
MODELDB: A System for Machine Learning Model
Management

Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan, Saadiyah Husnoo
Samuel Madden, Matei Zaharia

MIT
{mvartak, madden, matei}@csail.mit.edu, {hsubrama, weienlee, srinidhi, saadiyah}@mit.edu

ABSTRACT
Building a machine learning model is an iterative process. A data
scientist will build many tens to hundreds of models before arriving
at one that meets some acceptance criteria (e.g. AUC cutoff, accu-
racy threshold). However, the current style of model building is
ad-hoc and there is no practical way for a data scientist to manage
models that are built over time. As a result, the data scientist must
attempt to “remember” previously constructed models and insights
obtained from them. This task is challenging for more than a hand-
ful of models and can hamper the process of sensemaking. Without
a means to manage models, there is no easy way for a data scientist
to answer questions such as “Which models were built using an in-
correct feature?”, “Which model performed best on American cus-
tomers?” or “How did the two top models compare?” In this paper,
we describe our ongoing work on ModelDB, a novel end-to-end
system for the management of machine learning models. ModelDB
clients automatically track machine learning models in their native
environments (e.g. scikit-learn, spark.ml), the ModelDB backend
introduces a common layer of abstractions to represent models and
pipelines, and the ModelDB frontend allows visual exploration and
analyses of models via a web-based interface.

1. INTRODUCTION
Building a real-world machine learning model is a trial-and-error-

based iterative process. A data scientist starts with a hypothesis
about the underlying data, builds a model based on this hypothe-
sis, tests the model, and refines the hypothesis as well as model
based on the results. To understand the process of model building,
we interviewed data scientists from a host of different industries
ranging from social media companies to small startups in the IoT
space. The process of model building across all these companies
could best be described as “ad-hoc” where the data scientist often
built hundreds of models before arriving at one that met some ac-
ceptance criteria (e.g. AUC, accuracy). However, the data scientist
had no means of tracking previously-built models or insights from
previous experimentation. Consequently, the data scientist had to
remember relevant information about previous models to inform
the design of the next set of models. As expected, however, this task

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HILDA’16, June 26 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4207-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2939502.2939516

was challenging for more than a handful of models and hampered
the scientist’s ability to derive insights from the data. Moreover, at
one of the companies, we found that the lack of model and result
persistence cast doubt on the conclusions of a previous experiment,
leading the team to re-run a set of expensive modeling workflows.

This iterative, ad-hoc nature of model building brings to light
an important and little-studied problem for machine learning tools:
model management. Model management is the problem of track-
ing, storing and indexing large numbers of machine learning mod-
els so they may subsequently be shared, queried and analyzed.
Lack of model management can not only waste efforts (above) and
slow down the modeling process, but it can also cause insights
and trends to be overlooked. We find that model management
provides essential support for multiple activities: (i) It helps data
scientists recapitulate insights by providing an overview of mod-
els built to far. (ii) It helps with the data scientists’ sensemaking
process [9], i.e., the process of finding and organizing information
to build a mental model of the underlying phenomenon. (iii) It
helps find trends and perform meta-analyses across models (e.g.
“Which model worked best on American customers?”). (iv) With
proper indexing, it enables data scientists to search through models
(e.g.“Which models used this incorrectly coded feature?”). (v) It
enables easy collaboration between data scientists.

In this paper, we present ongoing work on ModelDB, a system to
manage machine learning models. ModelDB automatically tracks
machine learning models in their native environment, indexes them
intelligently, and allows flexible exploration of models via SQL as
well as a visual interface. To provide this functionality, ModelDB
provides native client libraries for different machine learning en-
vironments (currently spark.ml1 and scikit-learn2), a storage layer
optimized to store models, and a web-based visual interface that
supports meta-analyses across models.

For ease of explanation, the above discussion refers to models
in isolation; however, in real-world scenarios, models are associ-
ated with multi-stage pipelines that perform various types of pre-
processing before the model is trained. Therefore, when manag-
ing models, we are, in fact, managing multi-stage pipelines involv-
ing pre-processing, training and testing steps. Along with models
and pipelines, ModelDB also manages metadata (e.g., parameters
of pre-processing steps, hyperparameters for models etc.), quality
metrics (e.g. AUC, accuracy), and, if required, training and test
data for each model.

2. RELATED WORK
Scientific workflow management is a rich area of research that

1http://spark.apache.org/docs/latest/ml-guide.html
2http://scikit-learn.org/

has produced systems including Kepler [8] and Taverna [12] which
are popular in the scientific community. Commercial software ven-
dors have also introduced tools such as the AzureML suite3 and the
SeaHorse suite4 that allow the (graphical) construction of machine
learning workflows. The system closest to ModelDB in terms of
flavor and functionality is the VisTrails system [1, 3, 2]. VisTrails
was first introduced as a solution to track visual analysis workflows
and has now evolved to support generalized scientific workflows,
including support for creating workflows using scikit-learn.

A drawback of almost all of the current workflow systems, in-
cluding VisTrails, is that they require scientists to use a GUI to de-
fine each workflow before execution. Specifically, to build a work-
flow, a data scientist must find the required operators from a pre-
defined library of operators and drag-and-drop components onto a
canvas. Although almost all workflow tools are GUI-based, all the
data scientists we interviewed (in industry as well as research labs)
overwhelmingly concurred that GUIs were too restrictive for writ-
ing their machine learning pipelines and that most of their pipelines
were constructed on-the-fly as opposed to being pre-determined.
As a result, in ModelDB, we chose to infer workflows based on the
data scientist’s commands and use visualization only as a means to
perform post-hoc analysis of the pipeline.

The importance of history (i.e., providing a record of past opera-
tions) as an essential operation in data analysis has been highlighted
by Shneiderman and others in [11, 6]. In line with this finding, [7]
developed history tools for visual data mining, while [10] devel-
oped interactive visualizations of the visual analysis process in Re-
Visualization. Graphical histories for visual analysis in the context
of Tableau5 were studied by Heer et. al. in [5]. We find many sim-
ilarities in the design considerations for providing history in visual
analysis and providing history for machine learning pipelines.

3. MODELDB ARCHITECTURE
Figure 1 shows the high-level architecture of our system. Mod-

elDB consists of three key components: native client libraries for
different machine learning environments, a backend that defines
key abstractions and brokers access to the storage layer, and a web-
based visualization interface. ModelDB client libraries are cur-
rently available for scikit-learn and spark.ml. Data scientists can
perform experimentation and model building in their favorite ML
environment as usual while, in the background, the client library
automatically extracts relevant information and passes it to the Mod-
elDB backend. The ModelDB backend exposes a thrift interface
to allow clients in different languages to communicate with the
ModelDB backend. ModelDB stores models and pipelines as a
sequence of actions (as opposed to states) and uses a branching
model of history to track the changes in models over time [4]. The
backend uses a relational database to store pipelines while a cus-
tom storage engine is used to store and index models. The third
component of ModelDB, the visual interface, provides an easy-to-
navigate layer on top of the database that permits visual exploration
and analyses of models and pipelines.

Next, we sketch the details of the user-facing components of
ModelDB, namely the client libraries and the web-based frontend.

3.1 Client Libraries
Most existing workflow management programs (e.g. VisTrails)

require that the user create a workflow in advance, usually by means
of a GUI. However, the data scientists we interviewed overwhelm-

3https://azure.microsoft.com/en-us/services/machine-learning/
4https://seahorse.deepsense.io/
5http://tableau.com

Figure 1: ModelDB Architecture

ingly concurred that GUIs restricted their flexibility in defining
pipelines and that it was difficult to specify pipelines beforehand
because they changed constantly. Moreover, we found that data
scientists were unwilling to change their preferred ML environment
for a workflow management system. Therefore, our primary design
constraint while creating the ModelDB client libraries was to min-
imize any changes the data scientist would need to make both to
code and the existing modeling process. To meet this constraint,
we chose to make model logging accessible directly through code
(as opposed to a GUI) and to build native logging libraries for dif-
ferent ML environment. The spark.ml and skicit-learn libraries are
architected such that data scientists can use the environments for
analysis exactly as they normally would and the library transpar-
ently and automatically logs the relevant data to the backend.

Figure 2: Overview Page

3.2 Frontend
Since data scientists build hundreds of models during a model-

ing project, many operators, models and pipelines are logged to the
ModelDB backend. While it is possible to query the raw tables
through SQL, we provide a visual interface through which data sci-
entists can easily perform analyses without having to be familiar
with the underlying database schema. Our goals for the visual in-
terface are four-fold: (i) allow the data scientist to review all the
models and pipelines built for a particular modeling project, (ii)
allow data scientists and collaborators to quickly understand and
inspect pipelines visually, (iii) allow the data scientist to perform
different types of comparisons across pipelines and models, (iv) if

Figure 4: Models View

required, allow the data scientist to drill-down to the data itself to
examine its evolution through the pipeline.

Figure 3: Pipelines View
Figures 2–4 show screenshots of the ModelDB visual interface.

Figure 2 shows the overview page listing all the projects the data
scientist is working on along with summary information about each
project. ModelDB provides two views for exploring history re-
lated to a particular project. The first, shown in Figure 3, is called
the pipelines view, while the second (Figure 4) is called models
view. The pipelines view allows the user to explore a small num-
ber of pipelines in detail. For instance, the pipeline view depicts

every stage of a pipeline along with details of the input, output
and parameters for that stage. It also provides the ability to align
and compare multiple pipelines to find similarities and differences.
This view is particularly useful in helping data scientists and col-
laborators quickly understand how a pipeline was constructed. The
pipeline view also provides a basic means of debugging the pipeline
by allowing the data scientist to examine how the pipeline affects
individual data items. The models view, in contrast, tabulates mod-
els generated by all pipelines built for a project. This view is best
suited for obtaining a summary of the models built so far and per-
forming comparisons across models using metadata and metrics.
We support a Tableau-like interface to visually analyze models us-
ing their metadata and metrics. The functionality provided in this
view, for example, makes it easy for a data scientist to graph how
changes in a hyperparameter impact the accuracy of a model.

4. CONCLUSION
In this paper, we described ModelDB, a novel system to man-

age machine learning models. ModelDB provides native client
libraries for popular ML environments including scikit-learn and
spark.ml that can be used to automatically track models with min-
imal changes to code. The ModelDB backend indexes and stores
models from multiple environments in a common format that al-
lows easy querying. Finally, the visual interface provides a means
for data scientists to visually explore modeling pipelines and run
meta-analyses.

5. REFERENCES
[1] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger, C. T. Silva,

and H. T. Vo. Vistrails: Enabling interactive multiple-view visualizations. In
Visualization, 2005. VIS 05. IEEE, pages 135–142. IEEE, 2005.

[2] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Managing the evolution of dataflows with vistrails. In Data Engineering
Workshops, 2006. Proceedings. 22nd International Conference on, pages
71–71. IEEE, 2006.

[3] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
Vistrails: visualization meets data management. In Proceedings of the 2006
ACM SIGMOD international conference on Management of data, pages
745–747. ACM, 2006.

[4] M. Derthick and S. F. Roth. Enhancing data exploration with a branching
history of user operations, 2001.

[5] J. Heer, J. D. Mackinlay, C. Stolte, and M. Agrawala. Graphical histories for
visualization: Supporting analysis, communication, and evaluation.
Visualization and Computer Graphics, IEEE Transactions on,
14(6):1189–1196, 2008.

[6] J. Heer and B. Shneiderman. Interactive dynamics for visual analysis. Commun.
ACM, 55(4):45–54, Apr. 2012.

[7] M. Kreuseler, T. Nocke, and H. Schumann. A history mechanism for visual data
mining. In Proceedings of the IEEE Symposium on Information Visualization,
INFOVIS ’04, pages 49–56, Washington, DC, USA, 2004. IEEE Computer
Society.

[8] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A.
Lee, J. Tao, and Y. Zhao. Scientific workflow management and the kepler
system. Concurrency and Computation: Practice and Experience,
18(10):1039–1065, 2006.

[9] P. Pirolli and S. Card. The sensemaking process and leverage points for analyst
technology as identified through cognitive task analysis. In Proceedings of
international conference on intelligence analysis, volume 5, pages 2–4, 2005.

[10] A. C. Robinson and C. Weaver. Re-visualization: Interactive visualization of the
process of visual analysis. In Proceedings of the GIScience Workshop on Visual
Analytics and Spatial Decision Support, 2006.

[11] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of the 1996 IEEE Symposium on
Visual Languages, VL ’96, pages 336–, Washington, DC, USA, 1996. IEEE
Computer Society.

[12] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al. The taverna workflow
suite: designing and executing workflows of web services on the desktop, web
or in the cloud. Nucleic acids research, page gkt328, 2013.

