
UC Berkeley

Improving MapReduce Performance
in Heterogeneous Environments

Matei Zaharia, Andy Konwinski,
Anthony Joseph, Randy Katz, Ion Stoica

University of California at Berkeley

Motivation

1.  MapReduce becoming popular
– Open-source implementation, Hadoop, used

by Yahoo!, Facebook, Last.fm, …
– Scale: 20 PB/day at Google, O(10,000) nodes

at Yahoo, 3000 jobs/day at Facebook

Motivation

2.  Utility computing services like Amazon
Elastic Compute Cloud (EC2) provide
cheap on-demand computing

–  Price: 10 cents / VM / hour
–  Scale: thousands of VMs
–  Caveat: less control over performance

Results

•  Main challenge for Hadoop on EC2 was
performance heterogeneity, which breaks
task scheduler assumptions

•  Designed new LATE scheduler that can
cut response time in half

Outline

1.  MapReduce background

2.  The problem of heterogeneity

3.  LATE: a heterogeneity-aware scheduler

What is MapReduce?

•  Programming model to split computations
into independent parallel tasks

•  Hides the complexity of fault tolerance
– At 10,000’s of nodes, some will fail every day

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. OSDI 2004.

Fault Tolerance in MapReduce

1.  Nodes fail re-run tasks

Node 1

Node 2

How to do this in heterogeneous environment?

1. 
2.  Nodes slow (stragglers) run backup tasks

Heterogeneity in Virtualized
Environments

•  VM technology isolates CPU and memory, but disk
and network are shared
–  Full bandwidth when no contention
–  Equal shares when there is contention

•  2.5x performance difference

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

IO
 P

er
fo

rm
an

ce
 p

er
 V

M
 (M

B
/s

)

VMs on Physical Host

Backup Tasks in Hadoop’s
Default Scheduler

•  Start primary tasks, then look for backups
to launch as nodes become free

•  Tasks report “progress score” from 0 to 1
•  Launch backup if

progress < avgProgress – 0.2

Problems in Heterogeneous
Environment

1. Too many backups, thrashing shared
resources like network bandwidth

2. Wrong tasks backed up
3.  Backups may be placed on slow nodes
4.  Breaks when tasks start at different times

•  Example: ~80% of reduces backed up,
most losing to originals; network thrashed

Idea: Progress Rates

•  Instead of using progress values, compute
progress rates, and back up tasks that are
“far enough” below the mean

•  Problem: can still select the wrong tasks

Progress Rate Example

Time (min)

Node 1

Node 2

Node 3

3x slower

1.9x slower

1 task/min

1 min 2 min

Progress Rate Example

Node 1

Node 2

Node 3

What if the job had 5 tasks?

time left: 1.8 min

2 min

Time (min)

Node 2 is slowest, but should back up Node 3’s task!

time left: 1 min

Our Scheduler: LATE

•  Insight: back up the task with the largest
estimated finish time
–  “Longest Approximate Time to End”
– Look forward instead of looking backward

•  Sanity thresholds:
– Cap number of backup tasks
– Launch backups on fast nodes
– Only back up tasks that are sufficiently slow

LATE Details

•  Estimating finish times:

•  Threshold values:
– 10% cap on backups, 25th percentiles for slow

node/task
– Validated by sensitivity analysis

progress score

execution time
progress rate =

1 – progress score

progress rate
estimated time left =

LATE Example

Node 1

Node 2

Node 3

2 min

Time (min)

Progress = 5.3%

Estimated time left:
(1-0.66) / (1/3) = 1

Estimated time left:
(1-0.05) / (1/1.9) = 1.8

Progress = 66%

LATE correctly picks Node 3

Evaluation

•  Environments:
– EC2 (3 job types, 200-250 nodes)
– Small local testbed

•  Self-contention through VM placement
•  Stragglers through background processes

EC2 Sort with Stragglers

•  Average 58% speedup over native, 220% over no backups
•  93% max speedup over native

0.0

0.5

1.0

1.5

2.0

2.5

Worst Best Average

N
or

m
al

iz
ed

 R
es

po
ns

e
Ti

m
e

No Backups
Hadoop Native
LATE Scheduler

EC2 Sort without Stragglers

•  Average 27% speedup over native, 31% over no backups

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Worst Best Average

N
or

m
al

iz
ed

 R
es

po
ns

e
Ti

m
e

No Backups
Hadoop Native
LATE Scheduler

Conclusion

•  Heterogeneity is a challenge for parallel
apps, and is growing more important

•  Lessons:
– Back up tasks which hurt response time most
– Mind shared resources

•  2x improvement using simple algorithm

Questions?

? ? ?

EC2 Grep and Wordcount

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Worst Best Average

N
or

m
al

iz
ed

 R
es

po
ns

e
Ti

m
e

No Backups
Hadoop Native
LATE Scheduler

0

0.5

1

1.5

2

2.5

3

Worst Best Average

N
or

m
al

iz
ed

 R
es

po
ns

e
Ti

m
e

No Backups
Hadoop Native
LATE Scheduler

Grep WordCount

•  36% gain over native
•  57% gain over no backups

•  8.5% gain over native
•  179% gain over no backups

