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ABSTRACT
We report on our experience scaling up the Mobile Millen-
nium traffic information system using cloud computing and
the Spark cluster computing framework. Mobile Millennium
uses machine learning to infer traffic conditions for large
metropolitan areas from crowdsourced data, and Spark was
specifically designed to support such applications. Many
studies of cloud computing frameworks have demonstrated
scalability and performance improvements for simple ma-
chine learning algorithms. Our experience implementing a
real-world machine learning-based application corroborates
such benefits, but we also encountered several challenges
that have not been widely reported. These include: manag-
ing large parameter vectors, using memory efficiently, and
integrating with the application’s existing storage infrastruc-
ture. This paper describes these challenges and the changes
they required in both the Spark framework and the Mobile
Millennium software. While we focus on a system for traffic
estimation, we believe that the lessons learned are applicable
to other machine learning-based applications.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming .

General Terms
Algorithms, Performance, Experimentation.

1. INTRODUCTION
Cloud computing promises to democratize parallel data

processing by making large server farms available to orga-
nizations that lack such resources in-house. However, scal-
ing real-world applications raises issues that are often unex-
plored by cloud researchers. To this end, we report our expe-
rience scaling one such application: the Mobile Millennium
traffic information system developed at UC Berkeley [11].
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Mobile Millennium is a traffic estimation and prediction
system that infers traffic conditions using GPS measure-
ments from drivers running cell phone applications, taxicabs,
and other mobile and static data sources. The system was
initially deployed in the San Francisco Bay area and later
extended to other locations such as Sacramento and Stock-
holm. For San Francisco alone, the system processes about
500,000 data points per day from taxicabs, in addition to
data from various other sources.

Although we initially developed Mobile Millennium as a
set of single-node services, we recently decided to parallelize
the costlier stages of the system using the cloud to achieve
three key benefits: timelier predictions, scalability to larger
road networks, and the ability to use more accurate, but
more computationally expensive traffic models. This paper
discusses lessons learned parallelizing one of the main algo-
rithms in the system: an expectation maximization (EM)
algorithm that estimates traffic conditions on city roads.

We believe that our work will be of interest to cloud re-
searchers for several reasons. First, our EM algorithm is
representative of a large class of iterative machine learning
algorithms, including clustering, classification, and regres-
sion methods, for which popular cloud programming frame-
works like Hadoop and Dryad are often inefficient [7, 10, 15].
Our lessons are likely applicable to these applications too.

Second, although researchers have developed several spe-
cialized programming models for iterative algorithms [10, 5,
28, 15, 21], many of these systems have only been evaluated
on simple applications. We found that our more complex
real-world application posed several challenges that have
not been explored extensively, such as disseminating large
parameter vectors and utilizing memory efficiently.

Finally, our application had to function as a component of
a large existing system, leading to additional challenges in-
tegrating cloud and non-cloud infrastructure. For example,
one such bottleneck was storage: Mobile Millennium uses a
PostgreSQL server for common data, which performed sur-
prisingly poorly under the bursty request pattern generated
by multiple worker nodes running in parallel.

We implemented the traffic estimation algorithm in Spark,
a framework for in-memory cluster computing that was de-
signed specifically to support iterative algorithms [28]. The
lessons from this real-world application have provided valu-
able feedback into Spark’s design, and as a result we derived
optimizations that sped up the application by 2–3× each.

Ultimately, we were able to achieve the scalability goals
that brought us to the cloud: our system scales to 160 cores



Figure 1: Schematic architecture of the Mobile Mil-
lennium system.

and can process data with a more accurate traffic model than
the one we initially used, at a rate faster than real-time.

From a traffic estimation perspective, one of the major
advantages of the work we report on here is the distribution
of computation on cloud platforms in an efficient manner,
without micromanagement of the computation by the user.
Because typical traffic engineering systems require the par-
titioning of computational resources into clusters that usu-
ally reflect geographic areas and/or levels of data activity in
specific segments of the transportation network, engineers
designing computational infrastructure to support real-time
traffic inference have to manually allocate nodes to tasks a
priori. The proposed framework using Spark enables the au-
tomated allocation of these nodes at scale, with only minor
parametrization on the part of the user, a capability that
has high potential impact in the field of traffic monitoring.

We start with an overview of the Mobile Millennium sys-
tem (Section 2) and the traffic estimation algorithm (Section
3). We then introduce the Spark framework and explain how
we used it to parallelize the algorithm (Section 4). Next,
we discuss the more surprising bottlenecks we found in our
cloud implementation and the resulting optimizations (Sec-
tion 5). We evaluate our implementation and these opti-
mizations in Section 6. We survey related work in Section 7
and conclude in Section 8.

2. THE MOBILE MILLENNIUM SYSTEM
Traffic congestion affects nearly everyone in the world due

to the environmental damage and transportation delays it
causes. The 2007 Urban Mobility Report [23] states that
traffic congestion causes 4.2 billion hours of extra travel in
the United States every year, which accounts for 2.9 billion
extra gallons of fuel and an additional cost of $78 billion.
Providing drivers with accurate traffic information reduces
the stress associated with congestion and allows drivers to
make informed decisions, which generally increases the effi-
ciency of the entire road network [4].

Modeling highway traffic conditions has been well-studied
by the transportation community with work dating back to
the pioneering work of Lighthill, Whitham and Richards [14].
Recently, researchers demonstrated that estimating highway

Figure 2: An example output of traffic estimates on
the Mobile Millennium visualizer

traffic conditions can be done using only GPS probe vehicle
data [25]. Arterial roads, which are major urban city streets
that connect population centers within and between cities,
provide additional challenges for traffic estimation. Recent
studies focusing on estimating real-time arterial traffic con-
ditions have investigated traffic flow reconstruction for single
intersections using dedicated traffic sensors. Dedicated traf-
fic sensors are expensive to install, maintain and operate,
which limits the number of sensors that governmental agen-
cies can deploy on the road network. The lack of sensor
coverage across the arterial network thus motivates the use
of GPS probe vehicle data for estimating traffic conditions.

The work we present represents one component of the UC
Berkeley Mobile Millennium project [11]. One of the goals
of the project is to assess the capability of GPS-enabled mo-
bile phones to provide traffic data that can be used to esti-
mate real-time conditions, forecast future conditions, and
provide optimal routing in a network with stochastically
varying traffic conditions. The project has resulted in a
real-time traffic estimation system that combines dedicated
sensor data with GPS data from probe vehicles. The Mo-
bile Millennium project comprises more than eight million
lines of Java code and is supported by a professional team of
engineers. The software has been deployed on various archi-
tectures by industry and academic partners who are part of
this effort [11]. As such, this work follows standard practices
from industrial development and represents a large effort.

The Mobile Millennium system incorporates a complete
pipeline for receiving probe data, filtering it, distributing
it to estimation engines and displaying it, all in in real-
time, as pictured in Figure 1. This software stack, written
in Java, evaluates probabilistic distribution of travel times
over the road links, and uses as input the sparse, noisy GPS
measurements from probe vehicles. A first proof of con-
cept of this stack was written in Python [12], and an early
cloud prototype was developed using the Hadoop interface
to Python. This prototype was then rewritten in Scala (a
high-level language for the Java VM) to accommodate the
Spark programming interface and to leverage the infrastruc-
ture of the Mobile Millennium system (which is in Java).

The most computation-intensive parts of this pipeline have
all been ported to a cloud environment. We briefly describe
the operations of the pipeline, pictured in figure 3.

• We map each point of raw (and possibly noisy) GPS
data to a collection of nearby candidate projections on
the road network (Fig. 3(a)).
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Figure 3: Arterial traffic estimation process.

• For each vehicle, we reconstruct the most likely trajec-
tory using a Conditional Random Field [13] (Fig. 3(b)).

• Each segment of the trajectory between two GPS points
is referred as an observation (Fig. 3(c)). An observation
consists in a start time, an end time and a route on the
road network. This route may span multiple road links,
and starts and ends at some offset within some links.

• The observations are grouped into time intervals and sent
to a traffic estimation engine, which runs the learning
algorithm described in the next section and returns dis-
tributions of travel times for each link (Fig. 3(d)).

• The travel time distributions are then stored and broad-
cast to clients and to a web interface shown in Figure 2.

It is important to point out that MM is intended to work
at the scale of large metropolitan areas. The road network
considered in this work is a real road network (a large por-
tion of San Francisco downtown and of the greater Bay Area,
comprising 25000 road links) and the data is collected from
the field (as opposed to simulated). A consequence of this
setting is the scalability requirement for the traffic algo-
rithms we employ. Thus, from the outset, our research has
focused on designing algorithms that could work for large ur-
ban areas with hundreds of thousands of links and millions
of observations.

3. TRAFFIC ESTIMATION ALGORITHM
The goal of the traffic estimation algorithm is to infer how

congested the links are in an arterial road network, given
periodic GPS readings from vehicles moving through the
network. We model the network as a graph (V,E), where
V are the vertices (road intersections) and E are the links
(streets). For each link e ∈ E, where n is the total number of

Y1 Y2 Y3 · · · Ym

S1 S2 S3 · · · Sm

X1 · · · Xn

θ1 · · · θn

database Broadcast road network and
load observations

Draw samples for each obser-
vations and weigh them by
their likelihood (E step)

Collect samples by link
(Shuffle step)

Compute maximum likeli-
hood estimate of parameters
based on samples (M step)

Broadcast link distribution
parameters and iterate

Figure 4: Data flow in the importance sampling
EM algorithm we employed. The algorithm iterates
through the E, shuffle and M steps until it converges.

links in the network, the algorithm outputs the time it takes
to traverse the link as a probability distribution. To make
the inference problem tractable, we model the link traversal
times for each link e as an independent Gamma distribution
with parameters θe (as shorthand, we let θe represent the
two values that parametrize a Gamma distribution).1

The algorithm inputs are the road network (V,E), as well
as the observed trajectories of GPS-equipped vehicles Y .
Each observation Yi describes the i-th trajectory’s travel
time and path (which consists of one or more road links) as
inferred by earlier stages of the Mobile Millennium pipeline.
Physical properties of the road network, such as speed limits
and link lengths, are also taken into account.

Estimating the travel time distributions is made difficult
by the fact that we do not observe travel times for individ-
ual links. Instead, each observation only specifies the total
travel time for an entire list of links traveled. To get around
this problem, we use an iterative expectation maximization
(EM) algorithm [8, 19]. The central idea of the algorithm is
to randomly partition the total travel time among links for
each observation, then weigh the partitions by their likeli-
hood according to the current estimate of travel time distri-
butions. Next, given the weighted travel time samples pro-
duced for each link, we update the travel time distribution
parameters for the link to maximize the likelihood of these
weighted samples. By iteratively repeating this process, the
algorithm converges to a set of travel time distribution pa-
rameters that fit the data well. The sample generation stage
is called the expectation (E) step, while the parameter up-
date stage is called the maximization (M) step.

Figure 4 shows the data flow in the algorithm in more
detail. In the E-step, we generate per-link travel time sam-
ples from whole trajectories; specifically, for each trajectory
Yi, we produce a set of samples Si = {(sei , wei)}ei∈Yi by
randomly dividing Yi’s observed travel time among its con-
stituent links (producing a travel time sei for each edge

1We experimented with a few standard distributions from
the literature (Gamma, Normal and Log-normal). Based on
our experiments, the Gamma distribution fit the data best.
Computing the most likely Gamma distribution from a set
of samples has no closed-form solution and is more expensive
than in the case of the Normal or Log-normal distributions,
but was deemed worthwhile for the added accuracy.



ei ∈ Yi), and we assign a weight wei as the likelihood
of travel time sei according to e’s current travel time dis-
tribution θe. In the shuffle step, we regroup the samples
in the Si’s by link, so that each link e now has samples
Xe = {(sei , wei)} from all the trajectories that go over it.
In the M-step, we recompute the parameters θe to fit link
e’s travel time distribution to the samples Xe.

The model needs to be configured with several free pa-
rameters, such as the number of samples and a regulariza-
tion prior. We chose these based on test runs with a small
dataset.

Next, we describe how we parallelized the algorithm using
Spark (Section 4), and the challenges that we encountered
in executing algorithm efficiently in the cloud (Section 5).

4. SPARK FRAMEWORK
We parallelize our EM algorithm using Spark [27, 28], a

cluster computing framework developed at Berkeley. Spark
offers several benefits. First, it provides a high-level pro-
gramming model using a language-integrated syntax simi-
lar to DryadLINQ [26], saving substantial development time
over lower-level frameworks like MPI. Second, Spark pro-
grams are written in Scala [3], a high-level language for the
JVM, which allows us to integrate with the Java codebase of
Mobile Millennium. Third, Spark is explicitly designed to
support iterative algorithms, such as EM, more efficiently
than data flow frameworks like MapReduce and Dryad.

Spark’s programming model centers on parallel collections
of objects called resilient distributed datasets (RDDs). Users
can define RDDs from files in a storage system and trans-
form them through data-parallel operations such as map,
filter, and reduce, similar to how programmers manipulate
data in DryadLINQ and Pig [20]. However, unlike in these
existing systems, users can also control the persistence of an
RDD, to indicate to the system that they will reuse an RDD
in multiple parallel operations. In this case, Spark will cache
the contents of the RDD in memory on the worker nodes,
making reuse substantially faster. At the same time, Spark
tracks enough information about how the RDD was built to
reconstruct it efficiently if a node fails. This in-memory
caching is what makes Spark faster than MapReduce or
Dryad for iterative computations: in existing systems, it-
erative applications have to be implemented as a series of
independent MapReduce or Dryad jobs, each of which reads
state from disk and writes it back out to disk, incurring
substantial I/O and object serialization overhead.

To illustrate the programming model, we show simplified
Spark code for the EM algorithm in Figure 5. Recall that
the EM algorithm consists of the E-step, where we generate
random travel time samples for each link in each trajectory
observed, the shuffle step, where we group these samples
by link, and the M-step, where we use the grouped values
to estimate the new per-link travel distribution parameters.
These steps can readily be expressed as a MapReduce com-
putation, which we implement in Spark using the map and
groupByKey operations. Note, however, that each iteration
of the EM algorithm will reuse the same dataset of original
observations. The code thus starts by loading the observa-
tions into an in-memory cached RDD, by passing a text file
through a parseObservation function that reads each line
of text into a Scala class representing the observation. We
then reuse this RDD to update the link parameters.

We found this in-memory caching capability crucial for

// Load observations into memory as a cached RDD 
observations = spark.textFile(“hdfs://...”) 
                    .map(parseObservation).cache() 
 
params = // Initialize parameter values 
 
while (!converged) { 
  // E-step: generate (linkId, sampledVals) pairs 
  samples = observations.map( 
    ob => generateSamples(ob, params)) 
 
  // Shuffle and M-step: group samples for each link, 
  // update params, and return them to the master  
  params = samples.groupByKey().map( 
    (linkId, vals) => updateParam(linkId, vals) 
  ).collect() 
} 

Figure 5: Simplified Spark code for the EM algo-
rithm. Spark ships the Scala code fragments passed
to each map operation transparently to the cluster,
along with any variables they depend on.

performance in both EM and other iterative machine learn-
ing algorithms. In the Mobile Millennium application, caching
provided a 2.8× speedup. In other, less CPU-intensive ap-
plications, we have seen speedups as large as 30× [27]. Other
cluster computing frameworks, such as Twister [10] and Pic-
colo [21], have also been built around in-memory storage for
the same reason, and our results corroborate their findings.

5. OPTIMIZATIONS AND LESSONS
Although the EM algorithm can readily be expressed us-

ing Spark (as well as other frameworks) and benefits sub-
stantially from in-memory storage, we found that several
other optimizations that are less studied in the literature
were necessary to achieve good performance and scalabil-
ity. We now discuss three of these optimizations: efficient
memory utilization, efficient broadcast of large objects, and
optimized access to the application’s storage system.

5.1 Memory Utilization
Several recent cluster computing frameworks, including

Twister [10], Piccolo [21], and Spark, are designed explicitly
to support iterative applications by providing in-memory
storage. As discussed in the previous section, our results val-
idate the benefit of this feature: in our application, it can
yield a 2.8× speedup. Nonetheless, we found that simply
having in-memory storage facilities available in the frame-
work was insufficient to achieve good performance in a com-
plex application like traffic estimation.

One of the main challenges we encountered was efficient
utilization of memory. Unlike simpler machine learning ap-
plications that cache and operate on large numeric vectors,
our application cached data structures representing paths
traveled by vehicles or sets of links parameters. When we
first implemented these data structures using idiomatic Java
constructs, such as linked lists and hashtables, we quickly ex-
hausted the memory on our machines, consuming more than
4× the size of the raw data on disk. This happened because
the standard data structures, especially pointer-based ones,
incur considerable storage overhead per item. For example,
in a Java LinkedList, each entry costs 24 bytes (for an object



header and pointers to other entries) [18], whereas the val-
ues we stored in these lists were often 4-byte ints or floats.
With this much overhead, running an algorithm in memory
can be much costlier than anticipated; indeed, our first at-
tempts to use caching ran slower than a disk-based version
because they were constantly garbage-collecting.

Solution and Lessons Learned: We improved our mem-
ory utilization by switching to array-backed data structures
where possible for the objects we wanted to cache and min-
imizing the number of data structures that contained small
objects and many pointers. One difficult part of the prob-
lem was simply recognizing the cause of the bloat: Java (and
Scala) programmers are typically unaware of the overhead
of simple collection types. However, switching to more com-
pact data representations did not come for free: we lost some
of the convenience of working with idiomatic data types in
a high-level language in the process. In general, one of
the main reasons why programmers use tools like Hadoop
and DryadLINQ is that they can program in a high-level
language (e.g., Java or C#). While the memory overhead
of these languages did not matter for systems that stream
records from disk, such as MapReduce and Dryad, it be-
comes important for in-memory computing frameworks.

We believe that framework designers can do a lot to help
users utilize memory efficiently. In particular, it would be
useful for frameworks to provide libraries that expose an
idiomatic collection interface but pack data efficiently, and
tools for pinpointing the sources of overhead. We are devel-
oping both types of tools for Spark. For example, the sys-
tem now supports a “serializing” version of the cache that
marshals each object cached into a byte array using a fast
serialization format similar to Protocol Buffers [1], which
can save space even for simple data like strings and integers.

5.2 Broadcast of Large Parameter Vectors
Parallel machine learning algorithms often need to broad-

cast data to the worker nodes, either at the beginning of the
job or at each iteration. For example, in our traffic estima-
tion algorithm, we needed to broadcast the road network to
all the nodes at the start of the job, as well as the updated
parameters computed after each iteration.

In the simple machine learning algorithms commonly eval-
uated in the systems literature, such as k-means and logis-
tic regression, these broadcast values are small (hundreds
of bytes each). In our application, they were considerably
larger: about 38 MB for the road network of the Bay Area.
We have seen even larger parameter vectors in other Spark
applications: for example, the spam classifier in [22] had a
parameter vector hundreds of MB in size, with a feature for
each of several million terms, and this vector needed to be
re-broadcast after each iteration.

Initially, our application performed poorly because we pack-
aged the parameter vectors needed with each task (i.e., par-
tition of a job) sent to the cluster, which was the default
behavior in Spark. The master node’s bandwidth became a
bottleneck, capping the rate at which tasks could be launched
and limiting our scalability.

Solution and Lessons Learned: To mitigate the problem
of large parameter vectors, we added an abstraction called
broadcast variables to Spark, which allows a programmer to
send a piece of data to each slave only once, rather than
with every task that uses the data [28]. To the program-

net = readRoadNetwork() 
 
 
observations.map( 
  ob => process(ob, net) 
) 

net = readRoadNetwork() 
bv = spark.broadcast(net) 
 
observations.map( 
  ob => process(ob, bv.get()) 
) 

a) Original b) With Broadcast Variables 

Figure 6: Example Spark syntax showing how to use
broadcast variables to wrap a large object (net) that
should only be sent to each node once.

mer, broadcast variables look like wrapper objects around a
value, with a get() method that can be called to obtain the
value. The variable’s value is written once to a distributed
file system, from which it is read once by each node the first
time that a task on the node calls get(). We illustrate the
syntax for broadcast variables in Figure 6.

We used broadcast variables to send both static data that
is used throughout the job, such as the road vector, and the
new parameter vectors computed on each iteration. As we
show in Section 6, broadcast variables improved the perfor-
mance of our data loading phase by about 4.6×, and the
speed of the overall application by 1.6×.

For larger parameter vectors, such as the approximately
100 MB vector in the spam classification job above, even
reading the data once per node from a distributed file sys-
tem is a bottleneck. This led us to implement more efficient
broadcast methods in Spark, such as a BitTorrent-like mech-
anism optimized for datacenter networks called Cornet [6].2

Because many real-world machine learning applications have
large parameter vectors (with features for each word in a lan-
guage, each link in a graph, etc.), we believe that efficient
broadcast primitives will be essential to support them.

5.3 Access to On-Site Storage System
One of the more surprising bottlenecks we encountered

was access to our application’s storage system. Following
standard practices, Mobile Millennium uses a PostgreSQL
database to host information shared throughout our pipeline
(including the road network and the observations received
over time). We chose PostgreSQL for its combination of reli-
ability, convenience, and support for geographic data through
PostGIS [2]. Cloud storage solutions were not widespread
at the time of the choice, but we soon realized that our com-
mon storage solution was ill-suited to cloud computations.
Indeed, while PostgreSQL had served our on-site pipeline
without problems, it performed very poorly under the access
pattern of our parallel algorithm: the application initially
spent more than 75% of its time waiting on the database.

The problem behind this slowdown was the burstiness of
the access pattern of the parallel application. The database
had to service a burst of hundreds of clients reading slices of
the observation data when the application started, as well as
a similar burst of writes when we finished computing. The
total volume of data we read and wrote was not large—about
800 MB—so it should have been within the means of a single
server. However, the contention between the simultaneous
queries slowed them down dramatically.

2The main optimizations in Cornet are a topology-aware
data dissemination scheme and large block sizes suitable for
high-bandwidth, low-latency networks.
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Figure 7: Running time experiments on different clusters. See section 5 for details.

Solution and Lessons Learned: We ultimately worked
around the problem by periodically exporting the data from
PostgreSQL to a Hadoop file system (HDFS) instance on
EC2. We still use the PostgreSQL database as the primary
storage of the system, however, due to its richer feature set
(e.g., geographic queries with PostGIS) and wider accessibil-
ity through SQL-based interfaces. Therefore, although the
HDFS caching approach removed the bottleneck, it intro-
duced new management challenges, as we must keep HDFS
consistent with the database. Mobile Millennium receives
new data every few minutes—eventually, we would prefer a
solution that lets us access new data from the cloud as soon
as it arrives.

We believe that database implementers can do a lot to
support the bursty patterns of requests from workers in par-
allel applications. Neither the amount of data we read nor
the amount of data we wrote was beyond the means of a sin-
gle server (both were several hundred MB), but the bursty
access pattern was simply not well-supported by the engine.
Most likely, database engines will need to recognize the par-
allel query workload introduced by distributed applications,
either through hints in the queries or heuristics that watch
for similar requests, and to order the requests in an efficient
manner to avoid excessive disk seeks. In general, enabling
developers to use the same storage system for both on-site
and cloud applications would be a key step in making the
cloud more widely accessible for parallel data processing,
and given the near-ubiquitous use of RDBMSes in existing
applications, they are a natural place to start.

6. PERFORMANCE EVALUATION
In this section, we evaluate how much the cloud imple-

mentation and its associated memory, broadcast and stor-
age optimizations (Section 5) helped with scaling the Mobile
Millennium EM traffic estimation algorithm.

As mentioned in Section 2, we originally designed and
prototyped the algorithm in the Python programming lan-
guage, to work on a single node. However, working on a
single computer quickly revealed its limitations: the code
would take 40 minutes per iteration to process a single 30
minute time interval of data! Moreover, the amount of mem-
ory available on a single machine would limit the number of
observations considered, as well as the number of samples
generated. Distributing the computation across machines
provides a twofold advantage: each machine can perform
computations in parallel, and the overall amount of mem-
ory available is much greater. To understand how restricted
the single-machine deployment was, we could only generate
10 samples for each observation in the E-step in order for

Table 1: Data loading throughput for various stor-
age configurations.

Configuration Throughput
Connection to on-site DB 239 records/sec
Connection to cloud-hosted DB 6,400 records/sec
Main DB data cached in HDFS 213,000 records/sec

the computation to stay within the machine’s 10 GB limit.
Because the single-node implementation could not generate
enough E-step samples to create a good approximation of
the travel time distribution, the accuracy of the algorithm
was limited as well. By contrast, using a 20-node cluster and
letting the E-step generate 300 samples per observation, the
computation was an order of magnitude faster, and the ac-
curacy of the predicted models increased significantly.

Scaling. First, we evaluated how the runtime perfor-
mance of the EM job could improve with an increasing num-
ber of nodes/cores. The job was to learn the historical traffic
estimate for San Francisco downtown for a half-hour time-
slice. This data included 259,215 observed trajectories, and
the network consisted of 15,398 road links. We ran the ex-
periment on two cloud platforms: the first was using Ama-
zon EC2 m1.large instances with 2 cores per node, and the
second was a cloud managed by the National Energy Re-
search Scientific Computing Center (NERSC) with 4 cores
per node. Figure 7(a) shows near-linear scaling on EC2 until
80–160 cores. Figure 7(b) shows near-linear scaling for all
the NERSC experiments. The limiting factor for EC2 seems
to have been network performance. In particular, some tasks
were lost due to repeated connection timeouts.

Individual optimizations. We evaluated the effects of
the individual optimizations discussed in Section 5. For
these experiments we ran the experiments on a 50-node
Amazon EC2 cluster of m1.large instances, and used a data
set consisting of 45×106 observations split into 800 subtasks.

With respect to the data loading (Section 5.3) we looked
at three configurations: (a) connecting to the main database
of Mobile Millennium which stores the master copy of the
data, (b) connecting to a cloud-hosted version of the Mobile
Millennium DB, and (c) caching data from the main DB to
the cloud’s HDFS. Table 1 shows the throughput for load-
ing data under each configuration, and shows that our final
solution (c) shows a three orders of magnitude improvement
over the original implementation using (a).3

To evaluate the benefit of in-memory computation (Sec-

3Although we do not report the extraction and preprocess-
ing overhead for (c), this initial cost is amortized over the
number of repetitions we perform for the experiments.



Table 2: Comparison of EM runtimes with differ-
ent settings: a single-core version, a parallel version
with all our optimizations, and parallel versions with
no caching and no broadcast.

Configuration Load time E step Shuffling M step

Single core 4073 6276 18578 7550
Parallel 468 437 774 936
No caching 0 2382 2600 835
No broadcast 2148 442 740 1018

tion 5.1), we compared the run times of the EM job without
caching (i.e., reloading data from HDFS on each iteration)
and with in-memory caching (Table 2). Without caching,
the runtime was 5,800 seconds. With caching, the run-
time was reduced to 2,100 seconds, providing a nearly 3×
speedup. Most of this improvement comes from reducing the
runtime of the E-step and the shuffle step since they read
the cached observations. The M-step does not improve be-
cause it reads newly-generated per-link samples (which have
to be regenerated on each iteration as per Section 3), and
the current implementation of shuffle writes its outputs to
disk to help with fault tolerance.

Finally, we explore the benefit of broadcasting parameters
(Section 5.2). A copy of the road network graph must be
available to every worker node as it loads and parses the
observation data, so broadcast is crucial. To this end, we
evaluated how long it took to load 45 million observations
over a 50-node cluster when (1) a copy of the road network
graph is bundled with each task and (2) the network graph
is broadcast ahead of time. The network graph for the Bay
Area was 38 MB, and it took 8 minutes to parse the obser-
vations using a broadcast network graph — by contrast, the
loading time was 4.5 times longer without broadcasting.

7. RELATED WORK
There has recently been great interest in running sophis-

ticated machine learning applications in the cloud. Chu et
al. showed that MapReduce can express a broad class of
parallel machine learning algorithms, and that it provides
substantial speedups on multicore machines [7]. However,
as we discussed in this article, these algorithms encounter
scaling challenges when we want to expand beyond a single
machine and run them on a public cloud. The main reme-
dies to these challenges involve exploiting data locality and
reducing network communication between nodes.

In the systems literature, Twister, Spark, HaLoop and
Piccolo provide MapReduce-like programming models for it-
erative computations using techniques such as in-memory
storage [10, 28, 5, 21]. GraphLab and Pregel also store data
in memory, but provide a message-passing model for graph
computations [15, 16]. While these systems enable substan-
tial speedups, we found that issues other than in-memory
storage, such as broadcast of large parameter vectors, also
posed challenges in our application. We wish to highlight
these challenges by describing a more complex real-world ap-
plication than the simple benchmarks commonly employed.

Recent work in large-scale machine learning has addressed
some of the algorithmic issues in scaling applications to
the cloud. McDonald et al. [17] discuss distributed train-
ing strategies over MapReduce where data is partitioned
across nodes, and nodes perform local gradient descent be-

fore averaging their model parameters between iterations.
Other studies about distributed dual averaging optimization
methods [9] and distributed EM [24] explored the network
bandwidth savings, and some optimization algorithms that
restrict the communication topology of the worker nodes.

8. CONCLUSIONS
We have presented our experience scaling up the Mobile

Millennium traffic information algorithm in the cloud and
identified lessons that we believe will also apply to other
complex machine learning applications. Our work affirmed
the value of in-memory computation for iterative algorithms,
but also highlighted three challenges that have been less
studied in the systems literature: efficient memory utiliza-
tion, broadcast of large parameter vectors, and integration
with off-cloud storage systems. All three factors were cru-
cial for performance. We hope that these lessons will be of
interest to designers of cloud programming frameworks and
storage systems. Our experiences with Mobile Millennium
have already influenced the design of the Spark framework.
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