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Motivation

Most current cluster programming models are
based on acyclic data flow from stable storage
to stable storage
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Motivation

Most current cluster programming models are
based on acyclic data flow from stable storage

to stable storage

Benefits of data flow: runtime can decide
where to run tasks and can automatically
recover from failures



Motivation

Acyclic data flow is inefficient for applications

that repeatedly reuse a working set of data:
» Iterative algorithms (machine learning, graphs)
» Interactive data mining tools (R, Excel, Python)

With current frameworks, apps reload data
from stable storage on each query



Example: Iterative Apps
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Challenge

How to design a distributed memory abstraction
that is both fault-tolerant and efficient?



Challenge

Existing distributed storage abstractions have

interfaces based on fine-grained updates
» Reads and writes to cells in a table
» E.g. databases, key-value stores, distributed memory

Require replicating data or logs across nodes for
fault tolerance =» expensive!



Solution: Resilient
Distributed Datasets (RDDs)

Provide an interface based on coarse-grained
transformations (map, group-by, join, ...)

Efficient fault recovery using lineage
» Log one operation to apply to many elements
» Recompute lost partitions on failure
» No cost if nothing fails



RDD Recovery
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Generality of RDDs

Despite coarse-grained interface, RDDs can

express surprisingly many parallel algorithms
» These naturally apply the same operation to many items

Capture many current programming models
» Data flow models: MapReduce, Dryad, SQL, ...
» Specialized models for iterative apps:
BSP (Pregel), iterative MapReduce, bulk incremental
» Also support new apps that these models don't



Outline

Programming interface
Applications
Implementation

Demo



Spark Programming Interface

Language-integrated APl in Scala

Provides:
» Resilient distributed datasets (RDDs)

* Partitioned collections with controllable caching
» Operations on RDDs

* Transformations (define RDDs), actions (compute results)
» Restricted shared variables (broadcast, accumulators)



Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count

cachedmsgs.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)




Fault Tolerance

RDDs track lineage information that can be used
to efficiently reconstruct lost partitions

EX: messages = textFile(...).filter(_.startswith(“ERROR"))
.map(_.split(‘\t’)(2))

HDFS File > Filtered RDD > Mapped RDD
filter map
(func = _.contains(...)) (func = _.split(...))



Example: Logistic Regression

Goal: find best line separating two sets of points
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Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (1 <- 1 to ITERATIONS) {
val gradient = data.map(p =>
(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.X
).reduce(_ + _)
w -= gradient

}

printin("Final w: " + w)



Logistic Regression Performance

4500
4000

3500
g 3000
= 2500
2000
1500
1000
500
o)

Running

5 10 20
Number of Iterations

127 s/ iteration

/

Hadoop
W Spark

\

first iteration 174 s

further iterations 6 s
30



Example: Collaborative Filtering

Goal: predict users’ movie ratings based on past
ratings of other movies
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Model and Algorithm

Model R as product of user and movie feature
matrices A and B of size UxK and MxK

-0

Alternating Least Squares (ALS)
» Start with random A & B
» Optimize user vectors (A) based on movies
» Optimize movie vectors (B) based on users
» Repeat until converged




Serial ALS

var R = readRatingsMatrix(...)

var A = // array of U random vectors
var B = // array of M random vectors

for (i <- 1 to ITERATIONS) {
A = (0 until U).map(i => updateuser(i, B, R))
B = (0 until M).map(1 => updateMovie(i, A, R))
}

Range objects



Naive Spark ALS

var R

var A

var

B

readRatingsMatrix(...)

// array of U random vectors
// array of M random vectors

for (1 <- 1 to ITERATIONS) {

A

B

spark.parallelize(0 until U, numSlices)

Problem:

.map(i => updateUser(i, B, R)) <= R re-sent

.collect()
spark.parallelize(0 until M, numSlices)

to all nodes

.map(i => updateMovie(i, A, R)) <« iNneach

.collect()

iteration

g /




Efficient Spark ALS

var R = spark.broadcast(readratingsmatrix(...)) Solution:
mark R as

var A = // array of U random vectors broadcast

var B = // array of M random vectors :
variable

for (1 <- 1 to ITERATIONS) {
A = spark.parallelize(0 until U, numSlices)
.map(i => updateuUser(i, B, R.value))
.collect()
B = spark.parallelize(0 until M, numSlices)
.map(1 => updateMovie(i, A, R.value))
.collect()

Result: 3x performance improvement




Scaling Up Broadcast
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Cornet Performance

1GB data to 100 receivers
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Spark Applications

EM alg. for traffic prediction (Mobile Millennium)
Twitter spam classification (Monarch)
In-memory OLAP & anomaly detection (Conviva)
Time series analysis

Network simulation



Mobile Millennium Project
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Estimate city traffic using GPS observations from
probe vehicles
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Sample Data
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Challenge

Data is noisy and sparse (1 sample/minute)

Must infer path taken by each vehicle in
addition to travel time distribution on each link




Challenge

Data is noisy and sparse (1 sample/minute)

Must infer path taken by each vehicle in
addition to travel time distribution on each link
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Solution

EM algorithm to estimate paths and travel time
distributions simultaneously
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:l LD M L‘Jj % weighted path samples
\\ W groupByKey

\
' link parameters

' broadcast
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Res U Its [Hunter et al, SOCC 2011]
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Cluster Programming Models

RDDs can express many proposed data-parallel

programming models
» MapReduce, DryadLINQ
» Bulk incremental processing
» Pregel graph processing
» Iterative MapReduce (e.g. Haloop)
» SQL

Allow apps to efficiently intermix these models



Models We Have Built

Pregel on Spark (Bagel)

» 200 lines of code

Haloop on Spark

» 200 lines of code

Hive on Spark (Shark)
» 3000 lines of code
» Compatible with Apache Hive
» ML operators in Scala




Implementation

Spark runs on the Mesos

cluster manager [NSDI 11], park v

letting it share resources
——

with Hadoop & other apps -
Can read from any Hadoop Iiﬂ‘ﬂ W W W

input source (HDFS, S3, ...)

No changes to Scala language & compiler



Outline

Programming interface
Applications
Implementation

Demo



Conclusion

Spark’s RDDs offer a simple and efficient
programming model for a broad range of apps

Solid foundation for higher-level abstractions

Join our open source community:

www.spark-project.orq




Related Work

DryadLINQ, FlumelJava

» Similar “distributed collection” API, but cannot reuse
datasets efficiently across queries

GraphLab, Piccolo, BigTable, RAMCloud

» Fine-grained writes requiring replication or checkpoints

Iterative MapReduce (e.qg. Twister, HaLoop)
» Implicit data sharing for a fixed computation pattern

Relational databases
» Lineage/provenance, logical logging, materialized views

Caching systems (e.g. Nectar)
» Store data in files, no explicit control over what is cached



Spark Operations

map flatMap
filter union
Transformations sample join
(define a new RDD) groupByKey cogroup
reduceByKey Cross
sortByKey mapValues
collect
Actions reduce
(return a result to count
driver program) save

lookupKey




Job Scheduler

Reuses previously
computed data

Partitioning-aware
to avoid shuffles

Automatic pipelining

i = previously computed partition



Fault Recovery Results
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Behavior with Not Enough RAM
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