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ABSTRACT
Cluster computing applications like MapReduce and Dryad transfer
massive amounts of data between their computation stages. These
transfers can have a significant impact on job performance, ac-
counting for more than 50% of job completion times. Despite this
impact, there has been relatively little work on optimizing the per-
formance of these data transfers, with networking researchers tra-
ditionally focusing on per-flow traffic management. We address
this limitation by proposing a global management architecture and
a set of algorithms that (1) improve the transfer times of common
communication patterns, such as broadcast and shuffle, and (2) al-
low scheduling policies at the transfer level, such as prioritizing a
transfer over other transfers. Using a prototype implementation, we
show that our solution improves broadcast completion times by up
to 4.5× compared to the status quo in Hadoop. We also show that
transfer-level scheduling can reduce the completion time of high-
priority transfers by 1.7×.

Categories and Subject Descriptors
C.2 [Computer-communication networks]: Distributed systems—
Cloud computing

General Terms
Algorithms, design, performance

Keywords
Data-intensive applications, data transfer, datacenter networks

1 Introduction
The last decade has seen a rapid growth of cluster computing frame-
works to analyze the increasing amounts of data collected and gen-
erated by web services like Google, Facebook and Yahoo!. These
frameworks (e.g., MapReduce [15], Dryad [28], CIEL [34], and
Spark [44]) typically implement a data flow computation model,
where datasets pass through a sequence of processing stages.

Many of the jobs deployed in these frameworks manipulate mas-
sive amounts of data and run on clusters consisting of as many
as tens of thousands of machines. Due to the very high cost of
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these clusters, operators aim to maximize the cluster utilization,
while accommodating a variety of applications, workloads, and
user requirements. To achieve these goals, several solutions have
recently been proposed to reduce job completion times [11,29,43],
accommodate interactive workloads [29, 43], and increase utiliza-
tion [26, 29]. While in large part successful, these solutions have
so far been focusing on scheduling and managing computation and
storage resources, while mostly ignoring network resources.

However, managing and optimizing network activity is critical
for improving job performance. Indeed, Hadoop traces from Face-
book show that, on average, transferring data between successive
stages accounts for 33% of the running times of jobs with reduce
phases. Existing proposals for full bisection bandwidth networks
[21, 23, 24, 35] along with flow-level scheduling [10, 21] can im-
prove network performance, but they do not account for collective
behaviors of flows due to the lack of job-level semantics.

In this paper, we argue that to maximize job performance, we
need to optimize at the level of transfers, instead of individual
flows. We define a transfer as the set of all flows transporting
data between two stages of a job. In frameworks like MapReduce
and Dryad, a stage cannot complete (or sometimes even start) be-
fore it receives all the data from the previous stage. Thus, the job
running time depends on the time it takes to complete the entire
transfer, rather than the duration of individual flows comprising
it. To this end, we focus on two transfer patterns that occur in
virtually all cluster computing frameworks and are responsible for
most of the network traffic in these clusters: shuffle and broad-
cast. Shuffle captures the many-to-many communication pattern
between the map and reduce stages in MapReduce, and between
Dryad’s stages. Broadcast captures the one-to-many communica-
tion pattern employed by iterative optimization algorithms [45] as
well as fragment-replicate joins in Hadoop [6].

We propose Orchestra, a global control architecture to manage
intra- and inter-transfer activities. In Orchestra, data movement
within each transfer is coordinated by a Transfer Controller (TC),
which continuously monitors the transfer and updates the set of
sources associated with each destination. For broadcast transfers,
we propose a TC that implements an optimized BitTorrent-like pro-
tocol called Cornet, augmented by an adaptive clustering algorithm
to take advantage of the hierarchical network topology in many dat-
acenters. For shuffle transfers, we propose an optimal algorithm
called Weighted Shuffle Scheduling (WSS), and we provide key
insights into the performance of Hadoop’s shuffle implementation.

In addition to coordinating the data movements within each trans-
fer, we also advocate managing concurrent transfers belonging to
the same or different jobs using an Inter-Transfer Controller (ITC).
We show that an ITC implementing a scheduling discipline as sim-
ple as FIFO can significantly reduce the average transfer times in
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Figure 1: CDF of the fraction of time spent in shuffle transfers
in Facebook Hadoop jobs with reduce phases.

a multi-transfer workload, compared to allowing flows from the
transfers to arbitrarily share the network. Orchestra can also readily
support other scheduling policies, such as fair sharing and priority.

Orchestra can be implemented at the application level and over-
laid on top of diverse routing topologies [10,21,24,35], access con-
trol schemes [12,22], and virtualization layers [37,38]. We believe
that this implementation approach is both appropriate and attractive
for several reasons. First, because large-scale analytics applica-
tions are usually written using high-level programming frameworks
(e.g., MapReduce), it is sufficient to control the implementation of
the transfer patterns in these frameworks (e.g., shuffle and broad-
cast) to manage a large fraction of cluster traffic. We have focused
on shuffles and broadcasts due to their popularity, but other trans-
fer patterns can also be incorporated into Orchestra. Second, this
approach allows Orchestra to be used in existing clusters without
modifying routers and switches, and even in the public cloud.

To evaluate Orchestra, we built a prototype implementation in
Spark [44], a MapReduce-like framework developed and used at
our institution, and conducted experiments on DETERlab and Ama-
zon EC2. Our experiments show that our broadcast scheme is up
to 4.5× faster than the default Hadoop implementation, while our
shuffle scheme can speed up transfers by 29%. To evaluate the im-
pact of Orchestra on job performance, we run two applications de-
veloped by machine learning researchers at our institution—a spam
classification algorithm and a collaborative filtering job—and show
that our broadcast and shuffle schemes reduce transfer times by up
to 3.6× and job completion times by up to 1.9×. Finally, we show
that inter-transfer scheduling policies can lower average transfer
times by 31% and speed up high-priority transfers by 1.7×.

The rest of this paper is organized as follows. Section 2 dis-
cusses several examples that motivate importance of data transfers
in cluster workloads. Section 3 presents the Orchestra architecture.
Section 4 discusses Orchestra’s inter-transfer scheduling. Section 5
presents our broadcast scheme, Cornet. Section 6 studies how to
optimize shuffle transfers. We then evaluate Orchestra in Section 7,
survey related work in Section 8, and conclude in Section 9.

2 Motivating Examples
To motivate our focus on transfers, we study their impact in two
cluster computing systems: Hadoop (using trace from a 3000-node
cluster at Facebook) and Spark (a MapReduce-like framework that
supports iterative machine learning and graph algorithms [44]).

Hadoop at Facebook: We analyzed a week-long trace from Face-
book’s Hadoop cluster, containing 188,000 MapReduce jobs, to
find the amount of time spent in shuffle transfers. We defined a
“shuffle phase" for each job as starting when either the last map
task finishes or the last reduce task starts (whichever comes later)
and ending when the last reduce task finishes receiving map out-
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Figure 2: Per-iteration work flow diagrams for our motivating
machine learning applications. The circle represents the master
node and the boxes represent the set of worker nodes.

puts. We then measured what fraction of the job’s lifetime was
spent in this shuffle phase. This is a conservative estimate of the
impact of shuffles, because reduce tasks can also start fetching map
outputs before all the map tasks have finished.

We found that 32% of jobs had no reduce phase (i.e., only map
tasks). This is common in data loading jobs. For the remaining
jobs, we plot a CDF of the fraction of time spent in the shuffle
phase (as defined above) in Figure 1. On average, the shuffle phase
accounts for 33% of the running time in these jobs. In addition,
in 26% of the jobs with reduce tasks, shuffles account for more
than 50% of the running time, and in 16% of jobs, they account for
more than 70% of the running time. This confirms widely reported
results that the network is a bottleneck in MapReduce [10, 21, 24].

Logistic Regression Application: As an example of an iterative
MapReduce application in Spark, we consider Monarch [40], a
system for identifying spam links on Twitter. The application pro-
cessed 55 GB of data collected about 345,000 tweets containing
links. For each tweet, the group collected 1000-2000 features re-
lating to the page linked to (e.g., domain name, IP address, and fre-
quencies of words on the page). The dataset contained 20 million
distinct features in total. The applications identifies which features
correlate with links to spam using logistic regression [25].

We depict the per-iteration work flow of this application in Fig-
ure 2(a). Each iteration includes a large broadcast (300 MB) and a
shuffle (190 MB per reducer) operation, and it typically takes the
application at least 100 iterations to converge. Each transfer acts
as a barrier: the job is held up by the slowest node to complete the
transfer. In our initial implementation of Spark, which used the
the same broadcast and shuffle strategies as Hadoop, we found that
communication accounted for 42% of the iteration time, with 30%
spent in broadcast and 12% spent in shuffle on a 30-node cluster.
With such a large fraction of the running time spent on communica-
tion, optimizing the completion times of these transfers is critical.

Collaborative Filtering Application: As a second example of an
iterative algorithm, we discuss a collaborative filtering job used by
a researcher at our institution on the Netflix Challenge data. The
goal is to predict users’ ratings for movies they have not seen based
on their ratings for other movies. The job uses an algorithm called
alternating least squares (ALS) [45]. ALS models each user and
each movie as having K features, such that a user’s rating for
a movie is the dot product of the user’s feature vector and the
movie’s. It seeks to find these vectors through an iterative process.

Figure 2(b) shows the workflow of ALS. The algorithm alter-
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Figure 3: Communication and computation times per iteration
when scaling the collaborative filtering job using HDFS-based
broadcast.

nately broadcasts the current user or movie feature vectors, to allow
the nodes to optimize the other set of vectors in parallel. Each trans-
fer is roughly 385 MB. These transfers limited the scalability of the
job in our initial implementation of broadcast, which was through
shared files in the Hadoop Distributed File System (HDFS)—the
same strategy used in Hadoop. For example, Figure 3 plots the
iteration times for the same problem size on various numbers of
nodes. Computation time goes down linearly with the number of
nodes, but communication time grows linearly. At 60 nodes, the
broadcasts cost 45% of the iteration time. Furthermore, the job
stopped scaling past 60 nodes, because the extra communication
cost from adding nodes outweighed the reduction in computation
time (as can be seen at 90 nodes).

3 Orchestra Architecture
To manage and optimize data transfers, we propose an architecture
called Orchestra. The key idea in Orchestra is global coordination,
both within a transfer and across transfers. This is accomplished
through a hierarchical control structure, illustrated in Figure 4.

At the highest level, Orchestra has an Inter-Transfer Controller
(ITC) that implements cross-transfer scheduling policies, such as
prioritizing transfers from ad-hoc queries over batch jobs. The ITC
manages multiple Transfer Controllers (TCs), one for each transfer
in the cluster. TCs select a mechanism to use for their transfers
(e.g., BitTorrent versus a distribution tree for broadcast) based on
the data size, the number of nodes in the transfer, their locations,
and other factors. They also actively monitor and control the nodes
participating in the transfer. TCs manage the transfer at the gran-
ularity of flows, by choosing how many concurrent flows to open
from each node, which destinations to open them to, and when to
move each chunk of data. Table 1 summarizes coordination activi-
ties at different components in the Orchestra hierarchy.

Orchestra is designed for a cooperative environment in which a
single administrative entity controls the application software on the
cluster and ensures that it uses TCs for transfers. For example, we
envision Orchestra being used in a Hadoop data warehouse such
as Facebook’s by modifying the Hadoop framework to invoke it
for its transfers. However, this application stack can still run on
top of a network that is shared with other tenants—for example,
an organization can use Orchestra to schedule transfers inside a
virtual Hadoop cluster on Amazon EC2. Also note that in both
cases, because Orchestra is implemented in the framework, users’
applications (i.e., MapReduce jobs) need not change.

Since Orchestra can be implemented at the application level, it
can be used in existing clusters without changing network hard-
ware or management mechanisms. While controlling transfers at
the application level does not offer perfect control of the network
or protection against misbehaving hosts, it still gives considerable
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Figure 4: Orchestra architecture. An Inter-Transfer Controller
(ITC) manages Transfer Controllers (TCs) for the active trans-
fers. Each TC can choose among multiple transfer mechanisms
depending on data size, number of nodes, and other factors.
The ITC performs inter-transfer scheduling.

Table 1: Coordination throughout the Orchestra hierarchy.
Component Coordination Activity 

Inter-Transfer 
Controller (ITC) 

-  Implement cross-transfer scheduling 
policies (e.g., priority, FIFO etc.) 

-  Periodically update and notify active 
transfers of their shares of the network 

Transfer 
Controller (TC) 

-  Select the best algorithm for a transfer 
given its share and operating regime 

Cornet Broadcast 
TC 

-  Use network topology information to 
minimize cross-rack communication 

-  Control neighbors for each participant 
Weighted Shuffle 
Scheduling TC 

-  Assign flow rates to optimize shuffle 
completion time 

flexibility to improve job performance. We therefore took this ap-
proach as a sweet-spot between utility and deployability.

In the next few sections, we present the components of Orches-
tra in more detail. First, we discuss inter-transfer scheduling and
the interaction between TCs and the ITC in Section 4. Sections 5
and 6 then discuss two efficient transfer mechanisms that take ad-
vantage of the global control provided by Orchestra. For broadcast,
we present Cornet, a BitTorrent-like scheme that can take into ac-
count the cluster topology. For shuffle, we present Weighted Shuf-
fle Scheduling (WSS), an optimal shuffle scheduling algorithm.

4 Inter-Transfer Scheduling
Typically, large computer clusters are multi-user environments where
hundreds of jobs run simultaneously [29, 43]. As a result, there
are usually multiple concurrent data transfers. In existing clusters,
without any transfer-aware supervising mechanism in place, flows
from each transfer get some share of the network as allocated by
TCP’s proportional sharing. However, this approach can lead to
extended transfer completion times and inflexibility in enforcing
scheduling policies. Consider two simple examples:



• Scheduling policies: Suppose that a high-priority job, such as a
report for a key customer, is submitted to a MapReduce cluster.
A cluster scheduler like Quincy [29] may quickly assign CPUs
and memory to the new job, but the job’s flows will still expe-
rience fair sharing with other jobs’ flows at the network level.
• Completion times: Suppose that three jobs start shuffling equal

amounts of data at the same time. With fair sharing among
the flows, the transfers will all complete in time 3t, where t is
the time it takes one shuffle to finish uncontested. In contrast,
with FIFO scheduling across transfers, it is well-known that the
transfers will finish faster on average, at times t, 2t and 3t.

Orchestra can implement scheduling policies at the transfer level
through the Inter-Transfer Controller (ITC). The main design ques-
tion is what mechanism to use for controlling scheduling across the
transfers. We have chosen to use weighted fair sharing at the clus-
ter level: each transfer is assigned a weight, and each congested
link in the network is shared proportionally to the weights of the
transfers using that link. As a mechanism, weighted fair sharing is
flexible enough to emulate several policies, including priority and
FIFO. In addition, it is attractive because it can be implemented at
the hosts, without changes to routers and switches.

When an application wishes to perform a transfer in Orchestra,
it invokes an API that launches a TC for that transfer. The TC
registers with the ITC to obtain its share of the network. The ITC
periodically consults a scheduling policy (e.g., FIFO, priority) to
assign shares to the active transfers, and sends these to the TCs.
Each TC can divide its share among its source-destination pairs
as it wishes (e.g., to choose a distribution graph for a broadcast).
The ITC also updates the transfers’ shares periodically as the set of
active transfers changes. Finally, each TC unregisters itself when
its transfer ends. Note that we assume a cooperative environment,
where all the jobs use TCs and obey the ITC.

We have implemented fair sharing, FIFO, and priority policies
to demonstrate the flexibility of Orchestra. In the long term, how-
ever, operators would likely integrate Orchestra’s transfer schedul-
ing into a job scheduler such as Quincy [29].

In the rest of this section, we discuss our prototype implemen-
tation of weighted sharing using TCP flow counts (§4.1) and the
scalability and fault tolerance of the ITC (§4.2).

4.1 Weighted Flow Assignment (WFA)

To illustrate the benefits of transfer-level scheduling, we imple-
mented a prototype that approximates weighted fair sharing by al-
lowing different transfers to use different numbers of TCP connec-
tions per host and relies on TCP’s AIMD fair sharing behavior. We
refer to this strategy as Weighted Flow Assignment (WFA). Note
that WFA is not a bulletproof solution for inter-transfer scheduling,
but rather a proof of concept for the Orchestra architecture. Our
main contribution is the architecture itself. In a full implementa-
tion, we believe that a cross-flow congestion control scheme such
as Seawall [38] would improve flexibility and robustness. Seawall
performs weighted max-min fair sharing between applications that
use an arbitrary number of TCP and UDP flows using a shim layer
on the end hosts and no changes to routers and switches.1

In WFA, there is a fixed number, F , of permissible TCP flows
per host (e.g., 100) that can be allocated among the transfers. Each
transfer i has a weight wi allocated by the scheduling policy in
the ITC. On each host, transfer i is allowed to use F d wi∑

wj
e TCP

connections, where the sum is over all the transfers using that host.

1In Orchestra, we can actually implement Seawall’s congestion
control scheme directly in the application instead of using a shim,
because we control the shuffle and broadcast implementations.

Suppose that two MapReduce jobs (A and B) sharing the nodes of a
cluster are both performing shuffles. If we allow each job to use 50
TCP connections per host, then they will get roughly equal shares
of the bandwidth of each link due to TCP’s AIMD behavior. On
the other hand, if we allowed job A to use 75 TCP flows per host
and job B to use 25 TCP flows per host, then job A would receive
a larger share of the available bandwidth.2

Our implementation also divides all data to be transferred into
chunks, so that a TC can shut down or launch new flows rapidly
when its share in a host changes. In addition, for simplicity, we give
transfers a 1.5× higher cap for sending flows than for receiving on
each host, so that a TC does not need to micromanage its flows to
have sender and receiver counts match up exactly.

We found that our flow count approach works naturally for both
broadcast and shuffle. In a BitTorrent-like broadcast scheme, nodes
already have multiple peers, so we simply control the number of
concurrent senders that each node can receive from. In shuffle
transfers, existing systems already open multiple connections per
receiver to balance the load across the senders, and we show in Sec-
tion 6 that having more connections only improves performance.

WFA has some limitations—for example, it does not share a link
used by different numbers of sender/receiver pairs from different
transfers in the correct ratio. However, it works well enough to il-
lustrate the benefits of inter-transfer scheduling. In particular, WFA
will work well on a full bisection bandwidth network, where the
outgoing links from the nodes are the only congestion points.

4.2 Fault Tolerance and Scalability

Because the ITC has fairly minimal responsibilities (notifying each
TC its share), it can be made both fault tolerant and scalable. The
ITC stores only soft state (the list of active transfers), so a hot
standby can quickly recover this state if it crashes (by having TCs
reconnect). Furthermore, existing transfers can continue while the
ITC is down. The number of active transfers is no more than several
hundred in our 3000-node Facebook trace, indicating that scalabil-
ity should not be a problem. In addition, a periodic update interval
of one second is sufficient for setting shares, because most transfers
last seconds to minutes.

5 Broadcast Transfers
Cluster applications often need to send large pieces of data to mul-
tiple machines. For example, in the collaborative filtering algo-
rithm in Section 2, broadcasting an O(100 MB) parameter vector
quickly became a scaling bottleneck. In addition, distributing files
to perform a fragment-replicate join3 in Hadoop [6], rolling out
software updates [8], and deploying VM images [7] are some other
use cases where the same data must be sent to a large number of
machines. In this section, we discuss current mechanisms for im-
plementing broadcast in datacenters and identify several of their
limitations (§5.1). We then present Cornet, a BitTorrent-like pro-
tocol designed specifically for datacenters that can outperform the
default Hadoop implementation by 4.5× (§5.2). Lastly, we present
a topology-aware variant of Cornet that leverages global control to
further improve performance by up to 2× (§5.3).

5.1 Existing Solutions

One of the most common broadcast solutions in existing cluster
computing frameworks involves writing the data to a shared file
system (e.g., HDFS [2], NFS) and reading it later from that cen-
tralized storage. In Hadoop, both Pig’s fragment-replicate join im-
2Modulo the dependence of TCP fairness on round-trip times.
3This is a join between a small table and a large table where the
small table is broadcast to all the map tasks.



plementation [6] and the DistributedCache API for deploying code
and data files with a job use this solution. This is likely done out of
a lack of other readily available options. Unfortunately, as the num-
ber of receivers grows, the centralized storage system can quickly
become a bottleneck, as we observed in Section 2.

To eliminate the centralized bottleneck, some systems use d-ary
distribution trees rooted at the source node. Data is divided into
blocks that are passed along the tree. As soon as a node finishes
receiving the complete data, it can become the root of a separate
tree. d is sometimes set to 1 to form a chain instead of a tree
(e.g., in LANTorrent [7] and in the protocol for writing blocks in
HDFS [2]). Unfortunately, tree and chain schemes suffer from two
limitations. First, in a tree with d > 1, the sending capacity of the
leaf nodes (which are at least half the nodes) is not utilized. Sec-
ond, a slow node or link will slow down its entire subtree, which is
problematic at large scales due to the prevalence of stragglers [15].
This effect is especially apparent in chains.

Unstructured data distribution mechanisms like BitTorrent [4],
traditionally used in the Internet, address these drawbacks by pro-
viding scalability, fault-tolerance, and high throughput in heteroge-
neous and dynamic networks. Recognizing these qualities, Twitter
has built Murder [8], a wrapper over the BitTornado [3] implemen-
tation of BitTorrent, to deploy software to its servers.

5.2 Cornet

Cornet is a BitTorrent-like protocol optimized for datacenters. In
particular, Cornet takes advantage of the high-speed and low-latency
connections in datacenter networks, the absence of selfish peers,
and the fact that there is no malicious data corruption. By leverag-
ing these properties, Cornet can outperform BitTorrent implemen-
tations for the Internet by up to 4.5×.

Cornet differs from BitTorrent in three main aspects:

• Unlike BitTorrent, which splits files into blocks and subdivides
blocks into small chunks with sizes of up to 256 KB, Cornet
only splits data into large blocks (4 MB by default).
• While in BitTorrent some peers (leechers) do not contribute to

the transfer and leave as soon as they finish the download, in
Cornet, each node contributes its full capacity over the full du-
ration of the transfer. Thus, Cornet does not include a tit-for-tat
scheme to incentivize nodes.
• Cornet does not employ expensive SHA1 operations on each

data block to ensure data integrity; instead, it performs a single
integrity check over the whole data.

Cornet also employs a cap on the number of simultaneous con-
nections to improve performance.4 When a peer is sending to the
maximum number of recipients, it puts further requests into a queue
until one of the sending slots becomes available. This ensures faster
service times for the small number of connected peers and allows
them to finish quickly to join the session as the latest sources for
the blocks they just received.

During broadcast, receivers explicitly request for specific blocks
from their counterparts. However, during the initial stage, the source
of a Cornet broadcast sends out at least one copy of each block in a
round-robin fashion before duplicating any block.

The TC for Cornet is similar to a BitTorrent tracker in that it
assigns a set of peers to each node. However, unlike BitTorrent,
each node requests new peers every second. This allows the TC to
adapt to the topology and optimize the transfer, as we discuss next.

4The default limits for the number of receive and send slots per
node are 8 and 12, respectively.

5.3 Topology-Aware Cornet

Many datacenters employ hierarchical network topologies with over-
subscription ratios as high as 5 [21, 27], where transfer times be-
tween two nodes on the same rack are significantly lower than be-
tween nodes on different racks. To take network topology into ac-
count, we have developed two extensions to Cornet.

CornetTopology In this case, we assume that the network topol-
ogy is known in advance, which is appropriate, for example, in
private datacenters. In CornetTopology, the TC has a configura-
tion database that specifies locality groups, e.g., which rack each
node is in. When a receiver requests for a new set of peers from
the TC, instead of choosing among all possible recipients (as in
vanilla Cornet), the TC gives priority to nodes on the same rack
as the receiver. Essentially, each rack forms its individual swarm
with minimal cross-rack communication. The results in Section 7.2
show that CornetTopology can reduce broadcast time by 50%.

CornetClustering In cloud environments, users have no control
over machine placements, and cloud providers do not disclose any
information regarding network topology. Even if the initial place-
ments were given out, VM migrations in the background could in-
validate this information. For these cases, we have developed Cor-
netClustering, whose goal is to infer and exploit the underlying net-
work topology. It starts off without any topology information like
the vanilla Cornet. Throughout the course of an application’s life-
time, as more and more broadcasts happen, the TC records block
transfer times between different pairs of receivers and uses a learn-
ing algorithm to infer the rack-level topology. Once we infer the
topology, we use the same mechanism as in CornetTopology. The
TC keeps recalculating the inference periodically to keep an up-
dated view of the network.

The inference procedure consists of four steps. In the first step,
we record node-to-node block transfer times. We use this data to
construct an n × n distance matrix D, where n is the number of
receiver nodes, and the entries are the median block transfer times
between a pair of nodes. In the second step, we infer the missing
entries in the distance matrix using a version of the nonnegative
matrix factorization procedure of Mao and Saul [33]. After com-
pleting the matrix D, we project the nodes onto a two-dimensional
space using non-metric multidimensional scaling [31]. Finally, we
cluster using a mixture of spherical Gaussians with fixed variance
σ2, and automatically select the number of partitions based on the
Bayesian information criterion score [18]. In operational use, one
can set σ to the typical intra-rack block transfer time (in our ex-
periments, we use σ = 200 ms). With enough training data, the
procedure usually infers the exact topology and provides a similar
speedup to CornetTopology, as we show in Section 7.2.

5.4 Size-Aware Broadcast Algorithm Selection

While Cornet achieves good performance for a variety of work-
loads and topologies, it does not always provide the best perfor-
mance. For example, in our experiments we found that for a small
number of receivers, a chain distribution topology usually performs
better. In such a case, the TC can decide whether to employ one al-
gorithm or another based on the number of receivers. In general, as
new broadcast algorithms are developed, the TC can pick the best
one to match a particular data size and topology. This ability illus-
trates the advantage of our architecture, which enables the TC to
make decisions based on global information.

6 Shuffle Transfers
During the shuffle phase of a MapReduce job, each reducer is as-
signed a range of the key space produced by the mappers and must



Figure 5: A shuffle transfer. The two receivers (at the top) need
to fetch separate pieces of data, depicted as boxes of different
colors, from each sender.

(a) Bottleneck at a
sender

(b) Bottleneck at a
receiver

(c) Bottleneck in
the network

Figure 6: Different bottlenecks dictating shuffle performance.

fetch some elements from every mapper. Consequently, shuffle
transfers are some of the most common transfer patterns in data-
centers. Similar constructs exist in other cluster computing frame-
works, like Dryad [28], Pregel [32], and Spark [44]. In general, a
shuffle consists of n receivers, r1, . . . , rn, andm senders, s1, . . . , sm,
where each receiver i needs to fetch a distinct dataset dij from
sender j. Figure 5 depicts a typical shuffle.

Because each piece of data goes from only one sender to one re-
ceiver, unlike in broadcasts, receivers cannot improve performance
by sharing data. The main concern during a shuffle is, therefore, to
keep bottleneck links fully utilized (§6.1). We find that the strat-
egy used by systems like Hadoop, where each receiver opens con-
nections to multiple random senders and rely on TCP fair sharing
among these flows, is close to optimal when data sizes are bal-
anced (§6.2). There are cases with unbalanced data sizes in which
this strategy can perform 1.5× worse than optimal. We propose
an optimal algorithm called Weighted Shuffle Scheduling (WSS)
to address these scenarios (§6.3). However, situations where WSS
helps seem to appear rarely in typical jobs; our main contribution is
thus to provide a thorough analysis of this common transfer pattern.

6.1 Bottlenecks and Optimality in Shuffle Transfers

Figure 6 shows three situations where a bottleneck limits shuffle
performance and scheduling can have little impact on the overall
completion time. In Figure 6(a), one of the senders has more data to
send than others (e.g., a map produced more output in a MapReduce
job), so this node’s link to the network is the bottleneck. Even
with the random scheduling scheme in current systems, this link is
likely to stay fully utilized throughout the transfer, and because a
fixed amount of data must flow along this link to finish the shuffle,
the completion time of the shuffle will be the same regardless of the
scheduling of other flows. Figure 6(b) shows an analogous situation
where a receiver is the bottleneck. Finally, in Figure 6(c), there is
a bottleneck in the network—for example, the cluster uses a tree
topology with less than full bisection bandwidth—and again the
order of data fetches will not affect the overall completion time as
long as the contended links are kept fully utilized.

These examples suggest a simple optimality criterion for shuffle
scheduling: an optimal shuffle schedule keeps at least one link fully
utilized throughout the transfer. This condition is clearly necessary,
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Figure 7: Transfer times for a shuffle with 30 senders and 1 to
30 receivers, as a function of the number of concurrent flows
(to random senders) per receiver.

because if there was a time period during which a shuffle schedule
kept all links less than 100% utilized, the completion time could
be lowered by slightly increasing the rate of all flows during that
period. The condition is also sufficient as long as unipath routing is
used—that is, the data from each sender to each receiver can only
flow along one path. In this case, there is a fixed amount of data,
DL, that must flow along each link L, so a lower bound on the
transfer time is maxL{DL/BL}, where BL is the bandwidth of
link L. If any link is fully utilized throughout the transfer, then this
lower bound has been reached, and the schedule is optimal. Note
that under multipath routing, multiple links may need to be fully
utilized for an optimal schedule.

6.2 Load Balancing in Current Implementations
The optimality observation indicates that the links of both senders
and receivers should be kept as highly utilized as possible. In-
deed, if the amount of data per node is balanced, which is often
the case in large MapReduce jobs simply because many tasks have
run on every node, then all of the nodes’ outgoing links can poten-
tially become bottlenecks. The biggest risk with the randomized
data fetching scheme in current systems is that some senders get
too few connections to them, underutilizing their links.5 Our main
finding is that having multiple connections per receiver drastically
reduces this risk and yields near-optimal shuffle times. In particu-
lar, Hadoop’s setting of 5 connections per receiver seems to work
well, although more connections can improve performance slightly.

We conducted an experiment with 30 senders and 1 to 30 re-
ceivers on Amazon EC2, using extra large nodes. Each receiver
fetched 1 GB of data in total, balanced across the senders. We
varied the number of parallel connections opened by each receiver
from 1 to 30. We plot the average transfer times for five runs in
Figure 7, with max/min error bars.

We note two trends in the data. First, using a single fetch con-
nection per receiver leads to poor performance, but transfer times
improve quickly with even two connections. Second, with enough
concurrent connections, transfer times approach 8 seconds asymp-
totically, which is a lower bound on the time we can expect for
nodes with 1 Gbps links. Indeed, with 30 connections per receiver,
the overall transfer rate per receiver was 790 Mbps for 30 receivers,
844 Mbps for 10 receivers, and 866 Mbps for 1 receiver, while the
best transfer rate we got between any two nodes in our cluster was
929 Mbps. This indicates that randomized selection of senders is
within 15% of optimal, and may be even closer because there may
5Systems like Hadoop cap the number of receiving connections per
reduce task for pragmatic reasons, such as limiting the number of
threads in the application. Having fewer connections per receiver
can also mitigate incast [41].
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Figure 8: A shuffle configuration where Weighted Shuffle
Scheduling outperforms fair sharing among the flows.

be other traffic on EC2 interfering with our job, or a topology with
less than full bisection bandwidth.

The improvement in transfer times with more connections hap-
pens for two reasons. First, with only one connection per receiver,
collisions (when two receivers pick the same sender) can only lower
performance, because some senders will be idle. In contrast, with
even 2 threads, a collision that slows down some flows may speed
up others (because some senders are now sending to only one re-
ceiver). Second, with more connections per receiver, the standard
deviation of the number of flows to each sender decreases relative
to its mean, reducing the effect of imbalances.

6.3 Weighted Shuffle Scheduling (WSS)

We now consider how to optimally schedule a shuffle on a given
network topology, where receiver ri needs to fetch dij units of data
from sender sj . We aim to minimize the completion time of the
shuffle, i.e., the time when the last receiver finishes. For simplicity,
we initially assume that the data from a sender/receiver pair can
only flow along one path. Under this unipath assumption, the “fully
utilized link" condition in Section 6.1 is sufficient for optimality.

We propose a simple algorithm called Weighted Shuffle Schedul-
ing (WSS) that achieves this condition: allocate rates to each flow
using weighted fair sharing, such that the weight of the flow be-
tween receiver ri and sender sj is proportional to dij . To see
why this works, consider first a simpler scheduling scheme using
progressive filling, where the flow from ri to sj is given a rate
tij = λdij for the largest feasible value of λ. Under this scheme,
all the pairwise transfers finish at the same time (because transfer
rates are proportional to data sizes for each transfer), and further-
more, at least one link is fully utilized (because we use the largest
feasible λ). Therefore, the schedule is optimal. Now, the WSS
schedule based on max-min fair sharing with these same weights
must finish at least as fast as this progressive filling schedule (be-
cause each flow’s rate is at least as high as under progressive filling,
but may also be higher), so it must also be optimal.

We found that WSS can outperform current shuffle implementa-
tions by up to 1.5×. In current systems, the flows between senders
and receivers experience unweighted fair sharing due to TCP. This
can be suboptimal when the flows must transfer different amounts
of data. For example, consider the shuffle in Figure 8, where four
senders have one unit of data for only one receiver and s3 has two
units for both. Suppose that there is a full bisection bandwidth net-
work where each link carries one data unit per second. Under fair
sharing, each receiver starts fetching data at 1/3 units/second from
the three senders it needs data from. After 3 seconds, the receivers
exhaust the data on s1, s2, s4 and s5, and there is one unit of data
left for each receiver on s3. At this point, s3 becomes a bottleneck,
and the receivers take 2 more seconds to transfer the data off. The
transfer thus finishes in 5s. In contrast, with WSS, the receivers
would fetch data at a rate of 1/4 units/second from s1, s2, s4 and
s5 and 1/2 units/second from s3, finishing in 4s (25% faster).

This discrepancy can be increased in variants of this topology.

For example, with 100 senders for only r1, 100 senders for only
r2, and 100 data units for each receiver on a shared sender, WSS
finishes 1.495× faster than fair sharing. Nevertheless, we found
that configurations where WSS outperforms fair sharing are rare
in practice. If the amounts of data to be transferred between each
sender and each reducer are roughly balanced, then WSS reduces
to fair sharing. In addition, if there is a single bottleneck sender or
bottleneck receiver, then fair sharing will generally keep this node’s
link fully utilized, resulting in an optimal schedule.

WSS can also be extended to settings where multipath trans-
missions are allowed. In this case, we must choose transfer rates
tij between receiver i and sender j such that mini,j{tij/dij} is
maximized. This is equivalent to the Maximum Concurrent Multi-
Commodity Flow problem [39].

Implementing WSS Note that WSS requires global knowledge of
the amounts of data to transfer in order to set the weight of each
flow. WSS can be implemented naturally within Orchestra by hav-
ing the TC pass these weights to the nodes. In our prototype, the
receivers open different numbers of TCP flows to each sender to
match the assigned weights. We also tried a variant of where the TC
adjusts the weights of each sender/receiver pair periodically based
on the amount of data left (in case there is variability in network
performance), but found that it provided little gain.

7 Evaluation
We have evaluated Cornet, WSS, and inter-transfer scheduling in
the context of Spark and ran experiments in two environments:
Amazon’s Elastic Compute Cloud (EC2) [1] and DETERlab [5].
On EC2, we used extra-large high-memory instances, which ap-
pear to occupy whole physical nodes and had enough memory to
perform the experiments without involving disk behavior (except
for HDFS-based mechanisms). Although topology information is
not provided by EC2, our tests revealed that nodes were able to
achieve 929 Mbps in each direction and 790 Mbps during 30 nodes
all-to-all communication (Figure 7), suggesting a near-full bisec-
tion bandwidth network. The DETERlab cluster spanned 3 racks
and was used as ground-truth to verify the correctness of Cornet’s
clustering algorithm. Our experiments show the following:
• Cornet performs 4.5× better than the default Hadoop imple-

mentation of broadcast and BitTornado (§7.1), and with topol-
ogy awareness in its TC, Cornet can provide further 2× im-
provement (§7.2).
• WSS can improve shuffle speeds by 29% (§7.3).
• Inter-transfer scheduling can speed up high priority jobs by

1.7×, and a simple FIFO policy can improve average transfer
response times by 31% for equal sized transfers (§7.4).
• Orchestra reduced communication costs in the logistic regres-

sion and collaborative filtering applications in Section 2 by up
to 3.6× and sped up jobs by up to 1.9× (§7.5).

Since data transfers act as synchronization steps in most iterative
and data-intensive frameworks, capturing the behavior of the slow-
est receiver is the most important metric for comparing alternatives.
We therefore use the completion time of the entire transfer as our
main performance metric.

7.1 Comparison of Broadcast Mechanisms
Figure 9 shows the average completion times of different broad-
cast mechanisms (Table 2) to transfer 100 MB and 1 GB of data
to multiple receivers from a single source. Error bars represent the
minimum and the maximum observed values across five runs.

We see that the overheads of choking/unchoking, aggressive hash-
ing, and allowing receivers to leave as soon as they are done, fail



Table 2: Broadcast mechanisms compared.
Algorithm Description
HDFS (R=3) Sender creates 3 replicas of the data in HDFS

and receivers read from them
HDFS (R=10) Same as before but there are 10 replicas
Chain A chain of receivers rooted at the sender
Tree (D=2) Binary tree with sender as the root
BitTornado BitTorrent implementation for the Internet
Cornet Approach proposed in Section 5
Theoretical
Lower Bound

Minimum broadcast time in the EC2 network
(measured to have 1.5 Gbps pairwise bidirec-
tional bandwidth) using pipelined binomial
tree distribution mechanism [19]
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Figure 9: Completion times of different broadcast mechanisms
for varying data sizes.

to take full advantage of the faster network in a datacenter envi-
ronment and made BitTornado6 as much as 4.5× slower than the
streamlined Cornet implementation.

Cornet scaled well up to 100 receivers for a wide range of data
sizes in our experiments. For example, Cornet took as low as 15.4
seconds to complete broadcasting 1 GB data to 100 receivers and
remained within 33% of the theoretical lower bound. If there were
too few participants or the amount of data was small, Cornet could
not fully utilize the available bandwidth. However, as the num-
ber of receivers increased, Cornet completion times increased in a
much slower manner than its alternatives, which convinces us that
Cornet can scale well beyond 100 receivers.

We found structured mechanisms to work well only for smaller
scale. Any delay introduced by a straggling internal node of a tree

6We used Murder [8] with a modification that forced every peer to
stay in the swarm until all of them had finished.
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Figure 10: CDF of completion times of individual receivers
while transferring 1 GB to 100 receivers using different broad-
cast mechanisms.

or a chain propagated and got magnified throughout the structure.
Indeed, upon inspection, we found that the non-monotonicity of
chain and tree completion times were due to this very reason in
some experimental runs (e.g., completion time for 25 receivers us-
ing a tree structure is larger than that for 50 receivers in 9(b)).

As expected, HDFS-based mechanisms performed well only for
small amounts of data. While increasing the number of replicas
helps, there is a trade-off between time spent in creating replicas
vs. time all the receivers would spend in reading from those repli-
cas. In our experiments, HDFS with 3 replicas performed better
than HDFS with 10 replicas when the total number of receivers
was less than 50. Overall, HDFS with 3 and 10 replicas were up to
5× and 4.5× slower than Cornet, respectively.

A Closer Look at Per-node Completion Times. We present the
CDFs of completion times of individual receivers for each of the
compared broadcast mechanisms in Figure 10.

Notice that almost all the receivers in Cornet finished simultane-
ously. The slight bends at the two endpoints illustrate the receivers
(< 10%) that finished earlier or slower than the average receiver.
The CDF representing BitTornado reception times is similar to that
of Cornet except that the variation in individual completion times is
significantly higher and the average receiver is almost 4× slower.

Next, the steps in the CDFs of chain and tree highlight how strag-
glers slow down all their children in the distribution structure. Each
horizontal segment indicates a node that was slow in finishing re-
ception and the subsequent vertical segment indicates the receivers
that experienced head-of-line blocking due to a slow ancestor.

Finally, receivers in HDFS-based transfer mechanism with 10
replicas start finishing slower than those with 3 replicas due to
higher replication overhead. However, in the long run, receivers
using 10 replicas finish faster because of less reading contention.

The Case for a TC. As evident from Figure 9, the transfer mecha-
nisms have specific operating regimes. In particular, chain and tree
based approaches are faster than Cornet for small numbers of nodes
and small data sizes, likely because the block sizes and polling in-
tervals in Cornet prevent it from utilizing all the nodes’ bandwidth
right away. We confirmed this by running another set of experi-
ments with 10 MB (not shown due to lack of space), where tree and
chain outperformed the other approaches. In an Orchestra imple-
mentation, a TC can pick the best transfer mechanism for a given
data size and number of nodes using its global knowledge.

7.2 Topology-aware Cornet

Next, we explore an extension of Cornet that exploits network topol-
ogy information. We hypothesized that if there is a significant
difference between block transfer times within a rack vs. between
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Figure 11: Cornet completion times when the rack topology is
unknown, given, and inferred using clustering.
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Figure 12: Two-dimensional, non-metric projection of receiver
nodes based on a distance matrix of node-to-node block trans-
fer times. The ellipses represent the inferred clusters. The tri-
angles, squares and circles in (a) represent Rack A, B and C
respectively in the DETERlab testbed.

racks, then a topology-aware version of Cornet, which reduces cross-
rack communication, will experience improved transfer times. To
answer this question, we conducted an experiment on a 31 node
DETERlab testbed (1 TC and 30 receivers). The testbed topology
was as follows: Rack A was connected to Rack B and Rack B to
Rack C. Each rack had 10 receiver nodes. The TC was in Rack B.

We ran the experiment with three TC configurations. The first
was the default topology-oblivious Cornet that allowed any receiver
to randomly contact any other receiver. The second was Cornet-
Topology, where the TC partitioned the receivers according to Racks
A, B, and C, and disallowed communication across partitions. The
last one was CornetClustering, where the TC dynamically inferred
the partitioning of the nodes based on the node-to-node block trans-
fer times from 10 previous training runs.

The results in Figure 11 show the average completion times to
transfer 100 MB and 200 MB of data to all 30 receivers over 10
runs with min-max error bars. Given the topology information
(CornetTopology), the broadcasts’ completion time decreased by
50% compared to vanilla Cornet for the 200 MB transfer. In 9 out
of 10 runs for the 200 MB transfer, the TC inferred the exact topol-
ogy (see Figure 12(a) for a typical partitioning). Only in one run
did the TC infer 5 partitions (splitting two of the racks in half),
though this only resulted in a 2.5 second slowdown compared to
inferring the exact topology. With the ten runs averaged together,
CornetClustering’s reduction in completion time was 47%.

We also evaluated Cornet and CornetClustering on a 30 node
EC2 cluster. Evaluating CornetTopology was not possible because
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Figure 13: Transfer topologies used in the weighted shuffle ex-
periment. The arrows show the number of units of data sent
from each mapper to each reducer.

Table 3: Completion times in seconds for WSS compared to
a standard shuffle implementation on the three topologies in
Fig. 13. Standard deviations are in parentheses.

Topology Standard
Shuffle

WSS Speedup Theoretical
Speedup

A 83.3 (1.1) 70.6 (1.8) 18% 25%
B 131 (1.8) 105 (0.5) 24% 33%
C 183 (2.6) 142 (0.7) 29% 38%

we could not obtain the ground-truth topology for EC2. The per-
formance of Cornet using inferred topology did not improve over
Cornet on EC2 — the algorithm found one cluster, likely due to
EC2’s high bisection bandwidth (Section 6.2). The projection in
Figure 12(b) showed that with the exception of a few outliers (due
to congestion), all the nodes appeared to be relatively close to one
another and could not be partitioned into well-separated groups.

Overall, the results on the DETERlab demonstrate that when
there is a sizable gap between intra-rack and inter-rack transfer
times, knowing the actual node topology or inferring it can sig-
nificantly improve broadcast times.

7.3 Weighted Shuffle Scheduling (WSS)

In this experiment, we evaluated the optimal Weighted Shuffle Schedul-
ing (WSS) algorithm discussed in Section 6.3 using three topolo-
gies on Amazon EC2. Figure 13 illustrates these topologies, with
arrows showing the number of units of data sent between each pair
of nodes (one unit corresponded to 2 GB in our tests). Topology A
is the example discussed in Section 6.3, where two receivers fetch
differing amounts of data from five senders. Topologies B and C
are extensions of topology A to seven and nine map tasks.

We ran each scenario under both a standard implementation of
shuffle (where each reducer opens one TCP connection to each
mapper) and under WSS. We implemented WSS by having each re-
ceiver open a different number of TCP connections to each sender,
proportional to the amount of data it had to fetch. This allowed us
to leverage the natural fair sharing between TCP flows to achieve
the desired weights without modifying routers and switches.

We present average results from five runs, as well as standard
deviations, in Table 3. In all cases, weighted shuffle scheduling
performs better than a standard implementation of shuffle, by 18%,
24% and 29% for topologies A, B and C respectively. In addi-
tion, we present the theoretical speedup predicted for each topol-
ogy, which would be achieved in a full bisection bandwidth net-
work with a perfect implementation of fair sharing between flows.
The measured results are similar to those predicted but somewhat
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(b) Priority Scheduling with an Orchestra ITC

Figure 14: Percentage of active flows in the cluster for four dif-
ferent shuffle transfers in two priority classes with and without
inter-transfer scheduling.

lower because fair sharing between TCP flows is not perfect (e.g., if
a node starts 2 GB transfers to several nodes at the same time, these
transfers can finish 10-15 seconds apart).

7.4 Scheduling Across Transfers

Cross-Transfer Priority Scheduling In this experiment, we eval-
uated the average transfer completion times of three different smaller
high priority jobs while a low priority larger job was running in the
background in a 30-node cluster. The ITC was configured to put
an upper limit on the number of flows created by the low priority
transfer when at least one high priority job was running. Within the
same priority class, the ITC used FIFO to schedule jobs. The larger
transfer was shuffling 2 GB data per mapper, while the smaller ones
were transferring 256 MB from each mapper. Both the experiments
(with or without ITC) in Figure 14 follow similar timelines: the low
priority transfer was active during the whole experiment. The first
high priority transfer started after at least 10 seconds. After it fin-
ished, two more high priority transfers started one after another.

In the absence of any inter-transfer scheduler, the smaller high
priority transfers had to compete with the larger low priority one
throughout their durations. Eventually, each of the high priority
transfers took 14.1 seconds to complete on average, and the larger
low priority transfer took 45.6 seconds to finish. When using Or-
chestra for inter-transfer priority scheduling, the low priority trans-
fer could create only a limited number of flows; consequently, the
average completion time for the high priority transfers decreased
43% to 8.1 seconds. The completion time for the background trans-
fer increased slightly to 48.7 seconds.

Cross-Transfer FIFO Scheduling In this experiment, we evalu-
ated the average transfer completion times of four concurrent shuf-
fle transfers that started at the same time in a 30 node cluster. We
implemented a strict FIFO policy in the ITC as well as FIFO+,
which enforces a FIFO order but gives a small share of the network
(3% each) to other transfers as well. The intuition behind FIFO+ is
to keep mappers busy as much as possible – if some reducers of the
first transfer finish receiving from a particular mapper, it can send
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Figure 15: Average completion times of four shuffles with no
transfer-level scheduling, FIFO, and FIFO+ (which gives small
shares of the network to the transfers later in the FIFO queue).
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Figure 16: Per-iteration completion times for the logistic re-
gression application before and after using Orchestra.

data to reducers from other transfers. In absence of the ITC, all the
flows get their shares of the network as enforced by TCP fair shar-
ing. During each shuffle transfer, each of the 30 reducers received
a total of 1 GB data from 30 mappers.

We present the average results from five runs in Figure 15 with
max-min error bars. Figure 15(a) shows the average transfer com-
pletion times for four transfers. FIFO achieved the best average
completion time of 34.6s and was 1.45× faster than TCP fair shar-
ing. The theoretical maximum7 speedup in this case is 1.6×.

The stacked bars in Figure 15(b) show how much longer Job i
took to finish its transfer once Job (i−1)’s had finished. We observe
that the finishing time of the slowest transfer remained the same in
both FIFO ordering and TCP fair sharing. However, with FIFO,
each transfer actively used the full network for equal amounts of
time to complete its transfer and improved the average.

By allowing the latter transfers to have some share of the net-
work, FIFO+ increased the completion time of the first transfer.
Meanwhile, it decreased the completion times of all the other trans-
fers in comparison to FIFO. The final outcome is a higher average
completion time but lower total completion time than strict FIFO.

7.5 End-to-End Results on Full Applications

We revisit the motivating applications from Section 2 to examine
the improvements in end-to-end run times after adopting the new
broadcast and shuffling algorithms. In these experiments, we com-
pare the applications before and after adopting Orchestra. In par-
ticular, “before” entails running with a HDFS-based broadcast im-
plementation (with the default 3× replication) and a shuffle with
5 threads per receiver (the default in Hadoop). Meanwhile, “after”
entails Cornet and shuffle with 30 threads per receiver.

Figure 16 illustrates the breakdown of time spent in different ac-
tivities in each iteration of Monarch in a 30 node EC2 cluster. We

7For n concurrent transfers, theoretical maximum speedup of the
average completion time using FIFO over fair sharing is 2n

n+1
×.
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Figure 17: Per-iteration completion times when scaling the col-
laborative filtering application using Orchestra.

see that its communication overhead in each iteration decreased
from 42% of the run time to 28%, and iterations finished 22% faster
overall. There is a 2.3× speedup in broadcast and a 1.23× speedup
in shuffle. The improvements for both broadcast and shuffle are in
line with the findings in Sections 7.1 and 6.2.

Figure 17(b) presents the per-iteration completion times for the
collaborative filtering job while scaling it up to 90 nodes using
Cornet. Unlike the HDFS-based solution (Figure 17(a)), broad-
cast time increased from 13.4 to only 15.3 seconds using Cornet.
As a result, the job could be scaled up to 90 nodes with 1.9× im-
provement in iteration times. The average time spent in broadcast
decreased by 3.6×, from 55.8s to 15.3s, for 90 nodes. These results
are in line with Section 7.1 given 385 MB broadcast per iteration.

8 Related Work
Full Bisection Bandwidth Datacenter Networks. A large num-
ber of new datacenter network architectures have been proposed
in recent years [9, 21, 23, 24, 35] to achieve full bisection band-
width and improved network performance. However, full bisection
bandwidth does not mean infinite bisection bandwidth. Orchestra is
still valuable in full bisection bandwidth networks to enable inter-
transfer prioritization and scheduling, to balance shuffle transfer
rates using WSS, and to speed up broadcasts using Cornet. For ex-
ample, the experiments in Section 7 show that Orchestra improves
job performance even on EC2’s network, which appears to have
near-full bisection bandwidth.

Centralized Network Controllers. Centralized controllers for rout-
ing, access control, and load balancing in the network had been pro-
posed by the 4D architecture [22] and projects like Tesseract [42],
Ethane [12], PLayer [30], and Hedera [10]. While PLayer and
Ethane focus on access control, our primary objective is application-
level performance improvement. The scope of our work is lim-
ited to shared clusters and datacenters, whereas 4D, Tesseract, and
Ethane are designed for wide-area and enterprise networks. How-
ever, unlike Hedera or any of the existing proposals for centralized
control planes, we work at the granularity of transfers to optimize
overall application performance, and not at the packet or flow level.

Performance Isolation in Datacenter Networks. Seawall [38]
performs weighted fair sharing among cloud tenants running ar-
bitrary numbers of TCP and UDP flows through a shim layer at the
hypervisor using a cross-flow AIMD scheme. It can be leveraged
by Orchestra to enforce inter-transfer scheduling policies. How-
ever, Seawall itself is not aware of transfer-level semantics.

Scheduling and Management in Data-intensive Applications.
A plethora of schemes exist to schedule and manage tasks of data-
intensive applications. Examples include fair schedulers for Hadoop
[43] and Dryad [29], and Mantri [11] for outlier detection. The core
tenet of existing work in this area is achieving data locality to avoid
network transfers as much as possible. Mesos [26] provides a thin
management layer to allow diverse cluster computing frameworks
to efficiently share computation and storage resources, but leaves
sharing of network resources to underlying transport mechanisms.
Orchestra complements these systems by enabling the implemen-
tation of network sharing policies across applications.

One-to-many Data Transfer Mechanisms. Broadcast, multicast,
and diverse group communication mechanisms in application and
lower layers of the network stack have been studied extensively in
the literature. Diot et al. provide a comprehensive survey and tax-
onomy of relevant protocols and mechanisms of distributed multi-
point communication in [16]. Cornet is designed for transferring
large amounts of data in high-speed datacenter networks.

SplitStream [13] improves network utilization and tackles the
bottleneck problem observed in d-ary trees by creating multiple
distribution trees with disjoint leave sets. However, it is designed
primarily for multimedia streaming over the Internet, where frames
can be dropped. Maintaining its structural constraints in presence
of failure is complicated as well.

BitTorrent [4] is wildly popular for file-sharing. BitTorrent and
similar peer-to-peer mechanisms are in use to distribute planet-
scale software updates [20]. However, Murder [8] is the only known
BitTorrent deployment inside a datacenter. Antfarm [36] uses a
central coordinator across multiple swarms to optimize content dis-
tribution over the Internet. Cornet is a BitTorrent-like system that
is optimized for datacenters and uses adaptive clustering algorithm
in the TC to infer and take advantage of network topologies.

Incast or Many-to-one Transfers. TCP incast collapse is typi-
cally observed in barrier-synchronized request workloads where a
receiver synchronously receives small amounts of data from a large
number of senders [41]. However, incast collapse has been re-
ported in MapReduce-like data-intensive workloads as well [14].
The latter case boils down to a special case of shuffle with only one
reducer. With Orchestra, the TC can effectively limit how many
senders are simultaneously sending and at what rate to alleviate
this problem for data-intensive workloads.

Inferring Topology from Node-to-Node Latencies. Inferring node
topology in CornetClustering (Section 5.3) is similar in spirit to in-
ferring network coordinates [17]. These methods could act as a
substitute for the non-metric multidimensional scaling step in the
CornetClustering procedure.

9 Conclusion
We have argued that multi-node transfer operations have a signif-
icant impact on the performance of data-intensive cluster applica-
tions and presented an architecture called Orchestra that enables
global control both across and within transfers to optimize per-
formance. We focused on two common transfer patterns: broad-
casts and shuffles. For broadcasts, we proposed a topology-aware
BitTorrent-like scheme called Cornet that outperforms the status
quo in Hadoop by 4.5×. For shuffles, we proposed an optimal al-
gorithm called Weighted Shuffle Scheduling (WSS). Overall, our
schemes can increase application performance by up to 1.9×. In
addition, we demonstrated that inter-transfer scheduling can im-
prove the performance of high-priority transfers by 1.7× and re-
duce average transfer times by 31%. Orchestra can be implemented



at the application level and does not require hardware changes to
run in current datacenters and in the cloud.
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