled version of the other.
For example, the word ’helllo’ has 3-grams ’hel’, ’ell’,
’lll’, and ’llo’, suggesting a misspelling of ’hello’. We
compared Soundex with two approximate matching
algorithms over q-grams, TF-IDF and Jaccard, which
are described next.

TF-IDF (term frequency - inverse document fre-
quency) [8] measures the importance of a word in a
document relative to a corpus. In a given document, a
word’s importance increases proportional to the num-
ber of times it appears in the document and inversely
proportional to its frequency in the corpus. In this way,
TF-IDF distinguishes between more important and less
important words. A word occurring frequently in a par-
ticular document but rarely elsewhere in the corpus is
thought to be “important” for that document. In our
context, the TF-IDF weight of a 3-gram appearing in a
file metadata (or in a query) is proportional to how fre-
quently the 3-gram appears in the file’s metadata (i.e.,
“term-frequency”) and inversely proportional to how
frequently the 3-gram appears in the entire corpus of all
files’ metadata (i.e., “document-frequency”). The TF-
IDF score of a query relative to a file is the dot product
of all TF-IDF weights of all 3-grams shared between
the query and the file’s metadata.

The Jaccard similarity coefficient [7] compares the
similarity of two sets and is defined as the size of the
intersection divided by the size of the union of the sets:
J(A,B) = |A∩B|/|A∪B|. Two identical sets have a
Jaccard’s coefficient of 1, and two completely dissimi-
lar sets have a coefficient of 0. In our context, we use
the Jaccard index to measure the similarity between the
q-gram set of a query and the q-gram sets for the meta-
data corresponding to each file.

Our experiments use 3-grams to compute the TF-
IDF weights and the Jaccard’s coefficients between
queries and file metadata. The most relevant answer
to a query is the document whose tags had the highest
score according to TF-IDF or to Jaccard’s coefficient.

3 Our Approach

We propose using an approximate matching algo-
rithm, such as the ones based onq-grams, to handle
spelling errors in unstructured P2P systems. Although
they can be computationally expensive and some re-
quire access to the entire corpus of data, our results
show that they greatly improve recall for today’s file-
sharing workloads.

Unfortunately, approximate matching is not suitable
for DHTs as such techniques typically require access-
ing all files whose metadata share at least one q-gram
with the query. Such operations are very costly for
DHTs.

Therefore, in the case of DHTs, we advocate using
Soundex coding to suppress spelling variations both

when inserting file metadata into the inverted index
of a file-sharing system and when querying it. This
automatically allows for approximate matching and
spelling error suppression. If there is a need for in-
cremental deployment of our algorithm (as may be
necessary in P2P systems where peer software ver-
sions are updated over a period of months to years)
the system can temporarily store both Soundexed and
non-Soundexed versions of a keyword. In this way,
legacy clients could use unmodified keywords for
search, and new clients would search initially on both
Soundexed and non-Soundexed keywords, switching
over to Soundex when the transition is complete. This
approach supports legacy clients, albeit with lower re-
call. However, this lower recall rate creates an incen-
tive to upgrade.

3.1 The Problem of False Positives

Soundex has an inherent problem of creating false
positives, returning results that users do not really want.
Such a problem is general to any approach that sup-
presses spelling variations. To see this, suppose the
user issued a query of the form “Here Sun” wanting to
retrieve metadata for the song “Here Comes the Sun”.
Now, the Soundexed query is “H600 S500”, which also
matches “Her Son”. The original query would not have
retrieved “Her Son”, so coding has resulted in a false
positive.

In general, any code that maps several keywords to
a single codeword can create false positives. More
precisely, consider a codingM : {Keyword} →
{Codeword}. Denote the set of misspellings of a key-
word K by S(K), and the cardinality of this set by
|S(K)|. Let K1 andK2 be distinct correctly spelled
keywords, and letM(K1) = X1, andM(K2) = X2.
Then, ideally,

• X1 6= X2, that is, two keywords do not map to
the same codeword;

• ∀k ∈ S(K),M(k) = M(K), that is, every mis-
spelling of a keyword maps to the same value as the
keyword itself2.

Such an ideal mapping can correct all misspellings.
However, real-world mappings are non-ideal and suf-
fer from two types of errors corresponding to the two
conditions forM above:

• two keywordsK1 andK2 (in addition toS(K1)
andS(K2)) may themselves map to the same value,
i.e. M(K1) = M(K2) = M(S(K1)) = M(S(K2)).
For example, both “Here” and “Her” map to “H600”.

• an elementk ∈ S(K) may map toM(K ′) in-
stead ofM(K). This will result in searches fork ac-
tually searching onM(K ′) thus finding titles withK ′

instead ofK. For example, a search on “Sur” (instead
of “Sun”) would result in a search on “S600”, which
would find keywords like “Sir” instead of “Sun”.

2Note that ifS(K1) ∩ S(K2) 6= ∅, then we have an inher-
ent ambiguity in a misspelled keyword that is independent ofthe
choice ofM .

Both these cases lead to false positives and there-
fore lower query precision. The query answers contain
results that are not relevant to the original query. Un-
fortunately, Soundex suffers from both types of errors,
leading to a significant false positive rate.

In our experiments, we find that Soundex does in-
deed suffer from a high rate of false positives. How-
ever, sorting query results by their edit distance from
words in the original query greatly increases the qual-
ity of the results. We find a very low false positive
rate when a query result returned by Soundex has all its
terms within an edit distance of one from the original
query. These results are all presented in our evaluation.
In the following section, we present the methodology
of our experiments.

4 Methodology

We do not need to simulate a file-sharing system’s
entire functionality to evaluate the effectiveness of ap-
proximate matching algorithms. Instead, we merely
need to evaluate the algorithms on traces of file sharing
queries and replies. In the remainder of this section,
we present the file-sharing datasets and the coding al-
gorithms used in our experiments.

4.1 File-Sharing Datasets

The ideal dataset for studying query success rates
in a file-sharing system should includeall queries and
all content stored in the system. Obviously, this is im-
possible for a large-scale file-sharing system with node
churn. We found that we could not even reuse any pre-
viously collected datasets. Many datasets anonymize
their queries and file metadata, making it impossible
to experiment with misspellings. In the remaining
datasets, the set of peers whose queries are captured
and the set of peers whose file metadata is recorded
differ. This makes it impossible to accurately measure
query success rates.

In our work, to avoid underestimation of query
success rates, we measured the query and the result
streams for the same set of peers. While this approach
only approximates the entire system’s query success
rate, it does capture the “true” query success rate for
this subset of participants.
Our Gnutella Trace To measure query success rate,
we instrumented several Limewire (Gnutella) ultra-
peers to record all queries and query results, as well as
all file metadata stored at their (peer) leaves. Our trace
captures 22,457 peers over the course of one month,
starting on May 18th, 2006 and ending on June 16th,
2006. Our dataset includes a total of 66,128 files and
1,830,079 queries.
Other Traces Besides our Gnutella trace, we ana-
lyzed three other datasets. Although these datasets
were inadequate for studying query success rates, they
do allow us to gauge the prevalence of misspelled key-
words in different information-sharing systems. These
datasets were:

• file names from Napster collected in 2002 [5];
• all movie titles in the IMDB database whose main

language is English produced since 1950 (we down-
loaded this dataset from the IMDB website [6]);

• all clips found by an exhaustive crawl of
YouTube’s website in July 2006.

We convert metadata in these datasets into keywords
using a code snippet from the Limewire software. This
code uses 13 different characters to separate meta-
data into keywords. It also handles accents and Uni-
code characters adequately. In this way, our experi-
ments match the behavior of a DHT client using the
same query and metadata handling code as a Gnutella
Limewire client.

4.2 Matching Algorithms

We evaluate five different matching algorithms over
our Gnutella trace: exact-match, prefix-match, Jac-
card’s coefficient, TF-IDF, and Soundex. Today’s file-
sharing systems (whether using an unstructured over-
lay or a DHT) use either a prefix-match or an exact-
match algorithm to answer queries. In our experiments,
these matching algorithms serve as a baseline to mea-
sure how effective the more sophisticated, approximate
matching algorithms work. Next, we briefly describe
each of our matching algorithms:

Exact-Match: A file is included in a query’s re-
sult only if every keyword in a queryexactly matches
one keyword in the file’s metadata. This matching al-
gorithm corresponds to the search behavior of generic
file-sharing systems.

Prefix-Match: A file is included in a query’s result
only if every keyword in a querymatches the prefixof
one keyword in the file’s metadata. This matching al-
gorithm corresponds to the search behavior in many of
today’s unstructured file-sharing systems.

Jaccard’s Coefficient: This algorithm assigns a
similarity score to each file by computing Jaccard’s co-
efficient [7] between the 3-grams of the query and the
3-grams of the file’s metadata. A file is included in a
query’s result only if its score is at least0.4. Section 5.2
will present our rationale for choosing this threshold.

TF-IDF : Similar to Jaccard’s coefficient algorithm,
except we use TF-IDF weights to measure similarity.
We use a threshold score of0.6 to include a file in a
query’s result. Section 5.2 will present our rationale
for choosing this threshold.

Soundex: We use the Soundex algorithm presented
in Figure 1 to map keywords to 4-byte codewords. A
file is included in a query’s result only if every code-
word in a queryexactly matchesone codeword in the
file’s metadata. As discussed earlier, Soundex suffers
from false positives. To alleviate this problem, we add a
simple heuristic to Soundex – we drop results returned
by Soundex other than those where every keyword in
the query is within an edit distance of 0 or 1 from a key-
word in the file’s metadata. We use the termSoundex
+ edit distanceto refer to this algorithm.

12.82

4,375

3.45

54,927

119,857

IMDB

files

13.62

9,731

12.26

132,478

150,512

YouTube

files

9,6985,73214,115# 4-byte soundex codes

20.486.0021.18
avg. # keywords per

4-byte soundex

208,70034,397299,004# of unique keywords

4.848.473.91avg. # keywords per title

444,46766,1281,830,079# unique titles

Napster

files

Gnutella

files

Gnutella

queries

Table 1. High-level statistics of the datasets.Section 4.1
describes the methodology for collecting these datasets.

4.3 High-Level Trace Characterization

In this section, we present a high-level characteriza-
tion of our trace. Table 1 shows summary statistics.

Not surprisingly, queries are shorter than file meta-
data. A query in Gnutella has an average of 3.91 key-
words, whereas files in Gnutella, MP3s in Napster, and
video titles from IMDB have over 8, 4, and 3 keywords
per title, respectively. Since YouTube’s titles are de-
scriptions of content entered by users, they are signifi-
cantly longer: the average content title on YouTube has
over 12 keywords (the longest YouTube title has 105
keywords). This suggests an interesting trend – people
enter increasingly longer content descriptors to label
their content. Thus the need for better search tools that
can find relevant content is growing in these content-
sharing systems.

The number of unique entries in a file-sharing DHT
serving this data is captured by the number of unique
keywords in the file datasets in Table 1. While the num-
ber of keywords stored by each DHT participant de-
creases with the use of Soundex, the number of values
stored for each keyword increases proportionally. This
can potentially create a load imbalance if the number of
keywords is not much higher than the number of DHT
participants.

5 Evaluation

In this section, we present our evaluation of al-
gorithms used to suppress spelling variations in file-
sharing workloads. We start by analyzing the preva-
lence of spelling errors in such workloads. Next, we
evaluate query recall rates based on using Soundex and
two approximate matching algorithms: one based on
the Jaccard coefficient and one based on TF-IDF.

5.1 How Common Are Spelling Errors?

We evaluated the frequency of misspellings by using
the “aspell” spell checker version 0.50.5. Since many
of our entries contain proper names, we have enhanced
the aspell’s dictionary with a list of all words found in
the titles of all Wikipedia articles3. We also configured

3Of course, we are onlyestimating the prevalence of mis-
spellings, because defining a list of correct spellings is inherently
difficult when proper names are allowed. Our choice (Aspell +
Wikipedia) may not be perfect, but it gives a reasonable ideaof the
prevalence of alternate spellings.

19.8%

25.0%

34.0%

10.5%

47.2%

0

0.1

0.2

0.3

0.4

0.5

Gnutella

Files

Gnutella

Queries

Napster

Files

IMDB Movie

Titles

YouTube

Clip Titles

%
 o

f
M

is
s
p

e
ll

e
d

 T
it

le
s

Figure 2. Fraction of misspelled titles in file-sharing
workloads. A title is misspelled if at least one of its words
is incorrectly spelled.

aspell to ignore accents when checking words.
Figure 2 shows how frequently misspellings occur

in file-sharing datasets. We find that 25% of Gnutella
queries and 20% of Gnutella file metadata contain at
least one keyword that is misspelled. In Napster, 34%
of all MP3 file metadata are incorrectly spelled. The
rate of movie titles containing at least one incorrectly
spelled keyword is very low in IMDB: 10.5%. The
lower rate of misspellings in IMDB is consistent with
the fact that there is editorial oversight on the content.
Finally, it appears that almost half (47.2%) of all clips’
titles posted on YouTube are incorrectly spelled. Un-
like Napster and Gnutella, YouTube’s titles are true file
metadata; they are descriptions entered by users when
posting their clips. Since these descriptions are longer
than P2P’s filenames (by a factor of three on average),
the chance of having an incorrectly spelled word is
much higher.

5.2 Can Unsuccessful Queries Become Successful
by Handling Spelling Errors?

In this subsection, we investigate whether unsuc-
cessful queries in today’s file-sharing P2P systems
could become successful by fixing spelling errors. We
start by separating queries with answers using an exact-
match algorithm from those with no answers. For each
query, we compute the Jaccard’s coefficient and the TF-
IDF between the query and every file metadata in our
dataset. Figure 3 shows the distribution of the highest
Jaccard’s coefficients (on the left) and the highest TF-
IDF weights (on the right) for all queries.

This figure shows that successful queries have
higher scores than unsuccessful ones. Nevertheless,
9.8% of unsuccessful queries have very high Jaccard’s
coefficients (0.4 or higher). Similarly, 12.5% of un-
successful queries have high TF-IDF weights (0.6 or
higher). This demonstrates that many unsuccessful
queries could become successful using sophisticated
approximate matching algorithms. This suggests that
fixing spelling errors could help increase the success
rate of queries in today’s file-sharing workloads.

In our next experiments, we include a file in a
query’s result only if its Jaccard’s coefficient is at
least 0.4 or its TF-IDF weight is at least 0.6. Fig-

ure 3 shows that these threshold settings are reason-
able: many successful queries based on exact-match
have scores higher than our threshold, while most un-
successful queries have lower scores. Also, in all our
empirical observations, we have found these threshold
settings to be adequate.

5.3 What is the Recall Rate of Our Algorithms?

We now turn our attention to the main thesis of our
work – the improvement in the recall rate by use of
coding algorithms. Figure 4 shows improvement in the
recall rate of our matching algorithms. For Gnutella
queries with no coding, the measured query success
rate is only 7.3%. Using prefix-match, the query suc-
cess rate is 8.5%. Using approximate matching algo-
rithms, we find a recall of 12.9% for Jaccard’s coef-
ficient and 16% for TF-IDF. With Soundex, the recall
rate increases significantly, to over 23.5%. Adding the
edit distance heuristic to handle false positives leads to
a recall rate of 10.2%. This experiment illustrates that
both approximate matching algorithms and Soundex
help improve recall despite spelling errors in today’s
file-sharing workloads.

While these results demonstrate that our matching
algorithms are effective at increasing query success
rates, it is unclear whether their query answers are rele-
vant or not. To see this, note that a trivial algorithm that
returns the same answer to every query would exhibit a
query success rate of 100% while producing irrelevant
results. Therefore, we have to look beyond the query
success rate to evaluate the true effectiveness of differ-
ent coding algorithms.

5.4 Are the Query Answers Relevant?

Measuring whether query answers are relevant is
challenging. There are no known ways to judge
whether an answer is relevant in an algorithmic and
systematic manner. Instead, we need to rely on human
subjects to determine whether answers are relevant.

For each experiment, we take a sample of 100
queries and query answers and we manually determine
whether an answer is relevant or not. Each of these
paper’s authors (four in total) performed this experi-
ment in isolation, and we report our results combined.
We only examined successful queries that would be left
unanswered by an exact-match algorithm, such as the
one used in a generic DHT.

Figure 5 shows that at least two thirds of the answers
returned by the approximate matching algorithms con-
tain relevant entries. As we have anticipated, we find
that Soundex has a high rate of false positives: only
13% of answers are relevant. However, using a simple
heuristic, such as to filter out all Soundex results unless
their edit distance is at most one, is very effective. The
query answers are as relevant as the ones returned by
sophisticated approximate matching algorithms.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

Highest Jaccard's Coefficient

F
r
a
c
ti

o
n

 o
f

Q
u

e
r
ie

s Successful queries
using Exact-Matching

Unsuccessful queries
using Exact-Matching

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

Highest TF-IDF Score

F
r
a
c
ti

o
n

 o
f

Q
u

e
r
ie

s

Successful queries
using Exact-Matching

Unsuccessful queries
using Exact-Matching

Figure 3. CDF of Approximate Matching Algorithms’ Scores. We separate successful queries using exact-matching
from unsuccessful queries using exact-matching and we compute their highest Jaccard’s coefficient (on the left) and TF-IDF
weight (on the right). This figure shows that while successful queries have high scores, there are many unsuccessful queries
with high scores as well.

7.3%
8.5%

12.9%

16.0%

23.5%

10.2%

0%

5%

10%

15%

20%

25%

Exact

Match

Prefix

Match

Jaccard TF-IDF Soundex Soundex

+ edit

dist.

F
r
a
c
ti

o
n

 o
f

Q
u

e
r
ie

s
 S

u
c
c
e
s
s
fu

l

Figure 4. Fraction of successful queries. This fig-
ure shows that a simple coding algorithm like Soundex
handles spelling errors in a file-sharing workload as
effectively as sophisticated, approximate matching al-
gorithms.

6 Conclusions

The focus of our work has been to improve query
recall without loss of precision in file-sharing sys-
tems with endemic misspellings. We have shown
that spelling errors are common in content workloads.
We present several datasets collected over four years
(from the Napster dataset collected in 2002 [5] to the
YouTube dataset collected in 2006) and in all these
datasets, we find a significant fraction of content de-
scriptors containing spelling errors. These findings
suggest that dealing with spelling errors cannot be
overlooked in today’s Internet content sharing systems.

We have evaluated the performance of several
matching algorithms over these datasets. We found that
these matching algorithms increase today’s query suc-
cess rates by 51%, 88%, and 20% for Jaccard’s coeffi-
cient, TF-IDF weights, and Soundex + edit distance,
respectively. At the same time, the quality of these
algorithms’ query answers is high: 75.2%, 66%, and
82.5% of the previously unsuccessful queries have rel-
evant answers based on the Jaccard’s coefficient, TF-
IDF weights, and Soundex + edit distance, respectively.

Overall, we find that approximate matching algo-
rithms based on q-grams can deal with spelling errors
effectively and are well-suited to unstructured P2P net-
works. Unfortunately, because of their reliance on q-

66.0%

82.5%

13.0%

75.2%

0%

20%

40%

60%

80%

100%

Jaccard TF-IDF Soundex Soundex + edit

dist.

%
 o

f
Q

u
e
r
ie

s
 w

it
h

 R
e
le

v
a
n

t

A
n

s
w

e
r
s

Figure 5. Fraction of queries with relevant answers.For
each matching algorithm, we selected 100 queries with no
answers based on an exact-match algorithm and we manu-
ally determine whether an answer is relevant. Each bar rep-
resents the average of four experiments, performed by each
of this paper’s authors.

grams, these techniques are too costly for DHTs. In-
stead, we find that Soundex, a simple, fast, and effi-
cient algorithm, together with an edit distance heuris-
tic, works surprisingly well – the query recall rate im-
proves with no loss of query precision. Soundex can be
easily deployed over most DHTs today. Our work pro-
vides effective solutions for dealing with misspellings
in both structured and unstructured P2P systems.

Acknowledgments
We would like to thank Krishna Gummadi, Jeremy

Knight, Alec Wolman, and the anonymous reviewers
for their comments and feedback.

References
[1] Google. Britney Spears spelling correction. http://www.

google.com/jobs/britney.html.
[2] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S.Muthukrish-

nan, and D. Srivastava. Approximate string joins in a database (almost)
for free. InProc. of VLDB, 2001.

[3] G. Navarro. A guided tour to approximate string matching. ACM Com-
puting Surveys, 33(1):31–88, 2001.

[4] R. Parsons. Soundex – the true story, October 2005.http://
west-penwith.org.uk/misc/soundex.htm.

[5] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurementstudy of
peer-to-peer file sharing systems. InProc. of MMCN, January 2002.

[6] The Internet Movies Database.http://www.imdb.com.
[7] Wikipedia. Jaccard Index.http://en.wikipedia.org/wiki/

Jaccard index.
[8] Wikipedia. Tf-idf. http://en.wikipedia.org/wiki/

Tf-idf.

