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Motivation

« Hadoop was designed for large batch jobs
— FIFO queue + locality optimization

* At Facebook, we saw a different workload:
— Many users want to share a cluster
— Many jobs are small (10-100 tasks)

« Sampling, ad-hoc queries, periodic reports, etc

» How should we schedule tasks in a shared
MapReduce cluster?




Benefits of Sharing

* Higher utilization due to statistical
multiplexing

» Data consolidation (ability to query disjoint
data sets together)



Why is it Interesting?

« Data locality is crucial for performance
» Conflict between locality and fairness
* 70% gain from simple algorithm
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« Task scheduling in Hadoop

* Two problems
— Head-of-line scheduling
— Slot stickiness

* A solution (global scheduling)
* Lots more problems (future work)




£ Task Scheduling in Hadoop

» Slaves send heartbeats periodically

« Master responds with task if a slot is free,
picking task with data closest to the node
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g Problem 1: Poor Locality for
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N Small Jobs

Job Sizes at Facebook

{ # of Maps Percent of Jobs ‘
<25 58%

25-100 18%

100-400 14%
400-1600 7%
1600-6400 3%

> 6400 0.26%
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* Only head-of-queue job is schedulable on each
heartbeat

« Chance of heartbeat node having local data is low
« Jobs with blocks on X% of nodes get X% locality

Locality vs. Job Size in 100-Node Cluster
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Problem 2: Sticky Slots

« Suppose we do fair sharing as follows:
— Divide task slots equally between jobs

— When a slot becomes free, give it to the job
that is farthest below its fair share
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Problem 2: Sticky Slots
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Problem: Jobs never leave their original slots




Calculations

Locality vs. Concurrent Jobs in 100-Node Cluster
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Solution: Locality Wait

* Scan through job queue in order of priority

« Jobs must wait before they are allowed to
run non-local tasks

fwait<T,, only a
fT,<wait<T,, a
fwait>T,, also a

low node-local tasks
so allow rack-local
low off-rack



RAD -

V

k\

Locality Walit Example

Slave

Slave

Slave

Master

W/

Slave

Fair Running
ele Share Tasks
Job 1 1
Job 2 3

Jobs can now shift between slots




aaeke_ Evaluation — Locality Gains

Default Scheduler | With Locality Wait
Job Type
Node Loc.|Rack Loc.|Node Loc.|Rack Loc.
Small Sort 2% 50% 81% 96%
Small Scan 2% 50% 75% 94%
Medium Scan 37% 98% 99% 99%
Large Scan 84% 99% 9495, 99%




Throughput Gains
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Network Traffic Reduction

Network Traffic in Sort Workload

Hadoop Servers Network last hour
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Further Analysis

 When is it worthwhile to wait, and how long?

* For throughput:
— Always worth it, unless there’s a hotspot

— If hotspot, prefer to run 10-bound tasks on the
hotspot node and CPU-bound tasks remotely
(rationale: maximize rate of local 10)




Further Analysis

 When is it worthwhile to wait, and how long?

 For response time:
E(gain) = (1 —e"t)(D - 1)

/ \Expected time to get local heartbeat

Delay from running non-locally

Wait amount

— Worth it if E(wait) < cost of running non-locally
— Optimal wait time is infinity




Problem 3. Memory-Aware

RAD

Scheduling

a) How much memory does each job need?

— Asking users for per-job memory limits leads
to overestimation

— Use historic data about working set size?

b) High-memory jobs may starve
— Reservation scheme + finish time estimation?
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Conclusion

« Simple idea improves throughput by 70%
 Lots of future work:

— Memory-aware scheduling

— Reduce scheduling

— Intermediate-data-aware scheduling

— Using past history / learning job properties

— Evaluation using richer benchmarks




