Spark

In-Memory Cluster Computing for
Iterative and Interactive Applications

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley,
Michael Franklin, Scott Shenker, lon Stoica

lab

UCBERKELEY



Environment

amazon
webservices™ _




Motivation

Most current cluster programming models are
based on acyclic data flow from stable storage
to stable storage

Input — — Output




Motivation

Most current cluster programming models are
based on acyclic data flow from stable storage

to stable storage

Benefits of data flow: runtime can decide
where to run tasks and can automatically
recover from failures



Motivation

Acyclic data flow is inefficient for applications

that repeatedly reuse a working set of data:
» Iterative algorithms (machine learning, graphs)
» Interactive data mining tools (R, Excel, Python)

With current frameworks, apps reload data
from stable storage on each query



Example: Iterative Apps

Input

—> result 1

—> result 2

result 3




Go
al: K
. Kee
pWwW
Ol’king c
et in
RA
M

on
rozj_time

e i
\\\\\\\\\\\\“\\\\\

D.
;;tributed
emory

S

S

e AR
\\\\‘\\\\‘\\\\\\\\\\%\\

S

g Al
\\\\\\\\\\\\\\\\\\\\M




Challenge

How to design a distributed memory abstraction
that is both fault-tolerant and efficient?



Challenge

Existing distributed storage abstractions have

interfaces based on fine-grained updates
» Reads and writes to cells in a table
» E.g. databases, key-value stores, distributed memory

Require replicating data or logs across nodes for
fault tolerance =» expensive!



Solution: Resilient
Distributed Datasets (RDDs)

Provide an interface based on coarse-grained
transformations (map, group-by, join, ...)

Efficient fault recovery using lineage
» Log one operation to apply to many elements
» Recompute lost partitions on failure
» No cost if nothing fails



RDD Recovery

one-time
processing

Ilceration 2

3
\ Y r
S\
W i

Distributed
memory

LR I
S SN
W e




Generality of RDDs

Despite coarse-grained interface, RDDs can

express surprisingly many parallel algorithms
» These naturally apply the same operation to many items

Capture many current programming models
» Data flow models: MapReduce, Dryad, SQL, ...
» Specialized models for iterative apps:
BSP (Pregel), iterative MapReduce, bulk incremental
» Also support new apps that these models don't



Outline

Programming interface
Applications
Implementation

Demo



Spark Programming Interface

Language-integrated APl in Scala

Provides:
» Resilient distributed datasets (RDDs)

* Partitioned collections with controllable caching
» Operations on RDDs

* Transformations (define RDDs), actions (compute results)
» Restricted shared variables (broadcast, accumulators)



Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count

cachedmsgs.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)




Fault Tolerance

RDDs track lineage information that can be used
to efficiently reconstruct lost partitions

EX: messages = textFile(...).filter(_.startswith(“ERROR"))
.map(_.split(‘\t’)(2))

HDFS File > Filtered RDD > Mapped RDD
filter map
(func = _.contains(...)) (func = _.split(...))



Example: Logistic Regression

Goal: find best line separating two sets of points

random initial line
+*
R

+ N
\ AN
*

AY
\
\




Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (1 <- 1 to ITERATIONS) {
val gradient = data.map(p =>
(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.X
).reduce(_ + _)
w -= gradient

}

printin("Final w: " + w)



Logistic Regression Performance

4500
4000

3500
g 3000
= 2500
2000
1500
1000
500
o)

Running

5 10 20
Number of Iterations

127 s/ iteration

/

Hadoop
W Spark

\

first iteration 174 s

further iterations 6 s
30



Example: Collaborative Filtering

Goal: predict users’ movie ratings based on past
ratings of other movies

(12 .”I

Users

VD VU U1 D
VoV VU U
J = W W

> O v e
v U1 W v
N vV VU -V

€ Movies >



Model and Algorithm

Model R as product of user and movie feature
matrices A and B of size UxK and MxK

-0

Alternating Least Squares (ALS)
» Start with random A & B
» Optimize user vectors (A) based on movies
» Optimize movie vectors (B) based on users
» Repeat until converged




Serial ALS

var R = readRatingsMatrix(...)

var A = // array of U random vectors
var B = // array of M random vectors

for (i <- 1 to ITERATIONS) {
A = (0 until U).map(i => updateuser(i, B, R))
B = (0 until M).map(1 => updateMovie(i, A, R))
}

Range objects



Naive Spark ALS

var R

var A

var

B

readRatingsMatrix(...)

// array of U random vectors
// array of M random vectors

for (1 <- 1 to ITERATIONS) {

A

B

spark.parallelize(0 until U, numSlices)

Problem:

.map(i => updateUser(i, B, R)) <= R re-sent

.collect()
spark.parallelize(0 until M, numSlices)

to all nodes

.map(i => updateMovie(i, A, R)) <« iNneach

.collect()

iteration

g /




Efficient Spark ALS

var R = spark.broadcast(readratingsmatrix(...)) Solution:
mark R as

var A = // array of U random vectors broadcast

var B = // array of M random vectors :
variable

for (1 <- 1 to ITERATIONS) {
A = spark.parallelize(0 until U, numSlices)
.map(i => updateuUser(i, B, R.value))
.collect()
B = spark.parallelize(0 until M, numSlices)
.map(1 => updateMovie(i, A, R.value))
.collect()

Result: 3x performance improvement




Scaling Up Broadcast

250

N
o
o

150

100

Iteration time (s)

(Op)
@)

Initial version (HDFS)

B Communication
W Computation

10 30 60 90

Number of machines

Iteration time (s)

250

N
(@)
(@)

150

100

I
@)

Cornet broadcast

B Communication
W Computation

10 30 60 90

Number of machines



Cornet Performance

1GB data to 100 receivers

11111,

HDFS HDFS BitTornado  Tree Chain Cornet
(R=3) (R=10) (D=2)

[
o @)
@) @)

o)}
@)

Completion time (s)
N
(@)

N
o

o

[Chowdhury et al, SIGCOMM 2011]



Spark Applications

EM alg. for traffic prediction (Mobile Millennium)
Twitter spam classification (Monarch)
In-memory OLAP & anomaly detection (Conviva)
Time series analysis

Network simulation



Mobile Millennium Project

.
.

Estimate city traffic using GPS observations from
probe vehicles

(e.g. SF taxis) ik £

0
N

2 8\
Al @ 15t Marys & 23 e
J~ ~ SqQuare
hedral 1 Mark 5 §§ » z -
g Hopkins 1 - 5 St
\; St Francis pine St * g E a  BushS
' @ .
a St “ Memorial - v Montgomery
1 pne St Hoi{mm Jter St B = St BART
b
-— \l " . > % o) 1b‘] c\“‘i
= B - Pl AL
! [ - 7 ; o
atl % T =, ¥
push .: - .: - ‘§ " "5 . A a
- | g oy | 4 )
Suttefl x a @ » g N
b it -~ & f ” "
- . - a % & “Pacl
B Pm‘ 3 . / ’ Y,
i . ’
% 2 PP q-ei"P ' ' ’,97 -~
S o
z-=* - st ANCES( s e Muse (
oFarmell = Cvia Ot ™ AN todarm A
; > St BART )
: Wt £y " Tarda. \
! = Ells St *NGEriom :
- <
ot X " !

round

) ™ S~ Fra Centre o
, % A
« 6‘5‘ =
¢ 2 5 Ve
n . enmer-2 ° E . l .
- '
e
| Square

~ / ¢§ »
[ 7
R GchGale Ave ; 7 oo d;&’
> % @ 1 e/ /7 % " o S8 /
s Ave 55 : o o;' > 4
my Z ichuster 2 e, =
< 2
N Ed -
el = E >
E 3
nN 92
|

3 4%



Sample Data

1
“»

4
A
=

g
i

Credlt Tim Hunter with sbpport of the Moblle Mlllennlum team; P.I. Alex Bayen; traffic.berkeley.edu

PO




Challenge

Data is noisy and sparse (1 sample/minute)

Must infer path taken by each vehicle in
addition to travel time distribution on each link




Challenge

Data is noisy and sparse (1 sample/minute)

Must infer path taken by each vehicle in
addition to travel time distribution on each link

/
|
\




Solution

EM algorithm to estimate paths and travel time
distributions simultaneously

—_N
- ~

,’I/Q Q Q Q observations
| | ! ! flatMap

:l LD M L‘Jj % weighted path samples
\\ W groupByKey

\
' link parameters

' broadcast

“———’



Res U Its [Hunter et al, SOCC 2011]

B Mstep
© H000 [ Shuffle step
c 1 Estep
g 2,000
R~

0 . 1 — ] 1
16 80 160 320 640

Number of cores

[ 3x speedup from caching, 4.5x from broadcast




Cluster Programming Models

RDDs can express many proposed data-parallel

programming models
» MapReduce, DryadLINQ
» Bulk incremental processing
» Pregel graph processing
» Iterative MapReduce (e.g. Haloop)
» SQL

Allow apps to efficiently intermix these models



Models We Have Built

Pregel on Spark (Bagel)

» 200 lines of code

Haloop on Spark

» 200 lines of code

Hive on Spark (Shark)
» 3000 lines of code
» Compatible with Apache Hive
» ML operators in Scala




Implementation

Spark runs on the Mesos

cluster manager [NSDI 11], park v

letting it share resources
——

with Hadoop & other apps -
Can read from any Hadoop Iiﬂ‘ﬂ W W W

input source (HDFS, S3, ...)

No changes to Scala language & compiler



Outline

Programming interface
Applications
Implementation

Demo



Conclusion

Spark’s RDDs offer a simple and efficient
programming model for a broad range of apps

Solid foundation for higher-level abstractions

Join our open source community:

www.spark-project.orq




Related Work

DryadLINQ, FlumelJava

» Similar “distributed collection” API, but cannot reuse
datasets efficiently across queries

GraphLab, Piccolo, BigTable, RAMCloud

» Fine-grained writes requiring replication or checkpoints

Iterative MapReduce (e.qg. Twister, HaLoop)
» Implicit data sharing for a fixed computation pattern

Relational databases
» Lineage/provenance, logical logging, materialized views

Caching systems (e.g. Nectar)
» Store data in files, no explicit control over what is cached



Spark Operations

map flatMap
filter union
Transformations sample join
(define a new RDD) groupByKey cogroup
reduceByKey Cross
sortByKey mapValues
collect
Actions reduce
(return a result to count
driver program) save

lookupKey




Job Scheduler

Reuses previously
computed data

Partitioning-aware
to avoid shuffles

Automatic pipelining

i = previously computed partition



Fault Recovery Results

“ No Failure

140 A G .
— H W Failure in the 6th Iteration
N 120
()]
€ 100 ki
=)

c 80 N oY 92 % 5 A I A
.= 60
)
: l
()]
a I R R RRRRRI
0
i 2 3 4 5 6 7 8 9 10

Iteration



Behavior with Not Enough RAM

100

_ o L

% 80 o S

= : ~

_,z 60 I 3_ ~

o o)

g 4 I : 0

S 20 -

0

Cache 25% 50% 75% Fully
disabled cached

% of working set in memory



