Job Scheduling for MapReduce

Matei Zaharia, Dhruba Borthakur’,
Joydeep Sen Sarma’, Scott Shenker, lon Stoica

RAD Lab, 'Facebook Inc

- %
G()ugle Microsoft: »\\’/‘Sly”:l
. FUﬁTSU (6'0] kc ORACLE amazon

webservices™

Motivation

« Hadoop was designed for large batch jobs
— FIFO queue + locality optimization

* At Facebook, we saw a different workload:
— Many users want to share a cluster
— Many jobs are small (10-100 tasks)

« Sampling, ad-hoc queries, periodic reports, etc

» How should we schedule tasks in a shared
MapReduce cluster?

Benefits of Sharing

* Higher utilization due to statistical
multiplexing

» Data consolidation (ability to query disjoint
data sets together)

Why is it Interesting?

« Data locality is crucial for performance
» Conflict between locality and fairness
* 70% gain from simple algorithm

Y = .
RAD L3k
= Outline
« Task scheduling in Hadoop

* Two problems
— Head-of-line scheduling
— Slot stickiness

* A solution (global scheduling)
* Lots more problems (future work)

£ Task Scheduling in Hadoop

» Slaves send heartbeats periodically

« Master responds with task if a slot is free,
picking task with data closest to the node

Slave

rth
Slave §

-
Sk Master

Slave Job queue

Slave

g Problem 1: Poor Locality for

RAD ™ S -

N Small Jobs

Job Sizes at Facebook

{ # of Maps Percent of Jobs ‘
<25 58%

25-100 18%

100-400 14%
400-1600 7%
1600-6400 3%

> 6400 0.26%

g Problem 1: Poor Locality for

RAD ™ S0 -

N Small Jobs

Job Locality at Facebook

100

80

60

40

20

Percent Local Maps

10 100 1000 10000 100000
Job Size (Number of Maps)

—*Node Locality Rack Locality

* Only head-of-queue job is schedulable on each
heartbeat

« Chance of heartbeat node having local data is low
« Jobs with blocks on X% of nodes get X% locality

Locality vs. Job Size in 100-Node Cluster

RN
o
o

N B O ©
o O o o o

0 20 40 60 80 100
Job Size (Number of Maps)

Expected Node Locality (%)

Problem 2: Sticky Slots

« Suppose we do fair sharing as follows:
— Divide task slots equally between jobs

— When a slot becomes free, give it to the job
that is farthest below its fair share

Slave

Slave

Slave

Master

Slave

V4

Slave

Slave

Slave

Slave

Problem 2: Sticky Slots

Heartb@at

Master

Fair Running
elz Share Tasks
Job 1 1
Job 2 2

Problem: Jobs never leave their original slots

Calculations

Locality vs. Concurrent Jobs in 100-Node Cluster
120

100
80
60
40

20

Expected Node Locality (%)

o

01 2 3 456 7 8 91011 1213141516 17 18 19 20
Number of Concurrent Jobs

e —

Solution: Locality Wait

* Scan through job queue in order of priority

« Jobs must wait before they are allowed to
run non-local tasks

fwait<T,, only a
fT,<wait<T,, a
fwait>T,, also a

low node-local tasks
so allow rack-local
low off-rack

RAD -

V

k\

Locality Walit Example

Slave

Slave

Slave

Master

W/

Slave

Fair Running
ele Share Tasks
Job 1 1
Job 2 3

Jobs can now shift between slots

aaeke_ Evaluation — Locality Gains

Default Scheduler | With Locality Wait
Job Type
Node Loc.|Rack Loc.|Node Loc.|Rack Loc.
Small Sort 2% 50% 81% 96%
Small Scan 2% 50% 75% 94%
Medium Scan 37% 98% 99% 99%
Large Scan 84% 99% 9495, 99%

Throughput Gains

18% 20% 70% 31%

| | | W Default Scheduler
: : : _ With Locality Wait

Small Sort Small Scan Medium Large Scan
Scan

—

O
o0

Normalized Running Time
o o
N (o)

o
N

o

Network Traffic Reduction

Network Traffic in Sort Workload

Hadoop Servers Network last hour

A

500 M |

A7]S:>40 16: 00
BIn B Out I I

With locality wait ~ Without locality wait

Bytes/sec

Further Analysis

 When is it worthwhile to wait, and how long?

* For throughput:
— Always worth it, unless there’s a hotspot

— If hotspot, prefer to run 10-bound tasks on the
hotspot node and CPU-bound tasks remotely
(rationale: maximize rate of local 10)

Further Analysis

 When is it worthwhile to wait, and how long?

 For response time:
E(gain) = (1 —e"t)(D - 1)

/ \Expected time to get local heartbeat

Delay from running non-locally

Wait amount

— Worth it if E(wait) < cost of running non-locally
— Optimal wait time is infinity

Problem 3. Memory-Aware

RAD

Scheduling

a) How much memory does each job need?

— Asking users for per-job memory limits leads
to overestimation

— Use historic data about working set size?

b) High-memory jobs may starve
— Reservation scheme + finish time estimation?

Job 1

[Job 2

Maps

Time

Reduces

Time

RAD -‘J

S~ Problem 4: Reduce Scheduling

Job 1

[Job 2

Maps

Time
Job 2 maps done

Reduces

A
>

Time

Job 1

[Job 2

Maps

Time

Reduces

Time
Job 2 reduces done
I

RAD ﬂ

N

Maps

Reduces

A

Job 3 submitted

Time

A

Time

Problem 4: Reduce Scheduling

Job 1

[Job 2
I Job 3

RAD -=1

N

Maps

Reduces

Problem 4: Reduce Scheduling

Job 1

[Job 2

I Job 3
>
Time

Job 3 maps done

A
A

Time

Maps

Reduces

Time

Time

Job 1

[Job 2
I Job 3

Job 1

[Job 2

>

Time
Problem: Job 3 can’t launch reduces until Job 1 finishes

A
- >

Time

Reduces

Conclusion

« Simple idea improves throughput by 70%
 Lots of future work:

— Memory-aware scheduling

— Reduce scheduling

— Intermediate-data-aware scheduling

— Using past history / learning job properties

— Evaluation using richer benchmarks

