
UC Berkeley

Job Scheduling for MapReduce

Matei Zaharia, Dhruba Borthakur*,
Joydeep Sen Sarma*, Scott Shenker, Ion Stoica

1

RAD Lab, *Facebook Inc

Motivation

•  Hadoop was designed for large batch jobs
– FIFO queue + locality optimization

•  At Facebook, we saw a different workload:
– Many users want to share a cluster
– Many jobs are small (10-100 tasks)

•  Sampling, ad-hoc queries, periodic reports, etc

 How should we schedule tasks in a shared
MapReduce cluster?

Benefits of Sharing

•  Higher utilization due to statistical
multiplexing

•  Data consolidation (ability to query disjoint
data sets together)

Why is it Interesting?

•  Data locality is crucial for performance
•  Conflict between locality and fairness
•  70% gain from simple algorithm

Outline

•  Task scheduling in Hadoop
•  Two problems

– Head-of-line scheduling
– Slot stickiness

•  A solution (global scheduling)
•  Lots more problems (future work)

Task Scheduling in Hadoop

Master 

•  Slaves send heartbeats periodically
•  Master responds with task if a slot is free,

picking task with data closest to the node

Job queue 

Slave 

Slave 

Slave 

Slave 

Problem 1: Poor Locality for
Small Jobs

of Maps Percent of Jobs
< 25 58%

25-100 18%
100-400 14%

400-1600 7%
1600-6400 3%

> 6400 0.26%

Job Sizes at Facebook

Problem 1: Poor Locality for
Small Jobs

0

20

40

60

80

100

10 100 1000 10000 100000

Pe
rc

en
t L

oc
al

 M
ap

s

Job Size (Number of Maps)

Job Locality at Facebook

Node Locality Rack Locality

Cause
•  Only head-of-queue job is schedulable on each

heartbeat
•  Chance of heartbeat node having local data is low
•  Jobs with blocks on X% of nodes get X% locality

0

20

40

60

80

100

0 20 40 60 80 100

Ex
pe

ct
ed

 N
od

e
Lo

ca
lit

y
(%

)

Job Size (Number of Maps)

Locality vs. Job Size in 100-Node Cluster

Problem 2: Sticky Slots

•  Suppose we do fair sharing as follows:
– Divide task slots equally between jobs
– When a slot becomes free, give it to the job

that is farthest below its fair share

Slave 

Slave 

Slave 

Slave 

Slave 

Slave 

Slave 

Slave 

Problem 2: Sticky Slots

Job 1 

Job 2 

Master 

Slave 

Slave 

Slave 

Slave 

Problem 2: Sticky Slots

Master 

Job 
Fair 
Share 

Running 
Tasks 

Job 1  2  2 

Job 2  2  2 

Slave  Job 
Fair 
Share 

Running 
Tasks 

Job 1  2  1
Job 2  2  2 

Problem: Jobs never leave their original slots

Calculations

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
pe

ct
ed

 N
od

e
Lo

ca
lit

y
(%

)

Number of Concurrent Jobs

Locality vs. Concurrent Jobs in 100-Node Cluster

Solution: Locality Wait

•  Scan through job queue in order of priority
•  Jobs must wait before they are allowed to

run non-local tasks
–  If wait < T1, only allow node-local tasks
–  If T1 < wait < T2, also allow rack-local
–  If wait > T2, also allow off-rack

Slave 

Slave 

Slave 

Slave 

Locality Wait Example

Master 

Job 
Fair 
Share 

Running 
Tasks 

Job 1  2  2 

Job 2  2  2 

Slave  Job 
Fair 
Share 

Running 
Tasks 

Job 1  2  1

Job 2  2  2 

Jobs can now shift between slots

Slave  Job 
Fair 
Share 

Running 
Tasks 

Job 1  2  1

Job 2  2  3 Slave Slave 

Evaluation – Locality Gains

Job Type
Default Scheduler

Node Loc.Rack Loc.
Small Sort 2% 50%
Small Scan 2% 50%

Medium Scan 37% 98%
Large Scan 84% 99%

With Locality Wait
Node Loc.Rack Loc.

81% 96%
75% 94%
99% 99%
94% 99%

Throughput Gains

0

0.2

0.4

0.6

0.8

1

1.2

Small Sort Small Scan Medium
Scan

Large Scan

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

Default Scheduler
With Locality Wait

70% 31% 20% 18%

Network Traffic Reduction

With locality wait Without locality wait

Network Traffic in Sort Workload

Further Analysis

•  When is it worthwhile to wait, and how long?

•  For throughput:
– Always worth it, unless there’s a hotspot
–  If hotspot, prefer to run IO-bound tasks on the

hotspot node and CPU-bound tasks remotely
(rationale: maximize rate of local IO)

Further Analysis

•  When is it worthwhile to wait, and how long?

•  For response time:
   E(gain) = (1 – e-w/t)(D – t)

– Worth it if E(wait) < cost of running non-locally
– Optimal wait time is infinity

Delay from running non-locally

Expected time to get local heartbeat
Wait amount

Problem 3: Memory-Aware
Scheduling

a)  How much memory does each job need?
– Asking users for per-job memory limits leads

to overestimation
– Use historic data about working set size?

b)  High-memory jobs may starve
– Reservation scheme + finish time estimation?

Problem 4: Reduce Scheduling

Job 1

Job 2

Time

M
ap

s

Time

R
ed

uc
es

Problem 4: Reduce Scheduling

Job 1

Job 2

Time

M
ap

s

Time

R
ed

uc
es

Job 2 maps done

Problem 4: Reduce Scheduling

Job 1

Job 2

Time

M
ap

s

Time

R
ed

uc
es

Job 2 reduces done

Problem 4: Reduce Scheduling

Job 1

Job 2

Job 3

Time

M
ap

s

Time

R
ed

uc
es

Job 3 submitted

Problem 4: Reduce Scheduling

Job 1

Job 2

Job 3

Time

M
ap

s

Time

R
ed

uc
es

Job 3 maps done

Problem 4: Reduce Scheduling

Job 1

Job 2

Job 3

Time

M
ap

s

Time

R
ed

uc
es

Problem 4: Reduce Scheduling

Job 1

Job 2

Job 3

Time

M
ap

s

Time

R
ed

uc
es

Problem: Job 3 can’t launch reduces until Job 1 finishes

Conclusion

•  Simple idea improves throughput by 70%
•  Lots of future work:

– Memory-aware scheduling
– Reduce scheduling
–  Intermediate-data-aware scheduling
– Using past history / learning job properties
– Evaluation using richer benchmarks

